Winter Storm Fundamentals

Cool-Season Precipitation: Fundamentals and Applications

Jim Steenburgh
Fulbright Visiting Professor of Natural Sciences
University of Innsbruck
Department of Atmospheric Sciences
University of Utah
jim.steenburgh@utah.edu

Learning Objectives

• After this class you should
 – Understand the processes that affect the depth and height of the transition zone, the height of the snow level, and the development of snow, ice pellets, freezing rain, or freezing drizzle
 – Be able to apply top-down forecast approaches for predicting precipitation type
 – Understand and apply key meteorological variables affecting the snow-to-liquid ratio during snowstorms

Cool-Season Precipitation Types

Ice Particles

• Ice crystal – any one of the number of forms in which ice appears
• Ice pellet – Transparent or translucent ice pellet less than 5 mm in diameter (sleet in the US)
• Ice pellet aggregate – Individual ice particles linked or fused together

Ice Particles Examples

Ice Particle Examples

Ice Pellets (sleet)
Snow
Snow Pellet (Graupel)

Ice Particles

• Refrozen wet snow – partially melted snow that refroze
• Sleet – In the US, this term refers to ice pellets
• Snow – White or translucent ice crystals, chiefly in complex branch hexagonal form and often agglomerated into snowflakes
• Snow pellet – White, opaque, approximately round (sometimes conical) ice particles having a snowlike structure, about 2-5 mm in diameter (a.k.a. graupel)
Type, Size, and Fall Speed

Example: Sea Effect of Japan

Mixed-Phase Particles
- Wet snow – Snow that contains a great deal of liquid water
- Semimelted snow pellet – Snow pellet that has undergone some melting
- Liquid core pellet – Partially refrozen particle with ice shell and liquid water core
- Almost melted particle – Precipitation composed mainly of liquid water, but with some ice and the shape not discernible
- Typically fall speeds increase as particles melt

Liquid Particles
- Drizzle – Very small, numerous, and uniformly distributed water drops with diameters < 0.5 mm
- Freezing drizzle – Drizzle that falls in liquid form but freezes on impact to form a coating of glaze
- Freezing rain – Rain that falls in liquid form, but freezes on impact to form a coating of glaze
- Rain – Precipitation in the form of liquid water with diameters > 0.5 mm or, if widely scattered, drops may be smaller
- Supercooled rain – Liquid precipitation at temperatures below freezing
- Typical fall speeds for drizzle ~2 m/s, freezing rain, rain, or supercooled rain ~7–9 m/s

Stewart et al. (2015)
Rain-Snow Transition Zone

• Freezing level
 - Glossary of Meteorology: Lowest altitude at which the air temperature is 0˚C
 - Practical consideration: Critical to also know the highest altitude at which the air temperature is 0˚C
 - Common in aviation to report multiple freezing levels to the highest altitude at which the air temperature is 0˚C

• Snow level
 - Glossary of Meteorology: No definition provided
 - Common: Altitude above which snow is accumulating on the ground
 - White et al. (2011): Altitude where falling snow melts to rain
 - Minder et al. (2011): Level at which the precipitation mass is 50% ice

• Rule of thumb: ~300 meters below freezing level
 - Reality: Varies depending on thermodynamic and humidity profile, as well as precipitation intensity
 - As a first guess, some forecasters use the highest level at which the wet bulb temperature is 0.5˚C
 - Typically lower over mountains than in free air upstream

The Rain-Snow Transition Zone

• A region where falling snow is warming, melting, and becoming rain
• May be identified horizontally or quasi horizontally where it intersects the surface, or vertically in soundings or mountainous regions
• Becomes a more complex precipitation type transition zone if there are warm layers > 0˚C, which can lead to freezing rain or ice pellets

Profiling Radar Examples
Diabatic Effects

Melting creates an isothermal layer
Increased precipitation rates deepen melting layer and lower snow level

Evaporation results in temperatures converging to wet bulb and lower freezing and snow levels than indicated by solely by temperature

Question
Isothermal layers at 0ºC are normally ________ over topography than over nearby flat regions
a) the same depth
b) shallower
c) deeper

Question
An increase in precipitation rate could _______ the height of the base of the transition region
a) raise
b) maintain
c) lower

Question
As one ascends the Seegrubenbahn through the transition region, which sequence best describes the change in precipitation particles with increasing altitude
a) snow, wet snow, slush, rain
b) rain, slush, wet snow, snow
c) slush, rain, snow, wet snow
d) rain, wet snow, slush, snow
Pathways to Freezing Drizzle (FZDZ), Freezing Rain (FZRA) and Ice Pellets (IP)

