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Abstract 26 

In August 2018 and June 2019, NCEP upgraded the operational versions of the High-27 

Resolution Rapid Refresh (HRRR) and Global Forecast System (GFS), respectively. To inform 28 

forecasters and model developers about changes in the capabilities, limitations, and biases of these 29 

modeling systems over the western conterminous United States (CONUS), we validate and 30 

compare precipitation forecasts produced by the experimental, pre-operational HRRRv3 and 31 

GFSv15.0 with the then operational HRRRv2 and GFSv14 during the 2017/18 October–March 32 

cool season.  We also compare the GFSv14 and GFSv15.0 with the operational, high-resolution 33 

configuration of the ECMWF Integrated Forecast System (HRES). We validate using observations 34 

from Automated Surface Observing System (ASOS) stations, which are located primarily in the 35 

lowlands, and observations from Snow Telemetry (SNOTEL) stations, which are located primarily 36 

in the uplands.  Changes in bias and skill from HRRRv2 to HRRRv3 are small, with HRRRv3 37 

exhibiting slightly higher (but statistically indistinguishable at a 95% confidence level) equitable 38 

threat scores.  The GFSv14, GFSv15.0, and HRES all exhibit a wet bias at lower elevations and 39 

neutral or dry bias at upper elevations, reflecting insufficient terrain representation. GFSv15.0 40 

performance is comparable to GFSv14 at Day 1 and superior at Day 3, but lags HRES.  These 41 

results establish a baseline for current operational HRRR and GFS precipitation capabilities and 42 

limitations over the western CONUS and are consistent with steady or improving NCEP model 43 

performance.  44 
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1. Introduction  45 

Upgrades to operational forecast systems introduce challenges for both operational 46 

meteorologists and model developers. Operational meteorologists rely on knowledge of model 47 

biases and prior performance to make reliable weather forecasts and assess potential societal 48 

impacts. Model developers require knowledge of model capabilities and limitations to address 49 

model deficiencies and advance model performance. Since 2018, NCEP has upgraded two major 50 

operational forecast systems: the High-Resolution Rapid Refresh (HRRR) and the Global Forecast 51 

System (GFS). The HRRR operates at 3-km grid spacing and provides short-range forecasts for 52 

the conterminous United States (CONUS). The GFS operates at an effective grid spacing of 13 km 53 

and provides short- to medium-range global forecasts. Both modeling systems contribute to the 54 

National Blend of Models (NBM), which heavily informs NWS forecasts (Craven et al. 2018). 55 

Although model validation is a component of the development and upgrade cycle at NCEP, 56 

it does not include detailed validation of regional precipitation forecasts. Of concern for this paper 57 

are cool-season (October–March) precipitation events over the western CONUS, which are 58 

strongly influenced by the interaction of synoptic systems with orography and often produce snow, 59 

posing critical challenges for transportation and public safety (Andrey et al. 2001; Birkeland and 60 

Mock 2001; Seeherman and Liu 2015). Atmospheric rivers and other landfalling, extratropical 61 

disturbances contribute a substantial fraction of total cool-season precipitation over the region 62 

(Rutz et al. 2014; Barbero et al. 2019), with mean precipitation generally increasing with elevation 63 

(Daly et al. 1994). Nevertheless, individual storm periods can feature precipitation–altitude 64 

relationships that depart from that expected from climatology, presenting a challenge for 65 

operational and numerical weather prediction (Steenburgh 2003; James and Houze 2005; Minder 66 

et al. 2008). Forecast skill also decreases from the Pacific coast to the western interior, even for 67 
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relatively high-resolution forecast systems (Lewis et al. 2017; Gowan et al. 2018).  This decrease 68 

may reflect the finer-scale nature of the topography and the reduced spatial coherence of cool-69 

season precipitation events downstream of the Cascade–Sierra Ranges (Serreze et al. 2001; Parker 70 

and Abatzoglou 2016; Touma et al. 2018).  71 

Recent studies indicate that model resolution contributes to spatial variations in 72 

precipitation bias and skill amongst forecast systems over the western U.S. (Gowan et al. 2018). 73 

Forecast systems that feature smooth orography and fail to resolve terrain complexity sometimes 74 

produce excessive lowland and insufficient upland precipitation. Downscaling can partially 75 

address this deficiency (Lewis et al. 2017). Higher resolution convection-allowing models like the 76 

