Multi-decadal drought cycles in the Great Basin recorded by the Great Salt Lake:

Modulation from a transition-phase teleconnection

Shih-Yu Wang1,2, Robert R. Gillies1,2, and Thomas Reichler3

1. Utah Climate Center, Utah State University, Logan, UT
2. Department of Plants, Soils, and Climate, Utah State University, Logan, UT
3. Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT

Submitted: November 2010

1st Revision: May 2011

2nd Revision: July 2011

\textit{Journal of Climate}

Corresponding author: Shih-Yu (Simon) Wang, Utah Climate Center, Utah State University, 4825 Old Main Hill, Logan UT 84322-4825.
E-mail address: simon.wang@usu.edu
Abstract

Investigated here are the meteorological conditions associated with multi-decadal drought cycles as revealed by historical records of lake level fluctuation of the Great Salt Lake (GSL). The analysis combined instrumental, proxy and simulation data sets, including the Twentieth Century Reanalysis version 2, the North American Drought Atlas, and a 2000-year control simulation of the GFDL CM2.1. Statistical evidence from the spectral coherence analysis points to a phase shift amounting to 6-9 years between the wet/dry cycles in the Great Basin and the warm/cool phases of the Interdecadal Pacific Oscillation (IPO). Diagnoses of the sea surface temperature and atmospheric circulation anomalies attribute such a phase shift to a distinctive teleconnection wave train that develops during the transition points between the IPO’s warm and cool phases. This teleconnection wave train forms recurrent circulation anomalies centered over the southeastern Gulf of Alaska; this directs moisture flux across the Great Basin and subsequently drives wet/dry conditions over the Great Basin and the GSL watershed. The IPO lifecycle therefore modulates local droughts/pluvials in a quarter-phase manner.
1. Introduction

The Great Salt Lake (GSL) is a large closed-basin lake located in the heart of the American West. As a pluvial lake, the GSL integrates hydrological forcings over a substantial watershed which, when coupled with the lake’s shallowness, results in extensive fluctuations in elevation (Fig. 1a; blue shaded graph). The large drainage area that constitutes the GSL tends to dampen out the interannual variability and so, has a tendency to be more responsive to climatic variabilities at longer timescales (e.g., decadal) (Lall and Mann 1995; Mann et al. 1995). As a result, the tendency of the GSL elevation (denoted as ΔGSL) reflects the recurrent wet/dry periods that have characterized the American West (Cook et al. 2007), since any abrupt and prolonged downtrends (uptrends) of the GSL elevation are usually reflective of drought (pluvial) conditions in the Great Basin1 (UDNR 2007). A wealth of research (Gray et al. 2003; Seager et al. 2005; Herweijer et al. 2007; references therein) has established a link between low-frequency climate variability in the American West and sea surface temperature (SST) in the tropical Pacific. A strong relationship has also been found between variabilities of the GSL elevation and the Pacific climate (e.g., Mann et al. 1995; Moon and Lall 1996). Recent studies (Wang et al. 2010; Gillies et al. 2011) have noticed two distinct frequency bands in the power spectrum of the ΔGSL that are highly responsive to the evolution of decadal-scale oscillatory modes in the tropical Pacific; these two frequency bands are reflected in Fig. 1b – spectrum of the annual ΔGSL – with one at the quasi-decadal timescale (10-15 year) and the other at the multi-decadal timescale (~30 year).

Focused research on the quasi-decadal timescale by Wang et al. (2010, 2011) found that the hydrological factors controlling the ΔGSL respond to a particular teleconnection that is

1 The Great Basin referred here includes the GSL watershed.
induced at the *transition point* of the Pacific Quasi-Decadal Oscillation (QDO) – the transition that lies approximately half-way between the warmest and coldest SST anomalies in the tropical central Pacific. Such circumstance in process creates consistent time lags (on the order of 6 years) between the Pacific QDO and the GSL elevation and, subsequently, results in a highly coherent, yet opposite correspondence between the two. Applying this concept, Gillies et al. (2011) developed a statistical model to forecast the annual GSL elevation out to 8 years.

Nevertheless, the model in Gillies et al. exhibits a wet bias that persists for two decades followed by a dry bias in another two decades. Such biases apparently are linked to multi-decadal variability that is not as well understood. Correcting this bias requires improved knowledge of the dynamical and hydrological processes that are involved in the multi-decadal variations of the GSL elevation, drought cycles, and associated teleconnections.

