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Shapiro—Keyser Model

* |ntegrates observational analysis (including
aircraft) and numerical simulations of cyclones

* Numerical simulations include idealized and
real-data simulations

* Developed for intense marine cyclones



ldealized Simulations

* Loss of cold-frontal
baroclinity (frontolysis)
near low center during
early stages of
cyclogenesis

— Cold front never really
forms

* Westward migration of
warm-frontal baroclinity
into polar airstream
behind low center

Source: Schar (1989), Shapiro and Keyser (1990)



* Formation of a warm-
core seclusion in the
post-cold-frontal air

e Strongest baroclinity
occurs within the bent-
back warm front to rear
of low center

Source: Schar (1989), Shapiro and Keyser (1990)



Real-Data Simulations QEIl Storm

The dragger Captain Cosmo lost at sea
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Source: Wikipedia Commons, Gyakum (1983), Uccellini (1986)



Real-Data Simulations QEIl Storm
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Source: http://www.youtube.com/watch?v=XS-KZXiv8DQ



Real-Data Simulations QEIl Storm

* Incipient cyclone forms within broad baroclinic zone
— This may be a bit exaggerated given how initial conditions are created

* Contraction of warm and cold frontal baroclinic zones

* “Fracturing” of previously continuous frontal zone near low center

Source: Shapiro and Keyser (1990)



Real-Data Simulations QEIl Storm
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Narrowing of warm sector

Westward development of warm front into northerly airstream behind low (T-bone
stage)

Formation of warm core seclusion
— Not from warm-sector air

Source: Shapiro and Keyser (1990)



Aircraft Obs of Marine Cyclones
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* Frontal T-bone and
cold-frontal fracture
near low center
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Source: Shapiro and Keyser (1990)



Aircraft Obs of Marine Cyclones

e Warm-core seclusion AN ANEPIN

Source: Shapiro and Keyser (1990)



Resulting Conceptual Model

* Incipient frontal cyclone

— Continuous & broad
frontal zone
representing birthplace

II

Of frOntaI CyC|0ne : Warm-core
Bent-back seclusion
Incipient Frontal &
Frontal Fracture T-bone

Cyclone

 Frontal fracture

— “Fracture of frontal zone
near low center

— Contraction of warm and
cold frontal gradients

Source: Shapiro and Keyser (1990)



Resulting Conceptual Model

* Frontal T-bone and
bent-back front
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Source: Shapiro and Keyser (1990)



Debate about S—K Model

Completely ignores occlusion process

Frontal fracture overstates what is actually occurring—a weakening
of the cold front near the low center

Nomenclature of bent-back warm front causes confusion
Conceptualization of Godske et al. (1957) may be just as good

Perhaps a spectrum of life cycles are possible and either Shapiro
and Keyser (1990) or Godske et al. (1957) are useful depending on
the situation?

Source: Shapiro and Keyser (1990)



What Might Influence Cyclone
Structure?

Source: Shapiro and Keyser (1990)



Large-Scale Flow (ldealized)

TEMPERATURE AND PRESSURE
t=10.0

Unsheared

TEMPERATURE AND PRESSURE TEMPERATURE AND FRESSURE

t=10.0

t=10.0

y

Anticyclonic Shear Cyclonic Shear

Source: Davies et al. (1991)



Effects of Deformation
Cold

Z=
N/

Warm

 The axis of dilatation
is a collector of
isotherms and the
locus for
frontogenesis
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Large-Scale Flow (Observed)

Downstream Diffluence =
Norwegian-like occlusion
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Downstream Diffluence Causes
Strong meridionally oriented dilatation axes
oriented along isotherms and warm tongue

Stretching and narrowing of warm tongue
and warm sector

Consistent with Norwegian Occlusion Process
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Source: Schultz et al. (1998)



arge-Sca!gElow (Observed)
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Downstream Confluence =
Frontal T-Bone and Fracture
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Source: Schultz et al. (1998)



Really Idealized
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“Doswell Vortex”
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Source: Schultz et al. (1998)
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Background Diffluence

More meridionally oriented dilatation

axes and fronts

Narrowing warm sector and tongue

Source: Schultz et al. (1998)

Background Confluence

More zonally oriented dilatation
axes and fronts

Frontal T-Bone




Norwegian vs. S—K

Deformation acts to stretch warm Deformation strengthens warm front
tongue and narrow warm sector
Causes frontolysis/frontal fracture of
Norwegian-like occlusion process cold front near warm front

S-K like T-bone

Source: Schultz et al. (1998)



Summary

Key features of Shapiro-Keyser model influence

— Frontal fracture, frontal T-bone, warm-core seclusion, bent-back
warm front

Works well for some intense marine cyclones, but Godske
et al. (1957) also effective and may be better for others

Downstream confluence favors a strong warm front and
frontal T-bone

Downstream diffluence favors a narrowing warm sector
and warm tongue (i.e., occluded like)



Class Activity

Analyze the cyclone below using the Godske et al. (1957) and Shapiro-Keyser Models
Discuss the strengths and weakenesses of each model for this storm
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Godske et al. (1957)

Shapiro-Keyser




