Precipitation Systems and Microphysical Processes

Atmos 5210: Synoptic Meteorology II

Jim Steenburgh Department of Atmospheric Sciences University of Utah jim.steenburgh@utah.edu

Precipitation Systems

Generating Clouds and Precipitation

- Clouds form when water vapor in the atmosphere condenses into cloud droplets or ice crystals
 - Requires air to become supersaturated through evaporation or cooling
 - Ascent and associated adiabatic expansion and cooling is the primary (but not only) mechanism for generating supersaturation in precipitating clouds
- Precipitation occurs when hydrometeors grow sufficiently large to fall and reach the ground
 - Typically cannot be accomplished through condensation alone
 - May involve multiple microphysical processes

Group Discussion

What weather systems are primarily responsible for precipitation in the tropics and extratropics?

Extratropical Cylcones/Fronts

Cyclone Contribution

ERAI DJF

ERAI JJA

Source: Hawcroft et al. (2012), http://onlinelibrary.wiley.com/doi/10.1029/2012GL053866/abstract

Large-scale forcing

Convection

- Vertical motions due to an imbalance of forces in the vertical
- Precipitating clouds generated by rising parcels that are warmer than their environment, resulting in an updraft
- Key ingredients
 - Instability, moisture, & lift

Convection

https://www.youtube.com/watch?v=Py9thuWwofl

Mesoscale Convective Systems

- Organized collection of two or more cumulonimbus clouds that interact to form an *extensive* region of precipitation
- Precipitation region is nearly contiguous and contains convective and stratiform elements, with the latter typically more extensive

Mesoscale Convective Systems

- Hydrometeor detrainment and transport from convective line and "layer lifting" important in precipitation dynamics of the stratiform region
- Example is of a convective-line MCS (a.k.a. squall line)

Tropical Cyclones

8/29/2012 0307Z Hurricane Isaac

Orographic

Steenburgh (2014)

Microphysical Processes

Microphysical Processes

- Cloud droplet formation
 - CCN and droplet size spectra
- Warm cloud processes
 - Collision-coalescence
- Mixed-phase processes
 - Ice nucleation
 - Ice multiplication
 - Depositional growth (a.k.a., the Bergeron-Findeisen Process)
 - Accretional growth
 - Aggregation

Microphysical Processes

Droplet Formation

- Cloud droplets form on soluble atmospheric aerosols
 - Heterogeneous nucleation
- Cloud condensation nuclei (CCN)
 - Aerosol which serve as nuclei for water vapor condensation
- On average, there is an order of magnitude more CCN in continental air than maritime air

Size Spectra

- Continental clouds frequently feature
 - Large cloud droplet number concentrations & smaller cloud droplets
- Maritime clouds frequently feature
 - Smaller cloud droplet number concentrations & larger cloud droplets

Size Spectra

- Maritime size spectra are rare, but possible
- Significance: Impacts hydrometeor growth (more later)

Hindman et al. (1994)

Warm Cloud Processes

• "Warm Cloud"

 Clouds that lie entirely below the 0°C level or consistent entirely of liquid water

- Mechanisms for warm cloud hydrometeor growth
 - Condensation
 - Collision-coalescence

- Droplet growth by condensation is initially rapid, but slows with time
- Condensational growth too slow to produce large raindrops

Collision–Coalescence

Time

Droplet radius

- Growth of small droplets into raindrops is achieved by *collision-coalescence*
- Fall velocity of droplet increases with size
- Larger particles sweep out smaller cloud droplets and grow
- Becomes more efficient as radius increases
- Turbulence may contribute to this growth mechanism

Warm Cloud Processes

- Cloud droplet growth initially dominated by condensation
- Growth into raindrops dominated by collision-coalescence
- •
- Most effective in maritime clouds due to presence of larger cloud droplets (due to fewer CCN)

Hawaiian Warm-Phase Clouds

Freezing Level (0°C)

Liquid water cloud droplets & Collision-coalescence

Rain

Mixed-Phase Cloud Processes

Glaciation

Ice nucleation & multiplication

- Depositional growth
- Accretion
- Aggregation

Glaciating Cloud Example

Ice Nucleation

- Water does not freeze at 0°C
 - Pure water does not freeze until almost -40°C (homogeneous nucleation)
 - Supercooled liquid water (SLW) water (rain or cloud droplets) that exists at temperatures below 0°C
 - Ice nuclei enable water to freeze at temperatures above -40°C
- The effectiveness of potential ice nuclei is dependent on
 - Molecular spacing and crystal structure similar to ice is best
 - Temperature Activation is more likely as temperature decreases
- Ice nuclei concentration increases as temperature decreases

Ice Nucleation

Ice nuclei increase by an order of magnitude for every 4°C drop in temperature

Wallace and Hobbs (1977)

Ice Nucleation

- Significance?
 - Cloud will not necessarily glaciate at temperatures below 0°C

- Want snow (or even rain in many cases)? Need ice!