• **FZDZ**: Warm-phase processes (no significant ice nucleation)
 - Shallow cloud decks forming over arctic air masses (eastern 2/3 of US)
 - Cloud top temperatures > -10ºC
 - Poor ice nucleation
 - Common in central US

• **FZRA**: Deep moist layer and midlevel warm (>0ºC) layer
 - Cold-air damming with overrunning in eastern US
 - Warm-frontal overrunning in central US
 - Cold pools, cold-air damming, and terrain-forced flows a factor in western US

• **IP**: See FZRA, but add deeper/colder surface-based layer enabling refreeze before rain reaches ground

Rauber et al. (2000)

FRZA Climatology: Europe

• Discussion: Where and why are freezing rain events most common in Europe

• In plot
 - Orange triangles = number of observed FZRA reports
 - Circles = stations > 2000 m (omitted) or < 10 FZRA observations
 - Contours – distance from coast

Kämäräinen et al. (2017)

FZRA Climatology

• Discussion: In the continental US, why are freezing rain events most common:
 - In the Columbia Basin
 - In the north-central and northeast states?
 - East of the southern Appalachian Mountains?

Example Temperature Profiles

- **Freezing Drizzle**: Poor ice nucleation + warm-phase processes
 - Snow melts in >0°C layer; Rain doesn't refreeze until contacting ground or other objects
- **Sleet**: Snow melts in >0°C layer; Rain refreezes before reaching ground

Transition Zone with Melting Layer Aloft

Rain
Freezing Rain
Sleet
Snow
You Decide: FZDZ or FZRA?

Rauber et al. (2000)

95.4% Freezing Drizzle
4.6% Freezing Rain

Warm rain processes dominate

Rauber et al. (2000)

83.8% Freezing Drizzle
16.2% Freezing Rain

Warm rain processes dominate

Rauber et al. (2000)

72.3% Freezing Drizzle
27.7% Freezing Rain

Warm rain processes likely important

Rauber et al. (2000)

53.1% Freezing Drizzle
46.8% Freezing Rain

Warm rain processes likely important in some cases, ice particles falling into cloud from aloft possible

Rauber et al. (2000)

21.5% Freezing Drizzle
78.5% Freezing Rain

Melting of snow from aloft likely dominates
Top Down Forecasting

• A way to assess what hydrometeors will form and their evolution as they fall to the surface

• Frequently based on model or observed soundings

• Start at cloud top
 – Mixed phase or warm phase processes?
 • CTT ~ 4°C: Little or no ice
 • CTT ~ 10°C: Commonly used cutoff temp for warm phase
 – Beware of seeder-feeder from higher clouds

You Decide: SN, FZDZ, FZRA, or IP?

- Melting in warm layer?
- Freezing in near-surface sub-freezing layer?
- Consider diabatic effects (melting, evaporation)

You Decide: SN, FZDZ, FZRA, or IP?

- What precipitation will occur at the surface
 – Snow, FZRA, FZDZ, IP?

What if elevated convection develops?
Snow Levels in Mountainous Terrain

Questions

Compared to the free atmospheric upstream, the snow level over the mountains is usually
a) the same height
b) lower
c) higher

Why?

The Mountainside Snow Level

• Compared to free air upstream, usually near mountains the
 – Freezing level is lower
 – Bright-band is deeper
 – Snow level is lower

The Mountainside Snow Level

• Compared to free air upstream, usually near mountains the
 – Freezing level is lower
 – Bright-band is deeper
 – Snow level is lower

Mechanisms

• Latent cooling from melting precipitation
 – More effective over mountains where ground limits depth of convective overturning
 – Precipitation rates frequently higher over mountains

• Microphysical melting distance
 – Ice crystals over mountains comprised in a way that they take longer to melt (e.g., denser, more rimed)

• Adiabatic cooling from forced ascent

Idealized Modeling

Each of these mechanisms makes important contributions

(δ)_lat = Change in snow level from latent cooling
(δ)_dry = Change in snow level from latent cooling of precipitation
(δ)_melt = Change in snow level from microphysical melting distance

Marwitz (1983), Minder et al. (2011)
Additional Details from Modeling

- Magnitude of snow level decrease depends on characteristics of incident flow and terrain geometry

- Depression of snow level increases with increasing temperature
 - Might act as a modest buffer for mountain hydroclimates against global warming

- Results dependent on cloud microphysics parameterization
 - An important source of uncertainty

Snow-to-Liquid Ratio (SLR)

Definition

- Snow-to-liquid ratio (SLR) = New snow depth / New snow water equivalent (SWE)

- Related measures include snow density, water content, and specific gravity
 - snow density = \(\rho_{\text{water}} / \text{SLR} \)
 - water content (%) = 100/SLR
 - specific gravity = 1/SLR (rarely used)