HRRR better resolve regional terrain features and produce improved skill as measured by 77 

traditional skill scores (Gowan et al. 2018). Nevertheless, errors at high resolution evolve more 78 

rapidly in time and can contribute to deterioration in forecast skill at short lead times (Lorenz 1969; 79 

Prein et al. 2015; Clark et al. 2016).   80 

In this paper we examine the performance of the experimental, pre-operational HRRRv3 81 

and GFSv15.0 compared to their predecessor operational versions, HRRRv2 and GFSv14, 82 

respectively. The HRRRv3 upgrades include an improved planetary boundary layer (MYNN, 83 

Nakanishi and Niino 2009) and a new, hybrid vertical coordinate (Simmons and Strüfing 1983; 84 

Collins et al. 2004). The GFSv15.0 features a new finite-volume cubed-sphere dynamical core 85 

(Chen et al. 2018; Hazelton et al. 2018) and includes the GFDL six-category bulk cloud 86 

microphysics scheme (described in Chen and Lin 2013). We specifically evaluate cool-season 87 

precipitation forecasts over the western CONUS, at both lowland and upland locations, to identify 88 

modeling system capabilities, limitations, and biases for forecasters and model developers, as well 89 

as establish a baseline of current NCEP operational model performance.   90 
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The remainder of this paper is organized as follows. Section 2 describes the models and 91 

observational data used for the evaluation, as well as the validation methodology. Section 3 92 

examines and describes the results and performance of the experimental modeling systems relative 93 

to their operational predecessors and compares GFS performance to the operational, high-94 

resolution configuration of the ECMWF Integrated Forecast System (HRES). A summary of the 95 

results follows in section 4. 96 

 97 

2. Data and Methods 98 

2.1 Forecast systems 99 

The HRRR is an hourly updating forecast system that is nested within the 13-km Rapid 100 

Refresh (RAP) and provides forecasts for the CONUS at 3-km grid spacing (Benjamin et al. 2016; 101 

Myrick 2018). During the 2017/18 cool season, which is the focus of this study, NCEP produced 102 

operational forecasts with HRRRv2, whereas the NOAA Earth System Research Laboratory 103 

(ESRL) ran the experimental HRRRv3. HRRRv2 uses the Advanced Research WRF model 104 

version 3.6, with physics packages and assimilation procedures described in Benjamin et al. 105 

(2016). HRRRv3 uses the WRF-ARW version 3.8, with updates to model physics, numerics, 106 

assimilated data sets, and assimilation techniques described by NOAA (2018). HRRRv2 forecasts 107 

were obtained from the NCEP Operational Model Archive and Distribution System (NOMADS), 108 

whereas HRRRv3 forecasts were provided by ESRL. The HRRRv3 became operational at NCEP 109 

in August 2018. 110 

The GFS is a global forecast system developed by NOAA and run by NCEP. During the 111 

2017/18 cool season, NCEP produced operational forecasts using GFSv14, a global spectral model 112 

with T1534 horizontal resolution (~13 km) for the initial 10-day forecast period. Major GFS 113 
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parameterization and data assimilation techniques are described in McClung (2014), NWS (2016), 114 

and Myrick (2017). The GFSv15.0 represents a major upgrade and uses a finite-volume, cubed-115 

sphere dynamical core developed at GFDL with an effective horizontal resolution comparable to 116 

GFSv14. Physics packages are based on GFSv14, except for the replacement of the Zhao-Carr 117 

microphysics scheme with the GFDL microphysics scheme (Yang 2018), updates or new 118 

parameterizations for ozone and water vapor photochemistry, and a revised bare-soil evaporation 119 

scheme (Tallapragada and Yang 2018). Operational GFSv14 forecasts and GFSv15.0 reforecasts 120 

were obtained from the NCEP Environmental Modeling Center. Ultimately, the operational GFS 121 

was upgraded from GFSv14 to GFSv15.1 rather than GFS15.0, with GFSv15.1 including some 122 

improvements that reduce but do not eliminate a near-surface cold bias that led to excessive 123 

accumulated snow. However, we focus on liquid precipitation equivalent and tests indicate that 124 

GFSv15.0 and GFSv15.1 produce relatively similar quantitative precipitation forecasts (Alicia 125 

Bentley, NCEP, personal communication).   126 

We also compare GFSv14 and GFSv15.0 forecasts with HRES, a global forecast model 127 

developed and run by ECMWF. During the 2017/18 cool season, the HRES ran with a 0.07˚ 128 

effective horizontal resolution over an octahedral reduced Gaussian grid. Parameterizations are 129 

described by Roberts et al. (2018). Operational HRES forecasts were provided by ECMWF.  130 