- If temperatures in cloud are
 - -4°C or warmer VERY LITTLE chance of ice
 - -10°C 60% chance of ice
 - -12°C 70% chance of ice
 - -15°C 90% chance of ice
 - 20°C VERY GOOD chance of ice

Ice Multiplication

- Still have a few problems
 - There are still very few ice nuclei even at cold temperatures
 - Ice particle concentrations greatly exceed ice nuclei concentrations in most mixed phase clouds
 - How do we get so much ice?
- Ice multiplication creation of large numbers of ice particles through
 - Mechanical fracturing of ice crystals during evaporation
 - Shattering of large drops during freezing
 - Splintering of ice during riming (Hallet-Mossop Process)

Deposition (WBF Process)

- Saturation vapor pressure for ice is lower than that for water
- Air is near saturation for water, but is supersaturated for ice
- Ice crystals/snowflakes grow by vapor deposition
- Cloud droplets may lose mass to evaporation

Deposition (WBF Process)

Sector Plate

Stellar Dendrite

Habits – types of ice crystal shapes

created by vapor deposition

Dendritic Sector Plate

Hollow Column

Needle

Snowcrystals.com

Deposition (WBF Process)

Habit is a function of temperature and supersaturation with respect to ice

More Habit Diagrams

"A review of over 70 years of ice crystal studies reveals a bewildering variety of habit diagrams" - Bailey and Hallett (2009)

Magono and Lee (1966), Pruppacher and Klett (1997), Bailey and Hallett (2009), Snowcrystals.com

Classification Systems

Magono And Lee

			-			
1	N1a Elementary needle		C1f Hollow column	240 240	P2b Stellar with sectorlike ends	
	N1b Bundle of elementary needles	θ	C1g Solid thick plate	outono outono	P2c Dendrite with plates at ends	
	NIc Elementary sheath	6	C1h Thick plate of skeletal form		P2d Dendrite with sectorlike ends	
l	N1d Bundle of elementary sheaths	A	Cli Scroll	\mathbf{r}	P2e Plate with simple extensions	
	N1e Long solid column	X	C2a Combination of bullets	\$	P2f Plate with sector extensions	
×	N2a Combination of needles	₽	C2b Combination of columns	***	P2g Plate with dendrite extensions	
\times	N2b Combination of sheaths	\bigcirc	P1a Hexagonal plate	≁~*	P3a Two branches	
\times	N2c Combination of long solid columns	\mathcal{K}	P1b Sector plate	******	P3b Three branches	
	C1a Pyramid	ŝ	P1c Broad branch	**	P3c Four branches	
¥	C1b Cup	*	P1d Stellar		P4a Broad branch with 12 branches	
Î	Cle Solid bullet	鞦	P1e Ordinary dendrite	₩	P4b Dendrite with 12 branches	
	C1d Hollow bullet	粼	P1f Fernlike dendrite	漱	P5 Malformed crystal	
Û	C1e Solid column	0000	P2a Stellar with plates at ends	s s	P6a Plate with spatial branches	

Sno	Snow crystal classification system of Magono-Lee													
a ry needle		C1f Hollow column	a the second	P2b Stellar with sectorlike ends		*	P6b Plate with spatial dendrites	<>>	CP3d Plate with scrolls at ends	¥	R3c Graupel-like with nonrimed extensions			
b le of y needles	•	C1g Solid thick plate	Quitter Office	P2c Dendrite with plates at ends		2 <u>8-</u> Ee	P6c Stellar with spatial plates	÷	S1 Side planes	٢	R4a Hexagonal graupel			
c y sheath	6	C1h Thick plate of skeletal form	8.75 9.75 2.75	P2d Dendrite with sectorlike ends			P6d Stellar with spatial dendrites	and the	S2 Scalelike side planes	٢	R4b Lump graupel			
d le of y sheaths	N	Cli Scroll	ţ	P2e Plate with simple extensions		Ħ	P7a Radiating assemblage of plates		S3 Side planes with bullets and columns	٨	R4c Conelike graupel			
e I column	X	C2a Combination of bullets	\$	P2f Plate with sector extensions		濒	P7b Radiating assem- blage of dendrites		R1a Rimed needle	vĩ	II Ice particle			
anation edles	₽	C2b Combination of columns		P2g Plate with dendrite extensions		Ð	CP1a Column with plates		R1b Rimed columnar	2.	12 Rimed particle			
b ation aths	\bigcirc	P1a Hexagonal plate	→ —«	P3a Two branches		椠	CP1b Column with dendrites	\bigcirc	R1c Rimed plate or sector	<u>م</u>	I3a Broken branch			
c ation of columns	\otimes	P1b Sector plate	***	P3b Three branches		₽	CP1c Multiple capped column	**	RId RImed stellar	_ ** *	13b Rimed broken branch			
nid	e C S	Pic Broad branch	***	P3c Four branches		ø.	CP2a Bullet with plates	۲	R2a Densely rimed plate or scctor	-1 ³⁶	14 Miscellaneous			
	\ast	P1d Stellar		P4a Broad branch with 12 branches			CP2b Bullet with dendrites	慾	R2b Densely rimed stellar	0	G1 Minute column			
c sullet	纖	Ple Ordinary dendrite	*	P4b Dendrite with 12 branches		u yaya	CP3a Stellar with peedles	ng tr	R2c Stellar with rimed spatial branches	*	Germ of skeletal form G3 Minute bexagonal			
d bullet	*	P1f Fernlike dendrite	業	P5 Malformed crystal		وللحطي	CP3b Stellar	実 権	R3a Graupel-like snow	*	G4 Minute stellar			
	\$.00	P2a	20	P6a			CP3e	4.1	R3b	Ś	G5 Minute assemblage of plates			
dumn	000 p	Stellar with d plates at ends	tellar with ates at ends	Plate with spatial branches			Stellar with scrolls at ends	潇	Graupel-like snow of lump type	×	G6 Irregular germ			

