S U P P L E M E N T

HOW WELL DO COUPLED MODELS SIMULATE TODAY'S CLIMATE?

Model Identifiers and Characteristics

by Thomas Reichler and Junsu Kim

This document is a supplement to "How Well Do Coupled Models Simulate Today's Climate?," by Thomas Reichler and Junsu Kim (*Bull.Amer. Meteor. Soc.*, **89**, 303–311) • ©2008 American Meteorological Society • Corresponding author: Thomas Reichler, Department of Meteorology, University of Utah, 135 S 1460 E, Rm 819 (WBB), Salt Lake City, UT 84112-0110 • E-mail: reichler@utah.edu • DOI: 10.1175/BAMS-89-3-Reichler.

ables S1 to S3 list the names and identifiers of the different models investigated in this study along with some of their main characteristics.

ID	Short Name	Model	Atmosphere	Ocean	Reference	Flux Adj.
01	BMRC	BMRCI, Australia	R2I (5.6 x 3.2), L9	5.6 x 3.2, LI2	Power et al. 1993	х
02	СССМА	CCCmal, Canada	T32 (3.8 x 3.8), LI0	1.8 x 1.8, L29	Boer et al. 2000	H, W
03	CCSR	CCSR, Japan	T2I (5.6 x 5.6), L20	2.8 × 2.8, LI7	Emori et al. 1999	H, W
04	CERFACS	CERFACSI, France	T2I (5.6 x 5.6), L30	2.0 x 2.0, L3I	Guilyardi and Madec 1997	х
05	COLA	COLAI, United States	RI5 (7.5 x 4.5), L9	1.5 x 1.5, L20	Schneider and Zhu 1998	х
06	CSIRO	CSIRO, Australia	R2I (5.6 x 3.2), L9	5.6 x 3.3, L2I	Gordon and O'Farrell 1997	H, W, M
07	GFDL	GFDL_RI5_a, United States	RI5 (7.5 x 4.5), L9	3.7 x 4.5, LI2	Manabe and Stouffer 1996	H, W
08	GISSM	GISS (Miller), United States	5.0 × 4.0, L9	5.0 x 4.0, LI6	Miller and Jiang 1996	х
09	GISSR	GISS (Russell), United States	5.0 × 4.0, L9	5.0 x 4.0, LI3	Russell et al. 1995	х
10	IAP	IAP/LASGI, China	RI5 (7.5 x 4.5), L9	5.0 x 4.0, L20	Zhang et al. 2000	H, W, M
П	LMD	LMD/IPSLI, France	3.8 x 5.6, LI5	2.0 x 2.0, L3I	Braconnot et al. 1997	х
12	MPIE3	ECHAM3+LSG, Germany	T2I (5.6 x 5.6), LI9	4.0 x 4.0, LII	Voss et al. 1998	H, W, M
13	MPIE4	ECHAM4+OPYC3	T42 (2.8 x 2.8), LI9	2.8 x 2.8, LII	Roeckner et al. 1996	H, W, M
14	MRI	MRII, Japan	5.0 x 4.0, LI5	2.5 x 2.0, L2I	Tokioka et al. 1996	Н, W
15	NCARCSM	NCAR (CSM), United States	T42 (2.8 x 2.8), LI8	2.4 x 2.0, L45	Boville and Gent 1998	х
16	NCARWM	NCAR (WM), United States	RI5 (7.5 x 4.5), L9	1.0 x 1.0, L20	Washington et al. 2000	х
17	NRL	NRLI, United States	T47 (2.5 x 2.5), LI8	2.0 × 1.0, L25	Li and Hogan 1999	Н, W
18	UKMO	UKMO (HadCM2), United Kingdom	3.75 x 2.5, LI9	3.75 x 2.5, L20	Johns et al. 1997	H, W

TABLE SI. Identifiers and characteristics of the CMIP-I models included in this study. Grid resolution: longitude x latitude. *L* denotes number of vertical layers. The column for flux adjustment uses the following notation: H: heat; M: momentum; W: water; X: none.