Expanding upon the recent work of Wang et al. (2010) and Gillies et al. (2011), the purpose of this paper is to document the co-variability and processes of multi-decadal climate modes in both the Pacific and the Great Basin, with an emphasis on the impact over the GSL watershed. The analysis utilized recent climate data sets that span at least a century; these data sets are introduced in Section 2. The co-variability of the GSL elevation with drought and SST anomalies was examined and is presented in Section 3. Circulation and SST patterns associated with variations in the GSL elevation, as well as results of the CM2.1 simulation, are discussed in Section 4. A summary with some conclusions is provided in Section 5.

2. Data sources

Various sets of century-long gridded data were utilized to facilitate our line of analysis, including the Twentieth Century Reanalysis (20CR) Version 2 that was forced by sea level pressure and SST observations at a 2°x2° resolution (Compo et al. 2011), the North American
Drought Atlas providing the tree ring-reconstructed Palmer Drought Severity Index (PDSI) at a 2.5°x2.5° resolution and has been lowpass filtered with 20 years (Cook and Krusic 2004), and the NOAA Extended Reconstruction SST (ERSST) Version 3 at a 2°x2° resolution (Smith et al. 2008). The 20CR data, with a time span of 1871-present, was especially insightful to the study of multi-decadal climate variations because it enabled the empirical analysis of atmospheric circulations beyond the 60-year operational lifespan of upper-air sounding records. To verify the SST variability prior to World War II, we adopted a long-term Niño3.4 SST record that was constructed by Bunge and Clarke (2009) from ship-borne SST observations calibrated with the coral δ¹⁸O record for the period 1873-2008. We also utilized a 700-year (1300-2003) record of the Niño 3.4 index that was constructed from tree rings collected in México and western Texas by Cook et al. (2009), denoted as CNiño3.4. In addition to these observation-based data sets, we examined a 2000 yr long pre-industrial control simulation performed using the Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 global coupled model, as documented in Delworth et al. (2006) and Wittenberg (2009). As is described in Wittenberg (2009), the simulation was integrated for 2000 years with estimates of solar irradiance, land cover, and atmospheric composition fixed in 1860.

3. Co-variability between the GSL elevation, drought, and Pacific climate

The annual ΔGSL during the 1848-2008 period is shown in Fig. 1a (accumulated for the calendar year), overlaid with the PDSI averaged from the nearest four grid points surrounding the GSL. The ΔGSL was smoothed using a 20-year lowpass filter with a minimum slope constraint (Mann 2004) in order to be consistent with the lowpassed PDSI that comes with the North American Drought Atlas. As shown in Fig. 1a, both the ΔGSL and the PDSI reveal
marked multi-decadal variability and are coherent with each other. This is not surprising – i.e. a result that reflects the fact that changes in the GSL elevation respond to the wet and dry periods of the surrounding region. The result nevertheless concurs and validates the tree ring-reconstructed PDSI records for this region. In order to focus on the multi-decadal spectral peaks as shown in Fig. 1b, hereinafter all time series and regression analyses use 20-50 year bandpass filtered data. The filtering was performed using the Hamming-Windowed filter developed specifically for short-length time series while conserving the two ends (Iacobucci and Noullez 2005).

The association between the bandpassed ΔGSL and PDSI is shown in Fig. 2a by the one-point correlation map, revealing a significant (p<0.05)\(^2\) response surrounding the Great Basin and the Upper Colorado River Basin. A drought pattern like this is distinct from those affecting the southwestern U.S. associated with prevailing La Niña conditions (e.g., Schubert et al. 2004; Seager et al. 2005; Herweijer et al. 2007). Correspondingly, the correlations between the bandpassed ΔGSL and annual-mean SST anomalies (Fig. 2b) are insignificant in the central-eastern tropical Pacific (i.e. the Niño3.4 region) and elsewhere, except the area in the western tropical Pacific between Indonesia and Australia that shows significant correlations. The overall SST pattern lacks a tropical Pacific forcing and is a departure from the El Niño-Southern Oscillation (ENSO) pattern. This suggests that the ΔGSL and drought conditions in the Great Basin do not respond to the multi-decadal variability of ENSO, at least not directly. We plotted in Fig. 2c the bandpassed Niño3.4 index of Bunge and Clarke (2009) and the bandpassed PDSI of the Great Basin to further explore the multi-decadal spectral band of the ΔGSL. The multi-decadal variations of the two time series are not coherent; instead, they exhibit a phase shift with

\(^2\) The significance test has taken into account the reduced degree of freedom (DoF) due to filtering. In this case the DoF was reduced to 7 from 157 given the 20 year cut-off frequency.
the Niño3.4 index consistently leading the PDSI on the order of 6-9 years.