 131 

2.2 Precipitation observations  132 

Precipitation validation focuses on the CONUS west of 102.5˚ and uses observations from 133 

the Automated Surface Observing System (ASOS) and Snow Telemetry (SNOTEL) networks 134 

(Fig. 1). ASOS stations measure precipitation in 0.01-inch (0.254 mm) increments using either a 135 

standard heated tipping bucket with a vinyl alter-style wind shield or an all-weather precipitation 136 
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accumulation gauge with a Tretyakov wind shield (Martinaitis et al. 2015). The standard heated 137 

tipping buckets are implemented at a majority of ASOS stations, but the all-weather precipitation 138 

accumulation gauge has been installed at some stations since 2003 (NWS 2009, Martinaitis et al. 139 

2015). Precipitation gauge undercatch of snowfall increases with wind speed because updrafts 140 

form over the gauge orifice, but is lower for the all-weather precipitation gauges than the standard 141 

heated tipping buckets (Greeney et al. 2005). Nevertheless, undercatch likely remains a source for 142 

measurement error during snow events (Rasmussen et al. 2012).    143 

ASOS data were obtained from Synoptic Data, a Public Benefit Corporation owned in part 144 

by the University of Utah, using their Application Program Interface 145 

(https://synopticlabs.org/synoptic/) and were quality controlled following procedures described by 146 

Horel et al. (2002) and in documentation available from Synoptic Data. To reduce sampling issues, 147 

stations were chosen that recorded five or more days with measurable precipitation [i.e., ≥ .01 in 148 

(.254 mm); Durre et al. 2013] and received ≥ .5 inches (12.7 mm) of precipitation during the 149 

2017/18 cool season. The resulting 277 stations (Fig. 1)—situated predominantly (but not 150 

exclusively) in lowland areas and located mainly at airports—provided 6-hour accumulated 151 

precipitation observations, which were aggregated into 24-hour totals.   152 

SNOTEL stations are located at remote, sheltered, upland locations. Accumulated 153 

precipitation is measured hourly in 0.1-inch (2.54-mm) increments using a large-storage gauge. 154 

SNOTEL precipitation measurements exhibit an artificially driven diurnal cycle due to expansion 155 

and contraction of fluid in the gauge (USDA 2014). We limit this effect by using only 24-hour 156 

accumulated precipitation measurements. Other errors are addressed by quality controlling data 157 

according to the methods described by Lewis et al. (2017), yielding data from 606 SNOTEL 158 

stations. Like ASOS stations, undercatch remains a likely source of error for SNOTEL stations. 159 
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 160 

2.3 Validation 161 

We validate model forecasts initialized between 0000 UTC 1 October 2017 and 1800 UTC 162 

31 March 2018. The selection of the 2017/2018 cool season reflects the availability of forecasts 163 

from all five modeling systems. To enable validation of 24-hour precipitation (hereafter daily 164 

precipitation) using HRRRv2 and HRRRv3 forecasts, since the former only extends to 18 hours, 165 

we combine the 6–18-hour precipitation forecasts from the 0600 UTC and 1800 UTC initialized 166 

forecasts. GFSv14, GFSv15.0, and HRES validation focuses on 12–36-hour (hereafter Day 1) and 167 

60–84-hour (hereafter Day 3) forecasts initialized at 0000 UTC. Periods when one or more model 168 

forecasts were missing were not included, resulting in validation of 112 HRRRv2/HRRRv3 and 169 

115 GFSv14/GFSv15.0/HRES daily forecasts. To compare modeled with observed precipitation, 170 

we bilinearly interpolate model precipitation forecast to each station location.  171 

Bias ratio is the ratio of forecast to observed precipitation integrated over the study period 172 

on days when forecasts are available. Means are calculated using all stations in each network. 173 

Voronoi-weighted (Weller et al. 2009) and unweighted methods to calculate the areal average bias 174 

ratios yielded statistically indiscernible results using a two-proportion Z-test, so figures display 175 

only unweighted areal averages for simplicity. Other validation metrics use daily precipitation, the 176 

occurrence of which is sometimes referred to as an event. Frequency bias, for example, is the ratio 177 

of the number of forecast and observed daily precipitation events in a given size bin.  178 