TABLE S2. As in Table SI but for CMIP-2 models.

ID	Short Name	Model	Atmosphere	Ocean	Reference	Flux Adj.
а	BMRC	BMRC, Australia	R2I (5.6 x 3.2), LI7	5.6 x 3.2, LI2	Colman 2001	H, W, sfc SW rad.
ь	СССМ	CCCma, CGCMI, Canada	T32 (3.8 x 3.8), LI0	1.8 x 1.8, L29	Kim et al. 2003	H, W
с	CCSR	CCSR, Japan	T2I (5.6 x 5.6), L20	2.8 x 2.8, LI7	Emori et al. 1999	H, W
d	CERF	CERFACS2 (ARPEGE/OPA2), France	T3I (3.9 x 3.9), LI9	2.0 x 2.0, L3I	Barthelet et al. 1998	×
e	CSIRO	CSIRO(Mk2), Australia	R2I (5.6 x 3.2), L9	5.6 x 3.2, L2I	Hirst et al. 2000	H, W, M
f	MPIE3	ECHAM3+LSG, Germany	T2I (5.6 x 5.6), LI9	4.0 x 4.0, LII	Voss et al. 1998	H, W, M
g	GFDL	GFDL_R15_a, United States	RI5 (7.5 x 4.5), L9	3.7 x 4.5, LI2	Dixon et al. 2003	Н, W
h	GISS	GISS (Russell), United States	5.0 × 4.0, L9	5.0 x 4.0, LI3	Russell and Rind 1999	×
i	IAP	IAP/LASG2, China	RI5 (7.5 x 4.5), L9	5.0 × 4.0, L20	Zhang et al. 2000	H, W, M
j	LMD	LMD/IPSL2, France	5.6 x 3.8, LI5	2.0 × 2.0, L31	Laurent et al. 1998	×
k	MRI	MRI2 (Tokioka), Japan	5.0 × 4.0, L15	2.5 x 2.0, L2I	Tokioka et al. 1996	H, W
1	NCARC	NCAR(CSM), United States	T42 (2.8 x 2.8), L26	1.0 × (0.3–1.0), L40	Buja and Craig 2002	×
m	NCARW	NCAR-WM, United States	RI5 (7.5 x 4.5), L9	1.0 × 1.0, L20	Washington and Meehl 1996	×
n	NRL	NRL2, Monterey	T47 (2.5 x 2.5), LI8	1.0 × 1.0, L25	Li and Hogan 1999	H, W
o	PCM	DOE-PCM, United States	T42 (2.8 x 2.8), LI8	0.67 x 0.67, L32	Washington et al. 2000	×
Р	UKMO	UKMO (HadCM2), United Kingdom	3.75 × 2.5, LI9	3.75 x 2.5, L20	Johns et al. 1997	H, W
q	UKMO3	UKMO (HadCM3), United Kingdom	3.75 x 2.5, LI9	1.25 x 1.25, L20	Gordon et al. 2000	х

TABLE S3. As in Table SI but for CMIP-3 models.