In order to obtain a statistical description of these observed features, the co-variability between the SST, droughts, and the ΔGSL was examined through the multitaper method (MTM) of spectral coherence analysis based on Mann and Park (1996). Our analysis proceeds along the following lines: First, the MTM spectral coherence was computed between the (unfiltered) annual ΔGSL and the PDSI so that the spatial distribution of their coherence amplitude and phase could be constructed at each grid point. Since our focus was on the multi-decadal timescale, only the maximum amplitude within the 20-50 year frequency band and its corresponding phase – averaged among the significant amplitudes – are displayed. The coherence amplitude is presented as vector length and the phase difference as vector direction. This approach, which follows that used in Wang et al. (2010; their Fig. 5), has a similar purpose as the MTM-Singular Value Decomposition (e.g., Mann and Park 1993) but is different in that we were interested in the identification of a spectral band, rather than specific spectral peak(s) of variability.

Figure 3a shows that the coherence amplitudes at or above the 90% confidence interval appear in the Great Basin with simultaneous phases (0°) and in the eastern Rocky Mountains and the southwest with shifted phases (45°-90°). Such phase shifts suggest that the PDSI in those regions leads the ΔGSL by about 6-9 years. This 0° phase of spectral coherence surrounding the GSL is not surprising, but rather is a “sanity check” for the two independent, yet physically related data sets. The corresponding frequencies of the significant amplitudes are uniformly 29 years over the Intermountain West (Fig. 3b), consistent with the peak ΔGSL spectrum in Fig. 1b.

Next in line was the spectral/coherence analysis implemented between the annual ΔGSL and annual SST anomalies, as shown in Fig. 3c. Immediately apparent is that significant
(maximum) amplitudes within the multi-decadal frequency cover an area encompassing the Niño3.4 region at 90°, as well as the subtropical eastern Pacific and part of the tropical North Atlantic at 45°. The significant frequencies of spectral coherence amplitudes range between 28 and 32 years over these regions (not shown). The result thus supports the phase shifts as was observed between the PDSI and the Niño3.4 index (cf. Fig. 2c). Throughout the Pacific basin, the distribution of the spectral coherence seems coincident with SST pattern associated with the ENSO-like decadal variability (Zhang et al. 1997), which is characterized by stronger tropical loading compared to the Pacific Decadal Oscillation, which is confined to the north of 20°N (Mantua et al. 1997). Due to this, in the discussion that follows we adopt the term Interdecadal Pacific Oscillation (IPO) to depict this basin-scale interdecadal variability, following that defined in Folland et al. (2002).³

Based on the results in Figs. 2 and 3, it is reasonable to use the multi-decadal SST variation in the Niño3.4 region as an indicator that pertains to the IPO. However, given the relatively short instrumental records it was not possible to satisfactorily address the significance of multi-decadal variability. To extend the analysis, we utilized the 700-year CNiño3.4 index. Following Fig. 3, the spectral coherence between the CNiño3.4 index and the tree-ring PDSI (1300-2003) is shown in Fig. 4. Significant amplitudes are in-phase over western Texas and southern New Mexico and are nearly out-of-phase in the Pacific Northwest; these essentially sandwich the 90° phase differences over the Great Basin. While the in-phase (out-of-phase) response in the southwest (northwest) reflects the well-known IPO influence on precipitation and drought (e.g., Gershunov and Barnett 1998; Herweijer et al. 2007), the 90°-phase differences in the Great Basin and the Upper Colorado River Basin suggest a delay of drought response to the IPO’s extreme (warm/cold) phases, similar to that revealed in Fig. 2c. Analysis using the

³ The terms ‘interdecadal’ and ‘multi-decadal’ are used interchangeably in the text.
instrumental data of ERSST and of Bunge and Clarke (2009) (not shown) obtained a consistent result with phase difference oriented exactly at 90° over the Great Basin. These separate lines of investigation lend further credence to the quarter-phase shift between the ΔGSL and the IPO as was evident in Fig. 3c.