Additional measures employed to evaluate daily precipitation forecasts include the hit rate, 179 

false alarm ratio, and equitable threat score, which are based on a 2 by 2 contingency table (Table 180 

1). As summarized in Mason (2003), hit rate is defined as 181 

     𝐻𝑅 = $
$%&

 ,                                                                           (1) 182 
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false alarm ratio as 183 

     𝐹𝐴𝑅 = )
$%)

 ,                                                                        (2) 184 

and equitable threat score as 185 

     𝐸𝑇𝑆 = $-$./0
$-$./0%)%&

 ,                                                            (3) 186 

where 187 

     𝑎234 =
($%&)($%))

7
.                                                              (4) 188 

These measures are calculated using absolute precipitation amounts and percentile thresholds, the 189 

latter defined relative to the amount distribution for each model on all validation days, including 190 

those without measurable precipitation.  We evaluate these measures using absolute precipitation 191 

thresholds and percentile thresholds based on 2017/18 cool-season precipitation events.  The latter 192 

reduces the effects of model bias in the evaluation of the spatial accuracy of model forecasts 193 

(Roberts and Lean 2008; Mittermaier and Roberts 2010; Dey et al. 2014; Gowan et al. 2018).  194 

 195 

3. Results 196 

3.1 Synopsis of 2017/18 cool-season precipitation 197 

The 30-year (1981–2010) average October–March cool-season precipitation exhibits a 198 

strong dependence of precipitation on altitude across the western United States (Daly et al. 1994). 199 

For the SNOTEL stations used in this study, the greatest precipitation falls at stations in the 200 

Coastal, Cascade, and Olympic Mountains of the Pacific Northwest and locations in the northwest 201 

interior (Fig. 2a). For the ASOS stations used in this study, cool-season precipitation is greatest 202 

along and near the Pacific coast of northern California, Oregon, and Washington and lower in the 203 

valleys and basins of southern California and the western interior east of the Cascade–Sierra crest 204 

(Fig. 2b). 205 
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Integrated across all ASOS and SNOTEL stations, the 2017/18 cool-season precipitation was 206 

about 40% below average.  SNOTEL stations in the far north received near or slightly above 207 

average precipitation, whereas stations further south received below average precipitation (Fig. 208 

2c). This spatial pattern was comparatively less distinct at ASOS stations, which exhibited less 209 

coherent regional patterns relative to average, especially east of the Cascade–Sierra crest (Fig. 210 

2d). This likely reflects the relatively low frequency and spatial coherence of precipitation events 211 

east of the Cascade–Sierra crest (Rutz et al. 2014; Touma et al. 2018), which leads to 212 

undersampling at low elevation stations. 213 

 214 

3.2 HRRR 215 

During the 2017/18 cool season, the mean HRRRv2 bias ratio was 1.33 at ASOS stations, 216 

indicating an overall wet bias (Fig. 3a). However, the bias ratio varied considerably from station 217 

to station, with a standard deviation of 0.72. Forecasts for stations in northern California, Oregon, 218 

and Washington west of the Cascade–Sierra crest exhibited primarily near-neutral or dry biases, 219 

whereas forecasts for stations east of the Cascade-Sierra crest predominantly exhibited near-220 

neutral or wet biases. The HRRRv3 produced a similar mean bias ratio and standard deviation of 221 

1.32 and 0.75, respectively, with a comparable spatial pattern of dry and wet biases at individual 222 

stations (Fig. 3b). At SNOTEL stations, the mean HRRRv2 bias ratio was 0.95, with greater 223 

consistency from station to station reflected in a low standard deviation (compared to forecasts for 224 

ASOS stations) of 0.24 (Fig. 4a). Regions with larger dry (wet) biases include the Mogollon Rim 225 

of Arizona and ranges of eastern Nevada (Big Horn Mountains of Wyoming). The HRRRv3 was 226 

slightly wetter with a mean bias ratio of 1.03 and a small increase in standard deviation to 0.28 227 

(Fig. 4b).  228 
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Frequency bias is the ratio of forecast to observed event frequency as a function of the 229 

observed event size (Fig. 5a). For convenience and following Lewis et al. (2017), we refer to a 230 

frequency bias of 0.85–1.20 as “near-neutral” given the uncertainties in precipitation 231 

measurement. At ASOS stations, we present frequency bias for events in four bins defined by 232 

lower and upper bounds [.127–1.27 mm (.005–.05 in), 1.27–3.81 mm (.05–.15) in, 3.81–6.35 mm 233 

