Modern Cyclone Models

Atmos 5110/6110 Synoptic-Dynamic Meteorology I Jim Steenburgh University of Utah Jim.Steenburgh@utah.edu

Supplemental Reading: Shapiro and Keyser (1990) and Schultz et al. (1998)

Available at: http://www.inscc.utah.edu/~steenburgh/classes/5110/papers

Shapiro-Keyser Model

- Integrates observational analysis (including aircraft) and numerical simulations of cyclones
- Numerical simulations include idealized and real-data simulations

Loss of cold-frontal baroclinity (frontolysis) near low center during early stages of cyclogenesis Cold front never really forms here Westward migration of warm-frontal baroclinity into polar airstream behind low center

Real-Data Simulations QEII Storm

- Incipient cyclone forms within broad baroclinic zone

 This may be a bit exaggerated given how initial conditions are created
- · Contraction of warm and cold frontal baroclinic zones
- "Fracturing" of previously continuous frontal zone near low center

Source: Shapiro and Keyser (1990)

Real-Data Simulations QEII Storm

- Narrowing of warm sector
- Westward development of warm front into northerly airstream behind low (Tbone stage)
- Formation of warm core seclusion

 Not from warm-sector air

Source: Shapiro and Keyser (1990)

Aircraft Obs of Marine Cyclones

 Frontal T-bone and cold-frontal fracture near low center

Aircraft Obs of Marine Cyclones

· Warm-core seclusion

Resulting Conceptual Model

- Incipient frontal cyclone
 - Continuous & broad frontal zone representing birthplace of frontal cyclone
- Frontal fracture
 - "Fracture of frontal zone near low center
 - Contraction of warm and cold frontal gradients

Source: Shapiro and Keyser (1990)

Resulting Conceptual Model

- Frontal T-bone and bent-back front
- Warm-core seclusion
 - Forms in polar air, not from warm sector

Source: Shapiro and Keyser (1990)

Debate about S-K Model

- Completely ignores occlusion process
- Frontal fracture overstates what is actually occurring—a weakening of the cold front near the low center
- Conceptualization of Godske et al. (1957) is just as good
- Perhaps a spectrum of life cycles are possible and either Shapiro and Keyser (1990) or Godske et al. (1957) are useful depending on the situation

Source: Shapiro and Keyser (1990)

Summary

- Both the Norwegian cyclone model and S–K model have merit
- Applicability of each model may vary by cyclone and may be related to the large-scale flow
- Downstream confluence favors a strong warm front
- Downstream diffluence favors a narrowing warm sector and warm tongue (i.e., occluded like)