4. Dynamical linkages

a. SST and circulation covariability

To substantiate the implication of the spectral coherence analysis, the 20CR data and observed SST were analyzed. However we used the bandpassed CNiño3.4 index to represent the IPO because of its long record and, as will be shown, its reasonable depiction of the IPO pattern. The circulation and SST patterns in association with the IPO lifecycle were constructed through lagged regressions, with a 3 year interval beginning year zero (yr+0) through year nine (yr+9). All variables were annual means bandpass filtered with 20-50 years. As shown in Fig. 5, the simultaneous response of the SST anomalies to the CNiño3.4 (yr+0) depicts the classic IPO pattern consisting of widespread eastern tropical warming surrounded by midlatitude cooling, i.e. the so-called “horseshoe pattern” (e.g., Zhang and Delworth 2007). The regression coefficients near the Niño3.4 region are significant (p<0.01), even though the degrees of freedom have been drastically reduced due to filtering (Livezey and Chen 1983). Such a significant response serves to validate the tree ring-reconstructed CNiño3.4 index in terms of the IPO signal. Comparing Fig. 5 (yr+0) with Fig. 3c, the distribution of significant coherence amplitudes between the ΔGSL and SSTs is coincident with the IPO pattern, particularly in the tropical Pacific. Beginning yr+3 the tropical Pacific warming gradually dissipates, with cooling developing in the northeastern Pacific. This is followed by the gradual emergence of the cool phase IPO structure after yr+12 (not shown). Such a SST evolution at the interdecadal timescale is consistent with
that illustrated in Allan (2000) and subsequent studies. In particular, the westward progression of tropical warming and the eastward extension of midlatitude cooling possibly result from a slow clockwise rotation of the Pacific subtropical gyre as was proposed by Zhang and Levitus (1997). At yr+9, the basin-wide SST pattern bears some resemblance with Fig. 2b showing weak anomalies in the Niño3.4 region and substantial cooling in the northeastern Pacific, albeit insignificant. These results agree with the inference made from Fig. 3c that the ΔGSL (and local drought) is linked to the IPO’s transition point between the warm and cool phases, rather than its extreme phases.

A regression between the CNiño3.4 index and the 250mb streamfunction allows one to construct the circulation pattern associated with the IPO evolution, which is overlaid in Fig. 5. For the streamfunction we used the cold season mean (November-April) because of the rainy/snow season of this region (regression of the annual mean (not shown) obtained a consistent pattern with weaker magnitudes.) At yr+0, a classic Pacific-North American pattern (PNA; Horel and Wallace 1981) emerges in response to the widespread tropical Pacific warming. During yr+6 through 9, the circulation transforms into a weaker, zonally oriented short-wave train across the midlatitudes. Beginning yr+6, a cyclonic cell develops over western North America and this is known to modulate precipitation in the GSL watershed (e.g., Wang et al. 2010). Such co-varying circulation and SST features echo the finding of Wang et al. (2011) that the lack of dominant tropical Pacific SST forcing significantly reduces the magnitude of longer-wave circulation anomalies (like the PNA) while at the same time promoting the emergence of shorter-wave responses. The short-wave train is possibly a Rossby wave response to upstream forcings, such as warm SST anomalies in the western North Pacific (yr+9). A forcing source such as this is plausible as was found in earlier studies (Branstator 1983; DeWeaver and Nigam 2004; Wang et al. 2011) and will be discussed further later.
On the regional perspective, we examined the column water vapor flux

\[\dot{Q} = \int_{0}^{300 \text{mb}} (q \vec{V}) \, dp \]

derived from the 20CR data (where \(q \) is specific humidity, \(\vec{V} \) is wind, and \(p \) is pressure) and regressed upon the CNiño3.4 index. The results were overlaid with corresponding patterns of the PDSI regressions (1300-2003) as shown in Fig. 6. During the warm-phase IPO (yr+0), a cyclonic cell of water vapor flux develops in the eastern North Pacific reflecting the eastward-shifted Aleutian low and its influence over the American West. The southwesterly flux associated with this cyclonic cell apparently contributes to the positive PDSI (i.e. wet conditions) in the southwest while the easterly flux contributes to the negative PDSI (i.e. dry conditions) in the northwest. From yr+6 through yr+9, the cyclonic cell shifts northeastward – following the northward migration of cyclonic \(\dot{Q} \) – at the same time enabling southwesterly moisture transport into the Great Basin. At yr+9 the Great Basin is characterized by wet conditions in response to this anomalous circulation. Noteworthy is that the PDSI and SST patterns at yr+9 echo the Saskatchewan type of precipitation anomalies in western Canada that are associated with a vastly different SST pattern from that of the IPO (Cayan et al. 1998). Even though the regression pattern of \(\dot{Q} \) is largely insignificant, due to filtering, the patterns of \(\dot{Q} \) and PDSI appear to correspond to each other. During the cool-to-warm IPO transitions (not shown), a reversed situation is formed leading to drought in the southwest and its subsequent progression across the Great Basin.