SLR vs. Related Measures

<table>
<thead>
<tr>
<th></th>
<th>Heavy</th>
<th>Average</th>
<th>Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLR</td>
<td>7:1</td>
<td>14:1</td>
<td>25:1</td>
</tr>
<tr>
<td>Snow density</td>
<td>143 kg m(^{-3})</td>
<td>71 kg m(^{-3})</td>
<td>40 kg m(^{-3})</td>
</tr>
<tr>
<td>Water content</td>
<td>14.3%</td>
<td>7.1%</td>
<td>4.0%</td>
</tr>
<tr>
<td>Snow character</td>
<td>"Sierra cement"</td>
<td>Utah average</td>
<td>"Champagne powder"</td>
</tr>
<tr>
<td></td>
<td>Low SLR High Density</td>
<td>High SLR Low Density</td>
<td></td>
</tr>
</tbody>
</table>

Why Is SLR Important?

- Contemporary winter precipitation forecasting typically involves three steps:
 - Quantitative precipitation forecast (QPF)
 - Determination of precipitation type
 - Application of SLR when precipitation type is snow
 - Snowfall amount = QPF x SLR

- Snow clearing operations often based on specific amount thresholds, where perfect QPF is of limited value if a poor SLR is applied

- In avalanche forecasting, SLR is related to snow shear strength (Casson 2008)

- Accurate SLR and snowfall amount forecasts are critical for mountain communities
The Problem with SLR

- Daily SLR varies considerably in both space and time within storms
- Forecast snowfall amount strongly dependent on SLR
- How much snow from a QPF of 25 mm? 3:1, 10:1, 30:1

Discussion: What Controls SLR?

- Crystal type and size
- Riming
- Aggregation
- Wind
- Melting or sublimation (in atmosphere or at surface)
- Vapor pressure gradient-driven metamorphosism and/or external compaction (i.e., settlement on the ground)

Crystal Type and SLR

Image: snowcrystals.com; SLR based on Power et al. 1964, Dubé 2003, Cobb 2006

Riming and SLR

- Riming can decrease SLR by up to 90%.
- Most important for temperatures above −10°C; supercooled water more likely to be present
- Tends to increase with vertical velocity

Riming and SLR

Image: snowcrystals.com

Surface Winds and SLR

- Strong winds cause snow crystals to be dislodged and roll along the surface, removing outer features and decreasing SLR.
- Snow transport begins at speeds of 8-10 m s⁻¹.

Surface Winds and SLR

Forecasting – The 10:1 Rule

- ”Convenient” but inaccurate approach of multiplying QPF by 10
- Inaccuracy known in the 19th century!
 - “…assuming 10 inches of snow to 1 of water or some other factor, is subject to a large range of error because of the wide variability of this ratio for different kinds of snow.”
 - Report of the Chief Signal Officer, 1888
SLR Climatology

10:1 not even a good estimate of mean in many areas!

Discussion: Why is the SLR lowest along the coasts and in the south and highest over the western interior and near the Great Lakes?

Improving on the 10:1 Rule

• Empirical techniques have been developed, relying on surface or in-cloud temperature
 • However, many of these techniques have not been verified and challenges remain
 • Temperature is one of the strongest predictors, but still only explains about 25-40% of the variance

SLR Temperature Relationship

SLR vs. 700-mb temperature @ Central Sierra Snow Lab (Diamond and Lowry 1954)

SLR vs. Surface temperature @ Weissfluhjoch, Davos (Bossolasco 1954)

SLR @ Alta, UT

Correlation nearly constant with height (unusual?)

Strongest Relationship With T

SLR @ Alta, UT

Great Salt Lake

Salt Lake City
SLR @ Alta, UT

Prediction @ Alta

• Stepwise Multiple Linear Regression to observed data, then apply to NWP output
• Key variables: Temperature, wind speed, RH, wind direction at multiple levels, plus SWE

Improvement over other methods, but still scatter

Other Methods

• Look up tables

• Neural network approaches (Roebber et al. 2003)
 – Arguably a “smarter” version of SMLR approach

• Flowcharts (Dubre 2003)

SLR Summary

• Poor data poses a challenge
• Many methods are ad hoc
• Best methods are probably point specific and based on a long training dataset
• Methods that can be applied broadly geographically are elusive
• Good luck!

References

• Dubé, I., cited 2008: From mm to cm…: Study of snow/liquid water ratios in Quebec. Meteorological Service of Canada, Quebec, Canada. [Available online at http://www.meted.ucar.edu/norlat/snowdensity/from_mm_to_cm.pdf.]