ID	Short name	Model	Atmosphere	Ocean	Reference	Flux Adj.
С	MIRCH	MIROC3.2 (hires), Japan	T106, L56	0.28 × 0.19, L47	K-I-model-developers 2004	х
D	MIRCM	MIROC3.2 (medres), Japan	T42, L20	I.4 x (0.5–I.4) L43	K-I-model-developers 2004	х
F	BCCRC	BCCR-BCM2.0, Norway	T63, L31	1.5 x 0.5, L35	Furevik et al. 2003	x
G	C3T47	CGCM3.1 (T47), Canada	T47 (3.75 x 3.75), L31	1.85 x 1.85, L29	Kim et al. 2002	H,W
н	C3T63	CGCM3.1 (T63), Canada	T63 (2.8 x 2.8), L 3I	I.4 x 0.94, L29	Flato and Boer 2001	H,W
I	CNRMC	CNRM-CM3, France	T63 (2.8 × 2.8), L45	I.875 x (0.5–2), L3I	Salas-Melia et al. 2005, manuscript submitted to <i>Climate Dyn</i> .	х
J	CSIRO	CSIRO-Mk3.0, Australia	T63, L18	1.875 x 0.84, L31	Gordon et al. 2002	×
к	GFD20	GFDL-CM2.0, United States	2.5 × 2.0, L24	1.0 x (1/3–1), L50	Delworth et al. 2006	×
L	GFD21	GFDL-CM2.1, United States	2.5 x 2.0, L24	1.0 x (1/3–1), L50	Delworth et al. 2006	×
М	GISSA	GISS-AOM, United States	4 x 3, LI2	4 x 3, L16	Lucarini and Russell 2002	×
N	GISSH	GISS-EH, United States	5 x 4, L20	5 x 4, LI3	Schmidt et al. 2006	x
0	GISSR	GISS-ER, United States	5 x 4, L20	5 x 4, LI3	Schmidt et al. 2006	×
Р	IAPFG	IAP-FGOALSI-0-G, China	2.8 × 2.8, L26	l x I, LI6	Yu et al. 2004	×
Q	INMCM	INM-CM3.0, Russia	5 x 4, L2I	2.5 x 2, L33	Volodin and Diansky 2004	w
R	IPSLC	IPSL-CM4, France	2.5 x 3.75, LI9	2 x (I–2), L30	Marti et al. 2005	×
S	MPICM	ECHAM5/MPI-OM	T63, L32	I x I, L4I	Min et al. 2005	×
т	MRICM	MRI-CGCM2-3-2A, Japan	T42, L30	2.5 x (0.5-2.0)	Yukimoto and Noda 2002	H,M,W
U	NCARC	NCAR-CCSM3, United States	T85L26, I.4 x I.4	I x (0.27–I), L40	Collins et al. 2005	×
V	NCARP	NCAR-PCM, United States	T42 (2.8 x 2.8), LI8	I x (0.27–I), L40	Kiehl and Gent 2004	×
W	UKMOC	UKMO-HadCM3, United Kingdom	3.75 x 2.5, LI9	1.25 x 1.25, L20	Gordon et al. 2000	x
х	UKMOG	UKMO-HadGEMI, United Kingdom	1.875 x 1.25, L38	1.25 × 1.25, L20	Johns et al. 2004	x
Y	INGVE	INGV-SXG, Italy	T42, L19	2 x (0.5-2), L3I	Gualdi et al. 2003	Х

REFERENCES

- Barthelet, P., and Coauthors, 1998: Simulations couplees globales de changements climatiques associes a une augmentation de la teneur atmospherique en CO2. *C. R. Acad. Sci. Paris*, **326**, 677–684.
- Boer, G. J., G. Flato, and D. Ramsden, 2000: A transient climate change simulation with greenhouse gas and aerosol forcing: Projected climate to the twenty-first century. *Climate Dyn.*, **16**, 427–450.
- Boville, B. A., and P. R. Gent, 1998: The NCAR Climate System Model, version one. *J. Climate*, **11**, 1115–1130.
- Braconnot, P., O. Marti, and S. Joussaume, 1997: Adjustment and feedbacks in a global coupled ocean-atmosphere model. *Climate Dyn.*, **13**, 507–519.
- Buja, L., and T. Craig, 2002: CCSM2.0.1 User's Guide. Available online at www.ccsm. ucar.edu/models/ccsm2.0.1/ccsm.
- Collins, N., and Coauthors, 2005: Design and implementation of components in the Earth System Modeling Famework. *Int. J. High Perform. Comput. Appl.*, **19**, 341–350.
- Colman, R. A., 2001: On the vertical extent of atmospheric feedbacks. *Climate Dyn.*, **17**, 391–405.
- Delworth, T. L., and Coauthors, 2006: GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics. *J. Climate*, **19**, 643–674.
- Dixon, K. W., T. L. Delworth, T. R. Knutson, M. J. Spelman, and R. J. Stouffer, 2003: A comparison of climate change simulations produced by two GFDL coupled climate models. *Global Planet. Change*, **37**, 81–102.
- Emori, S., T. Nozawa, A. Abe-Ouchi, A. Numaguti, M. Kimoto, and T. Nakajima, 1999: Coupled ocean-atmosphere model experiments of future climate change with an explicit representation of sulfate aerosol scattering. *J. Meteor. Soc. Japan*, 77, 1299–1307.
- Flato, G. M., and G. J. Boer, 2001: Warming asymmetry in climate change simulations. *Geophys. Res. Lett.*, **28**, 195–198.
- Furevik, T., M. Bentsen, H. Drange, I. K. T. Kindem, N. G. Kvamstø, and A. Sorteberg, 2003: Description and validation of the Bergen Climate Model: ARPEGE coupled with MICOM. *Climate Dyn.*, **21**, 27–51.
- Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transport in a version of the Hadley Centre coupled model without flux adjustments. *Climate Dyn.*, 16, 147–168.