b. Circulation maintenance

Regression analysis with smoothed data does however raise concern with regard to spurious correspondence. To examine this concern, we performed a composite analysis using unfiltered data. Based upon the IPO evolution defined by the multi-decadal Niño3.4 index in Fig.
we selected five warm-to-cool transition periods (1883-87, 1906-10, 1942-46, 1968-72, and 1999-2003) and five cool-to-warm transition periods (1875-79, 1895-99, 1920-24, 1953-57, and 1984-88), each period comprising five years. Given the cold-season precipitation maxima in the region, the analysis focused on the November-April period with the year centered in January.

Figure 7a shows the differences of the composite streamfunction at 250 mb between the warm-to-cool and cool-to-warm phases, superimposed with the significance level of 95% per Student’s t-test. A zonally oriented short-wave train is clearly visible, while its cyclonic cell over the Gulf of Alaska suggests that the jet stream and storm track are enhanced over the Great Basin (cf. Fig. 10 of Wang et al. 2010). In addition, worth mentioning is that the composite short-wave train corresponds with the regression pattern at yr+9 (Fig. 5); this is further supported by a significant spatial correlation coefficient of 0.67 between the composite and regression patterns within the domain of Fig. 7.

The differences of composite SST (Fig. 7b shadings) reveal weak anomalies in the tropical and subtropical Pacific. Nonetheless, the SST pattern also bears some resemblance with Fig. 5 at yr+9. Apparently the short-wave train formed during the IPO transitions is not directly excited from ENSO-like, tropical Pacific forcings. To explore its forcing source, we computed the wave-activity flux – a measure of the phase-independent wave activity for stationary and migratory waves. Based upon the Eliassen-Palm relation for stationary wave activity (Plumb 1985), Takaya and Nakamura (2001) formulated the wave-activity flux (W) as:

\[
W = \frac{1}{21V} \left[u(\psi_x^2 - \psi_x \psi_{xx}) + v(\psi_x \psi_y - \psi \psi_{xy}) \right]
\]

\[
+ u(\psi_x \psi_y - \psi \psi_{xy}) + v(\psi_y^2 - \psi \psi_{yy}) \right]
\]

where \(\psi \) is the perturbation streamfunction, the subscripts represent partial derivatives, and \(V \) is the mean horizontal winds \((u, v)\). The presentation of Eq.(1) follows that in Jiang and Lau (2008).
The vector \mathbf{W} is suited for Rossby wave packets associated with anomalous circulations propagating through the time-mean flow, combining geostrophic flux that represents energy propagation and potential vorticity flux that carries mean-flow momentum. The calculation of Eq.(1) is independent of any spatial or time averaging, making it ideal for analyzing wave activity over different timescales.

As shown in Fig. 7b, the flux of stationary wave activity propagates mainly along the short-wave train around 40°N, from the western North Pacific towards North America. Areas of divergent flux in the central North Pacific and near Japan suggest a possible Rossby wave source region there. Meanwhile, the divergent flux over the U.S. West Coast indicates a regeneration of wave energy which, in turn, propagates into North America. On the other hand, there is no apparent energy source in the tropical central/western Pacific and this corresponds to the weak tropical SST anomalies. There is, however, a region of poleward wave-activity flux emanating from the tropical eastern Pacific, though the flux does not reach North America. The diagnosis points to primary midlatitude forcing in maintaining the transition-phase teleconnection of the IPO.

c. CM2.1 simulation

The relatively short length of observational data presents a constant challenge to the study of multi-decadal variability. In seeking an alternative, yet dependable measure of multi-decadal variability, we analyzed the 2000 yr long control simulation from CM2.1. Numerous studies have established that, amongst the models that contributed to the CMIP-3 (Coupled Model Intercomparison Project) database, CM2.1 has a realistic mean climate (Reichler and Kim 2008b, a), ENSO variability (Oldenborgh et al. 2005), and SST variability over the region of the IPO (Santer et al. 2009). In addition, Pierce et al. (2009) have demonstrated that CM2.1
simulates reasonably the influences of ENSO and IPO on Western U.S. precipitation. The study by Schubert et al. (2009) noted that CM2.1 is one of the few global coupled models that can capture the teleconnection and climate impacts of Pacific decadal variability over North America.