(.15–.25 in), and 6.35–8.89 mm (.25–.35 in)], represented in each graph by a central value.   The 234 

lower bound is exclusive and the upper bound inclusive for all but the lowest bin [0.005–0.05 in 235 

(.127–1.27 mm)], for which we use model precipitation values ≥ .127 mm (.005 in) and observed 236 

precipitation values ≥ .254 mm (.01 in).  Events > 8.89 mm (.35 in) are not presented due to the 237 

small sample size.  HRRRv2 exhibited frequency biases > 1 at all event sizes and weak 238 

overprediction (i.e., bias ratio > 1.2) for events ≤ 6.35 mm (.25 in).  HRRRv3 frequency biases 239 

were closer to neutral for events ≤ 3.81 mm (.15 in), but not significantly different from those of 240 

HRRRv3 at a 95% confidence level, as determined using bootstrap resampling for ratios of event 241 

frequency [subsequent statements of confidence also use this technique (Choquet et al. 1999; 242 

Hamill 1999)].  243 

At SNOTEL stations, we present frequency bias for events in five bins similarly defined 244 

by lower and upper bounds [1.27–6.35 mm (.05–.25 in), 6.35–19.05 mm (0.25–0.75 in), 19.05–245 

31.75 mm (0.75–1.25 in), 31.75–44.45 mm (1.25–1.75 in), and 44.45–57.15 mm (1.75–2.25 in)], 246 

represented in each graph by a central value (Fig. 5b).   The lower bound is exclusive and the upper 247 

bound inclusive for all but the lowest bin, for which we use model precipitation values ≥ 1.27 mm 248 

(.05 in) and observed precipitation values ≥ 2.54 mm (.10 in).  Events > 57.15 mm (2.25 in) are 249 

not presented due to the small sample size.  HRRRv2 frequency biases are < 1 but fall within near-250 

neutral bounds for all events sizes except those ≤ 6.35 mm (0.25 in) where underprediction occurs.  251 
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HRRRv3 bias ratios are higher for all events except those ≤ 6.35 mm (0.25 in), consistent with the 252 

higher mean bias ratio, with slight overprediction for events ~38.1 mm (1.5 in), which is the only 253 

bin in which the difference is significant at a 95% confidence level.   254 

Bivariate histograms illustrate bias if frequent event pairs fall above (overprediction) or 255 

below (underprediction) the 1:1 line and precision based on the scatter of event pairs. Ideally, most 256 

event pairs fall along or near the 1:1 line. At ASOS stations, the HRRRv2 bivariate histogram 257 

displays minimal skewness about the 1:1 line, which suggests near-neutral bias, but low precision, 258 

indicated by large scatter of event pairs (Fig. 6a). The HRRRv3 bivariate histogram similarly 259 

reveals minimal skewness but low precision (Fig. 6b). Thus, while the model biases were small, 260 

the large scatter indicates weak correlation between forecasts and observations, a result that may 261 

partly reflect undersampling of events at ASOS stations. At SNOTEL stations, the HRRRv2 262 

bivariate histogram exhibits near-neutral bias and moderate precision (Fig. 7a). The HRRRv3 263 

bivariate histogram indicates similar performance (Fig. 7b). Altogether, the HRRRv2 and 264 

HRRRv3 bias ratios, frequency biases, and bivariate histograms indicate a near-neutral 265 

precipitation bias for total precipitation and most event sizes, with precision increasing from 266 

lowland ASOS stations to upland SNOTEL stations.  Low precision at the lowland ASOS stations 267 

may partially reflect undersampling.  HRRRv3 is slightly wetter than HRRRv2.   268 

We next evaluate model skill using the traditional metrics of HR, FAR, and ETS.  Whereas 269 

the HR and FAR examine how well the model captures events or non-events, the ETS measures 270 

skill relative to random forecasts (drawn from the observed climatological distribution). At ASOS 271 

stations, as absolute threshold increases, HRRRv2 HR decreases from 0.81 to 0.64 (Fig. 8a), FAR 272 

increases from 0.32 to 0.35 (Fig. 8c), and ETS decreases from 0.52 to 0.46 (Fig. 8e). HRRRv3 273 

HRs, FARs, and ETSs are larger in comparison at most event thresholds, although differences are 274 
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not significant at a 95% confidence level. At SNOTEL stations, HRRRv2 HR decreases from 0.68 275 

to 0.55 (Fig. 8b), FAR increases from 0.28 to 0.46 (Fig. 8d), and ETS decreases from 0.44 to 0.37 276 