- Gordon, H. B., and S. P. O'Farrell, 1997: Transient climate change in the CSIRO coupled model with dynamic sea ice. *Mon. Wea. Rev.*, **125**, 875–908.
- -----, and Coauthors, 2002: The CSIRO Mk3 climate system model. CSIRO Atmospheric Research Tech. Rep. 60, 134 pp.
- Gualdi, S., A. Navarra, E. Guilyardi, and P. Delecluse, 2003: Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM. *Ann. Geophys.*, **46**, 1–26.
- Guilyardi, E., and G. Madec, 1997: Performance of the OPA/ARPEGE-T21 global ocean-atmosphere coupled model. *Climate Dyn.*, **13**, 149–165.
- Hirst, A. C., S. P. O'Farrell, and H. B. Gordon, 2000: Comparison of a coupled ocean–atmosphere model with and without oceanic eddy-induced advection. Part 1: Ocean spin-up and control integrations. *J. Climate*, **13**, 139–163.
- Johns, T. C., R. E. Carnell, J. F. Crossley, J. M. Gregory, J. F. B. Mitchell, C. A. Senior, S. F. B. Tett, and R. A. Wood, 1997: The second Hadley Centre coupled ocean-atmosphere GCM: Model description, spinup and validation. *Climate Dyn.*, 13, 103–134.
- —, and Coauthors, 2004: HadGEM1—Model description and analysis of preliminary experiments for the IPCC Fourth Assessment Report. Tech. Rep. 55, Met Office, Exeter, United Kingdom.
- K-1-model-developers, 2004: K-1 coupled model (MIROC) description. Center for Climate System Research, University of Tokyo.
- Kiehl, J. T., and P. R. Gent, 2004: The Community Climate System Model, Version 2. *J. Climate*, **17**, 3666–3682.
- Kim, S.-J., G. M. Flato, G. J. Boer, and N. A. McFarlane, 2002: A coupled climate model simulation of the Last Glacial Maximum, Part 1: Transient multi-decadal response. *Climate Dyn.*, **19**, 515–537.
- —, G. M. Flato, and G. J. Boer, 2003: A coupled climate model simulation of the Last Glacial Maximum, Part 2: Approach to equilibrium. *Climate Dyn.*, 20, 635–661.
- Laurent, C., H. LeTreut, Z. X. Li, L. Fairhead, and J. L. Dufresne, 1998: The influence of resolution in simulating inter-annual and inter-decadal variability in a coupled ocean-atmosphere GCM with emphasis over the North Atlantic. IPSL Rep. N8.
- Li, T., and T. F. Hogan, 1999: The role of the annual mean climate on seasonal and interannual variability of the tropical Pacific in a coupled GCM. *J. Climate*, **12**, 780–792.
- Lucarini, V., and G. L. Russell, 2002: Comparison of mean climate trends in the Northern Hemisphere between National Centers for Environmental Prediction and two atmosphere-ocean model forced runs. *J. Geophys. Res.*, **107**, 4269, doi:10.1029/2001JD001247.