The baseline performance of this simulation was examined through a standard Empirical Orthogonal Function (EOF) analysis of annual SST within the global domain as outlined in Fig. 3c, but was confined to south of 50°N to avoid the known bias of simulated sea ice. The first EOF (not shown) reveals a striking ENSO pattern that is consistent with previous studies (e.g., Wittenberg et al. 2006). Applying the MTM spectral analysis on this principal component (PC1; Fig. 8a), significant spectral peaks appear between 20 and 50 years. Using this bandwidth, we then computed the EOF of the bandpass filtered SST of CM2.1 to depict the simulated IPO. The first leading mode (Fig. 8b) reveals a basin-scale SST variation pattern similar to that of the observed IPO, despite a subtropical discontinuity near 15°N between the equatorial warm tongue and the midlatitude warm anomalies. To examine the representation of model Niño3.4 index on model IPO, we correlated the bandpassed SSTs with the bandpassed Niño3.4 index. The correlation pattern (not shown) resembles that in Fig. 8b, suggesting a strong co-variability between the simulated Niño3.4 index and IPO. This result is in agreement with previous findings (e.g., Schubert et al. 2009) that CM2.1 is one of the few coupled models that can capture the Pacific decadal variability and associated teleconnection impacts in North America.

Nevertheless, the MTM coherence analysis was performed for the annual precipitation and Niño3.4 index (Fig. 9a). Note that, model precipitation was used as a proxy for the PDSI because of insufficient variables that are required to compute the PDSI. Nonetheless, within the multi-decadal frequency band, significant coherence amplitudes are distributed to the west of the Rockies. Compared with the observations in Fig. 4, the simulated precipitation response to the IPO appears to shift westward and shows weak variability over the Rocky Mountains.
Regardless of biases like these, an area of 90° phase covers northern California and the Great Basin and is sandwiched between some 0° phase region in the south and some 180° phase in the north, consistent with the observation. The significant frequencies of coherence amplitudes over this region range between 28-32 years (not shown), close to the 29 year frequencies as observed in Fig. 3b. This pattern of precipitation responses to the IPO, albeit spatially shifted from that of the observations, presents complementary evidence to the transition-phase teleconnection associated with the IPO and its climate impact over the Great Basin.

5. Summary and conclusions

Utilizing available century-long data sets, longer-term proxy climate records, and a 2000-year simulation of the CM2.1 model, this study revealed evidence of consistent modulation of the Interdecadal Pacific Oscillation (IPO) on climate and drought cycles in the Great Basin – a process that is inferred from the historical record of the GSL level variations. This modulation involves a phase lag of 6-9 years, a result of a distinctive teleconnection pattern that develops during the transition points between the IPO’s warm and cool phases. Such a circumstance provides a plausible explanation for the delay in the occurrence of local droughts/pluvials over the Great Basin to the IPO cycle – a phenomenon suggested by the spectral coherence analysis. The CM2.1 simulation corroborates the processes involved in the events – that a transition-phase teleconnection of the IPO does exist, that such a teleconnection affects climate anomalies, and (most importantly) that they are not associated with the warm/cool extremes of the IPO phases.

The possibility that drought cycles in the American West evolve in association with the IPO lifecycle had been statistically researched by others, such as the spatiotemporal analysis by Zhang and Mann (2005). In addition, recent studies exploring long-range forecasts of streamflow in the Colorado River Basin have also found significant lags from the tropical Pacific
SST on the order of three years (e.g., Lamb et al. 2011). The present study is a further step towards recognizing the process connecting multi-decadal drought variability to an explicit teleconnection pattern, which is atypical to that of the classical PNA mechanism. The teleconnection elucidated here, one that is excited during the IPO transitions, provides a plausible explanation for the existence of the phase lag. The seeming “memory” of such phase lag lies in the ocean circulation (i.e. the IPO); the atmospheric circulations merely respond to the evolving anomalies of SST and diabatic heating (i.e. teleconnections). Awareness of the IPO lifecycle and its commensurate dynamics initiated between the ocean and the atmosphere will serve to improve decadal prediction of climate for the American West.

