PV Thinking and the Dynamic Tropopause

Jim Steenburgh
University of Utah
Jim.Steenburgh@utah.edu

Supplemental Reading: Lackmann (2011) Chapter 4
What is PV Thinking?

The use of potential vorticity conservation and “invertability” for understanding large-scale atmospheric dynamics and the evolution of synoptic weather systems.
Potential Vorticity

- Conserved following fluid motion for adiabatic, frictionless flow

\[P = -g(\zeta + f) \left(\frac{\partial \theta}{\partial p} \right) \]

\[\frac{DP}{Dt} = 0 \]

- Components
 - Absolute vorticity
 \[\zeta + f \]
 - Static Stability
 \[-\frac{\partial \theta}{\partial p} \]

\[\theta + \Delta \theta \]

\[\theta \]

\[p \]
Potential Vorticity

- Units of K kg$^{-1}$ m2 s$^{-1}$
- Define 1 PVU = 10^{-6} K kg$^{-1}$ m2 s$^{-1}$
- PV is typically higher in the stratosphere (>2 PVU) and lower in the troposphere (< 2 PVU)
- Dynamic Tropopause – Tropopause defined using PV (I use 2 PVU, others 1.5)
Example

- Stratospheric Reservoir
- Dynamic Tropopause
- PV “Wall”
- Tropopause Undulation
- Not quite a fold
- Troposphere
Key Features

• Dynamic tropopause – tropopause defined using potential vorticity (i.e., 1.5 or 2.0 PV surface)

• Stratospheric reservoir – region of high PV in the stratosphere

• Tropopause undulation – wave-like undulation in the tropopause

• Tropopause fold – area where stratospheric air folds under tropospheric air
Mean Distribution of PV

- DT height is high in tropics, low in high latitudes
- DT pressure is low in tropics, high in high latitudes
- DT potential temperature is high in tropics, low in high latitudes
- On an isentropic surface (e.g., 320 K) PV increases toward the poles

Bluestein (1993)
Dynamic Tropopause (DT) Analysis

• An analysis of variables (e.g., wind, pressure) on the dynamic tropopause

• Advantages
 – Jets (subtropical and polar) are frequently at differing pressure levels, but are typically near the dynamic tropopause
 – Tropopause pressure or potential temperature can be used to identify PV “anomalies” & upper-level troughs and ridges
 – Contain a huge amount of information about the upper-levels on a single map
The Dynamic Tropopause

Note how jet cores all intersect same PV isosurface: Dynamic tropopause

GFS 144-h forecast valid 12 UTC 10 Feb 2010

From Lackmann (2011) Lecture Notes
Dynamic Tropopause Pressure

Conceptually straightforward, but not conserved
Correspondence with 500 mb
Dynamic Tropopause Theta

Conserved for adiabatic, frictionless flow (can use advection to explain/anticipate changes)
PV on an Isentropic Surface (315 K)

Conserved for adiabatic, frictionless flow (can use advection to explain/anticipate changes)
PV Thinking

• Under adiabatic conditions, the evolution of PV is controlled by advection
 – Changes in DT potential temperature (or PV on an isentropic surface) can be anticipated based on advection

• PV can be “inverted” to deduce the the wind and thermodynamic fields
 – Changes in the large-scale flow can be anticipated based on these advective changes in DT potential temperature

• Non-conservation of PV (i.e., changes in DT potential temperature not explained by advection) can be used to understand how diabatic processes influence large-scale systems

• Phenomena that can be diagnosed in this manner include cyclogenesis, trough and ridge amplification, trough fracture, trough merger, downstream development, etc.
PV Inversion

- PV can be inverted assuming a suitable balance condition
- Cyclonic PV anomalies (i.e., locally high PV) induce a cyclonic circulation
- Anticyclonic PV anomalies (i.e., locally low PV) induce an anticyclonic circulation

Hoskins et al. (1985)
PV Inversion

- The induced cyclonic circulation and temperature anomalies are strongest near the PV anomaly and spread horizontally and vertically.

- Vertical penetration is inversely proportional to stability:
 - High stability = weak penetration
 - Low stability = strong penetration

Hoskins et al. (1985)
Synoptic Application

• Regions of low DT potential temperature (high DT pressure) are cyclonic PV anomalies and accompanied by upper-level troughs/cyclones

• Regions of high DT potential temperature (low DT pressure) are anticyclonic PV anomalies and accompanied by upper-level ridges/anticyclones

• Amplification (weakening) of a cyclonic PV anomaly is an indication of a developing (decaying) trof

• Amplification (weakening) of an anticyclonic PV anomaly is an indication of a developing (decaying) ridge

• Strong jets are usually found in regions of large tropopause pressure gradients (a.k.a. the PV Wall)

• Covered in a future lecture: Cyclogenesis from a PV perspective
Class Activity: Real-Time Examples

- weather.utah.edu graphics

- IDV

Bundles -> Real-Time-WX -> Diagnostics -> PV-Thinking
Class Activity: Real-Time Examples

• Identify the following on a DT pressure and DT theta analysis/forecast loop or using IDV 3-D visualization
 – A cyclonic PV anomaly and upper-level trough
 – An anticlinal PV anomaly and upper-level ridge
 – A PV wall
 – A tropopause fold
 – A subtropical jet
 – A polar jet
 – An upper-level cyclonic PV that contributes to surface cyclogenesis
 – An example of PV filament forming due to deformation
 – An example of ridge development amplified by non-conservative processes