- Manabe, S., and R. J. Stouffer, 1996: Low-frequency variability of surface air temperature in a 1000-year integration of a coupled atmosphere–ocean–land surface model. *J. Climate*, **9**, 376–393.
- Marti, O., and Coauthors, 2005: The new IPSL climate system model: IPSL-CM4. Note du Pole de Model 26, Institut Pierre Simon Laplace des Sciences de l'Environment Global, Paris, France, 86 pp.
- Miller, R. L., and X. Jiang, 1996: Surface energy fluxes and coupled variability in the tropics of a coupled general circulation model. *J. Climate*, **9**, 1599–1620.
- Min, S.-K., S. Legutke, A. Hense, and W.-T. Kwon, 2005: Internal variability in a 1000-year control simulation with the coupled climate model ECHO-G. Part I: Near surface temperature, precipitation, and mean sea level pressure. *Tellus*, **57A**, 605–621.
- Power, S. B., R. A. Colman, B. J. McAvaney, R. R. Dahni, A. M. Moore, and N. R. Smith, 1993: The BMRC coupled atmosphere/ocean/sea-ice model. Bureau of Meteorology Research Centre Rep. 37, Melbourne, 55 pp.
- Roeckner, E., J. M. Oberhuber, A. Bacher, M. Christoph, and I. Kirchner, 1996: ENSO variability and atmospheric response in a global coupled atmosphere–ocean GCM. *Climate Dyn.*, **12**, 737–754.
- Russell, G. L., and D. Rind, 1999: Response to CO₂ transient increase in the GISS coupled model: Regional coolings in a warming climate. *J. Climate*, **12**, 531–539.
- —, J. R. Miller, and D. Rind, 1995: A coupled atmosphere–ocean model for transient climate change studies. *Atmos.–Ocean*, **33**, 683–730.
- Salas-Melia, D., and Coauthors, 2005: Description and validation of the CNRM-CM3 global coupled model. CNRM Working Note 103, 36 pp.
- Schmidt, G. A., and Coauthors, 2006: Present-day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data. *J. Climate*, **19**, 153–192.

- Schneider, E. K., and Z. Zhu, 1998: Sensitivity of the simulated annual cycle of sea surface temperature in the equatorial Pacific to sunlight penetration. *J. Climate*, 11, 1932–1950.
- Tokioka, T., A. Noda, A. Kitoh, Y. Nikaidou, S. Nakagawa, T. Motoi, S. Yukimoto, and K. Takata, 1996: A transient CO₂ experiment with the MRI CGCM: Annual mean response. Center for Global Environmntal Research, National Institute for Environmental Studies, Environment Agency of Japan, Ibaraki, Japan, CGER-IO22-96, 86 pp.
- Volodin, E. M., and N. A. Diansky, 2004: El Niño reproduction in coupled general circulation model of atmosphere and ocean. *Russ. Meteor. Hydrol.*, **12**, 5–14.
- Voss, R., R. Sausen, and U. Cubasch, 1998: Periodically synchronously coupled integrations with the atmosphere-ocean general circulation model ECHAM3/LSG. *Climate Dyn.*, **14**, 249–266.
- Washington, W. M., and G. A. Meehl, 1996: High-latitude climate change in a global coupled ocean–atmosphere–sea ice model with increased atmospheric CO₂. *J. Geophys. Res.*, **101**, 12 795–12 801.
- —, and Coauthors, 2000: Parallel climate model (PCM) control and transient simulations. *Climate Dyn.*, **16**, 755–774.
- Yu, Y., X. Zhang, and Y. Guo, 2004: Global coupled ocean-atmosphere general circulation models in LASG/IAP. *Adv. Atmos. Sci.*, **21**, 444–455.
- Yukimoto, S., and A. Noda, 2002: Improvements of the Meteorological Research Institute Global Ocean–Atmosphere Coupled GCM(MRI-CGCM2) and its climate sensitivity. Tech.Rep. 10, NIES, Japan, 8 pp.
- Zhang, X.-H., G.-Y. Shi, H. Liu, and Y.-Q. Yu, Eds., 2000: *IAP Global Atmosphere–Land System Model*. Science Press, 259 pp.