Acknowledgements

We are grateful to Dr. Lucia Bunge for providing the long-term Niño3.4 SST index, and to Dr. Andrew Wittenberg for making the CM2.1 model simulation available to us. Insightful discussion with Prof. Upmanu Lall in a companion study as well as valuable comments from Dr. Michael Alexander and two anonymous reviewers are highly appreciated. The MTM statistical package was obtained from Prof. Michael Mann’s website at http://www.meteo.psu.edu/~mann/Mann/tools/tools.html. The 20CR is provided by the NOAA/OAR/ESRL PSD from their website at http://www.esrl.noaa.gov/psd/. This study was supported by the USDA-CSREES Drought Management, Utah Project, and approved by the Utah Agricultural Experiment Station, Utah State University as journal paper number 8233.
References

Santer, B. D., and Coauthors, 2009: Incorporating model quality information in climate change
detection and attribution studies. *Proceedings of the National Academy of Sciences*, 106,
14778-14783.

Schubert, S., and Coauthors, 2009: A U.S. CLIVAR Project to Assess and Compare the
Responses of Global Climate Models to Drought-Related SST Forcing Patterns:
Overview and Results. *J. Climate*, 22, 5251-5272.

Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005: Modeling of Tropical Forcing
of Persistent Droughts and Pluvials over Western North America: 1856–2000*. *J. Climate*, 18,
4065-4088.

Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to
NOAA’s Historical Merged Land–Ocean Surface Temperature Analysis (1880–2006). *J. Climate*, 21,
2283-2296.

Takaya, K., and H. Nakamura, 2001: A Formulation of a Phase-Independent Wave-Activity Flu breath
for Stationary and Migratory Quasigeostrophic Eddies on a Zonally Varying Basic Flow.
J. Atmos. Sci., 58, 608-627.

UDNR, 2007: Drought in Utah: Learning from the past-preparing for the future. Utah State
Water Plan. 124.

Wang, S.-Y., R. R. Gillies, J. Jin, and L. E. Hipps, 2010: Coherence between the Great Salt Lake

Wang, S.-Y., R. R. Gillies, L. E. Hipps, and J. Jin, 2011: A transition-phase teleconnection of the

Figure captions

Fig. 1 (a) Lake elevation of the GSL (blue shaded graph) superimposed with the elevation tendency (ΔGSL; black solid line) and the PDSI (red dashed line) averaged from the nearby four grid points as outlined in Fig. 2a, after a 20-year lowpass filter. The unfiltered ΔGSL is shown with a gray dotted line for reference. (b) MTM spectral analysis of the ΔGSL during the period 1848-2008 with 2π tapper, superimposed with the 99% confidence interval (CI; upper blue line) and the red noise background threshold (lower blue line).

Fig. 2 Correlation maps between the ΔGSL and the (a) PDSI and (b) ERSST. All data were annual means bandpassed with 20-50 years. Values that are significant at the 95% confidence interval are shaded. The four grid points used for the PDSI in Fig. 1a are outlined by a yellow box in Fig. 2a. (c) Time series of the 20-50 year bandpassed PDSI (red dashed line) and Niño3.4 SST anomalies (blue line) constructed by Bunge and Clarke (2009); dotted line before 1873 was derived from the ERSST data.

Fig. 3 Maximum coherence amplitudes (vector length) and corresponding phases (vector direction) between the ΔGSL and the (a) PDSI and (c) ERSST within the multi-decadal frequency band. (b) Significant frequencies corresponding to (a). Coherence amplitudes above the 95% confidence interval (CI) are shown in red. In (c) coherence amplitudes above the 90% CI (but below 95%) are shown in black.

Fig. 4 Same as Fig. 3a but for coherence amplitudes between the CNiño3.4 index and the PDSI during the 704 years of 1300-2003.

Fig. 5 (a) Patterns of the 250mb streamfunction (ψ; contours) and SSTs (dotted) regressed upon the CNiño3.4 index at different lags. The contour interval is 10^{-6} m^2 s^{-1} omitting zeros.
All data were bandpass filtered with 20-50 years. Values at the 95% confidence interval are indicated by yellow shadings for ψ and by dots for the SSTs, based on Student’s t-test.