Nakaya

International

Magono and Lee (1966), storyofsnow.com, snowcrystals.com

Reality

"While aesthetically appealing and offering a striking subject for photography, the fact is that most ice crystals are defective and irregular in shape"

- Bailey and Hallett (2009)

Accretion

Graupel (UCLA)

Hexagonal

Lump

Cone

Magono and Lee (1966)

- Growth of a hydrometeor by collision with supercooled cloud drops that freeze on contact
- Graupel Heavily rimed snow particles
 - 3 types: cone, hexagonal, lump

Accretion

Graupel (UCLA)

Hexagonal

Lump

Cone

Magono and Lee (1966)

- Favored by
 - Warmer temperatures (more cloud liquid water, less ice)
 - Maritime clouds (fewer, but bigger, cloud droplets)
 - Strong vertical motion (larger cloud droplets lofted, less time for droplet cooling and ice nuclei activation)

Accretion

Rimed Plate

Rimed Dendrite

Graupel

USDA Beltsville Agricultural Research Center

Aggregation

- Ice particles colliding and adhering with each other
- Can occur if their fall speeds are different
- Adhering is a function of crystal type and temperature
 - Dendrites tend to adhere because they become entwined
 - Plates and columns tend to rebound
 - Crystal surfaces become stickier above –5°C

Aggregation

- Bigger particles
- Impact on precipitation rate is probably small
 - May impact crystal transport and fallout across mountain barriers
 - May affect mass loss from sublimation/evaporation below cloud base

Growth, Transport, & Fallout

- Growth, fallspeed, transport, and terrain scale affect precip rate and distribution
- Typical fall speeds
 - Small ice particles: << 1 m/s
 - Snow: ~1 m/s
 - Graupel: ~3 m/s
 - Rain ~ 7 ms⁻¹

Solid Lines = Heavily Rimed Particles Dashed Lines = Lightly Rimed Particles

Discussion

What evidence is there that these microphysical processes operate in Utah?

Do you have a "microphysical experience" you could share with the group?

References

- Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 2888–2899.
- Garrett, T. J., C. Fallgatter, K. Shkurko, and D. Howlett, 2012: Fallspeed measurment and high-resolution-multi-angle photography of hydrometeors in freefall. *Atmos. Meas. Tech.*, **5**, 2625-2633.
- Hindman, E. E., M. A. Campbell, and R. D. Borys, 1994: A ten-winter record of cloud-droplet physical and chemical properties at a mountaintop site in Colorado. *J. Appl. Meteor.*, **33**, 797-807.
- Hobbs, P. V., R. C. Easter, and A. B. Fraser, 1973: A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain: Part II. Microphysics, *J. Atmos. Sci.*, **30**, 813–823.
- Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi: 10.1029/2004RG000150.

References

- Houze, R. A., Jr., 2012: Orographic effects on precipitating clouds. *Rev. Geophys.*, 50, RG1001.
- Houze, R. A., Jr., 2014: Cloud Dynamics, 2nd Ed., Elsevier/Academic Press, Oxford, 432 pp.
- Magono, C., and C. W. Lee, 1966: Meteorological classification of natural snow crystals. *J. Faculty Sci.*, **II**, 321–335.
- Pruppacher, H. R., and J. D. Klett, 1997: *Microphysics of Clouds and Precipitation*. Kluwer Academic, 954 pp.
- Trapp, R. J., 2013: Mesoscale-Convective Processes in the Atmosphere. Cambridge University Press, New York, 336 pp.
- Wallace, J. M., and P. V. Hobbs, 1977: Atmospheric Science: An Introductory Survey. Academic Press, 467 pp.