Fig. 6 Patterns of the column-integrated water vapor flux (Q; vectors) and the PDSI (shadings) regressed upon the CNiño3.4 index at different lags. All data were bandpass filtered with 25-50 years. Values at the 95% confidence interval are indicated by thick black vectors for Q and by shadings for the PDSI, based on Student’s t-test.

Fig. 7 (a) Differences of the composite, unfiltered 250-mb streamfunction between the warm-to-cool and the cool-to-warm transition phases of the IPO as defined by the Niño3.4 index in Fig. 2c. Shadings indicate areas that are significant at the 90% confidence interval (CI) per Student’s t-test. (b) The composite differences of significant SST anomalies (shadings at the 90% CI) as well as the wave-activity fluxes. All variables were detrended before the composite.

Fig. 8 The 2000-year CM2.1 simulation analyzed with (a) MTM spectrum of the first principal component (PC1) of unfiltered annual SSTs where the color lines indicate the 95% and 99% significance levels, and (b) first EOF of the 20-50 year bandpassed SST.

Fig. 9 The 2000-year CM2.1 simulation analyzed with (a) MTM spectrum of the first principal component (PC1) of unfiltered annual SSTs where the color lines indicate the 95% and 99% significance levels, and (b) first EOF of the 20-50 year bandpassed SST.
Fig. 1 (a) Lake elevation of the GSL (blue shaded graph) superimposed with the elevation tendency (ΔGSL; black solid line) and the PDSI (red dashed line) averaged from the nearby four grid points as outlined in Fig. 2a, after a 20-year lowpass filter. The unfiltered ΔGSL is shown with a gray dotted line for reference. (b) MTM spectral analysis of the ΔGSL during the period 1848-2008 with 2π taper, superimposed with the 99% confidence interval (CI; upper blue line) and the red noise background threshold (lower blue line).
Fig. 2 Correlation maps between the ΔGSL and the (a) PDSI and (b) ERSST. All data were annual means bandpassed with 20-50 years. Values that are significant at the 95% confidence interval are shaded. The four grid points used for the PDSI in Fig. 1a are outlined by a yellow box in Fig. 2a. (c) Time series of the 20-50 year bandpassed PDSI (red dashed line) and Niño3.4 SST anomalies (blue line) constructed by Bunge and Clarke (2009); dotted line before 1873 was derived from the ERSST data.
Fig. 3 Maximum coherence amplitudes (vector length) and corresponding phases (vector direction) between the ΔGSL and the (a) PDSI and (c) ERSST within the multi-decadal frequency band. (b) Significant frequencies corresponding to (a). Coherence amplitudes above the 95% confidence interval (CI) are shown in red. In (c) coherence amplitudes above the 90% CI (but below 95%) are shown in black.
Same as Fig. 3a but for coherence amplitudes between the CNiño3.4 index and the PDSI during the 704 years of 1300-2003.

Fig. 4
Fig. 5 (a) Patterns of the 250mb streamfunction (ψ; contours) and SSTs (dotted) regressed upon the CNIño3.4 index at different lags. The contour interval is 10^{-6} m2 s$^{-1}$ omitting zeros. All data were bandpass filtered with 20-50 years. Values at the 95% confidence interval are indicated by yellow shadings for ψ and by dots for the SSTs, based on Student’s t-test.
Fig. 6 Patterns of the column-integrated water vapor flux (Q; vectors) and the PDSI (shadings) regressed upon the CNiño3.4 index at different lags. All data were bandpass filtered with 25-50 years. Values at the 95% confidence interval are indicated by thick black vectors for Q and by shadings for the PDSI, based on Student’s t-test.
Fig. 7 (a) Differences of the composite, unfiltered 250-mb streamfunction between the warm-to-cool and the cool-to-warm transition phases of the IPO as defined by the Niño3.4 index in Fig. 2c. Shadings indicate areas that are significant at the 90% confidence interval (CI) per Student’s t-test. (b) The composite differences of significant SST anomalies (shadings at the 90% CI) as well as the wave-activity fluxes. All variables were de-trended before the composite.
Fig. 8 The 2000-year CM2.1 simulation analyzed with (a) MTM spectrum of the first principal component (PC1) of unfiltered annual SSTs where the color lines indicate the 95% and 99% significance levels, and (b) first EOF of the 20-50 year bandpassed SST.
Fig. 9 Same as Figs. 3a and 3b but for the spectral coherence between the CM2.1 annual precipitation and Niño3.4 index within the 20-50 year frequency band.