(Fig. 8f). Similar to ASOS stations, HRRRv3 HRs and FARs are larger than those of HRRRv2 and 277 

the ETS is comparable to or slightly higher at all thresholds. Although the differences in HR and 278 

FAR are sometimes significant, specifically at lower thresholds, differences in ETS are not 279 

significant at a 95% confidence level.  280 

Next, we convert absolute thresholds percentile thresholds for each modeling system and 281 

station network according to Fig. 9.  This helps to account for model bias, although such biases 282 

are small for HRRRv2 and HRRRv3.  As percentile threshold increases at ASOS stations, 283 

HRRRv2 HR decreases from 0.77 to 0.66 (Fig. 10a), FAR increases from 0.26 to 0.34 (Fig. 10c), 284 

and ETS decreases from 0.53 to 0.47 (Fig. 10e). Compared to HRRRv2, HRRRv3 HR and ETS 285 

are larger and FAR is smaller, although the differences are not significant at a 95% confidence 286 

level. As percentile threshold increases at SNOTEL stations, HRRRv2 HR decreases from 0.75 to 287 

0.64 (Fig. 10b), FAR varies between 0.41 and 0.27 (Fig. 10d), and ETS decreases from 0.45 to 288 

0.44 (Fig. 10f).  The HRRRv3 HR and ETS are slightly higher and FAR slightly lower, although 289 

the differences are not significant at a 95% confidence level.   290 

To summarize, comparison of HRRRv2 and HRRRv3 during the 2017/18 cool season 291 

indicates little change in model biases and performance characteristics. Both models were slightly 292 

wet at lowland ASOS stations and near-neutral at upland SNOTEL stations. At both ASOS and 293 

SNOTEL stations, the HRRRv3 exhibited higher HR and ETS and lower FAR, but differences in 294 

ETS were not significant at a 95% confidence level.  These results suggest a small, but statistically 295 

undiscernible improvement from HRRRv2 to HRRRv3.  We hypothesize that these differences are 296 

likely not distinguishable to operational forecasters.  297 



 13 

 298 

3.3 GFSv14, GFSv15.0 and HRES 299 

At ASOS stations, GFSv14 bias ratios indicate that forecasts tended to be wet, with a mean 300 

bias ratio of 1.65 on Day 1 that decreases slightly to 1.57 on Day 3 (Fig. 11a and b). There are 301 

large standard deviations on Day 1 (1.05) and Day 3 (1.02), which reflect large wet biases at many 302 

stations. GFSv15.0 mean bias ratios are slightly higher at 1.77 on Day 1 and 1.65 on Day 3 (Fig. 303 

11c and d), with comparable standard deviations. HRES forecasts were the wettest, with mean Day 304 

1 and Day 3 bias ratios of 1.80 and 1.91, respectively, and comparable standard deviations (Fig. 305 

11e and f). In contrast, at SNOTEL stations, mean GFSv14 Day 1 and Day 3 bias ratios are 0.99 306 

and 0.97, respectively, with substantially lower standard deviations (Fig. 12a and b). GFSv15.0 307 

forecasts were similar, with Day 1 and Day 3 bias ratios of 1.00 and 0.96, respectively (Fig. 12c 308 

and d). HRES forecasts exhibited a weak dry bias, with mean Day 1 and Day 3 bias ratios of 0.88 309 

and 0.91, respectively (Fig. 12e and f).  310 

Consistent with the high bias ratios, all three models overpredicted the frequency of Day 1 311 

and Day 3 precipitation events at ASOS stations for all event sizes (Fig. 13a). This problem was 312 

most acute in HRES forecasts, consistent with the larger HRES wet bias. At SNOTEL stations, all 313 

three models exhibited near-neutral or marginally low frequency biases on Day 1 and Day 3 for 314 

all event sizes (Fig. 13b). Underprediction of event frequency was more apparent at higher 315 

thresholds and increased from the GFSv15.0 to GFSv14 to HRES.   316 

Bivariate histograms illustrate that GFSv14 event pairs at ASOS stations were skewed 317 

above the 1:1 line, which is consistent with the aforementioned wet bias (Fig. 14a and b). 318 

Furthermore, the large scatter of event pairs reflects low precision. The GFSv15.0 and HRES 319 

displayed similar skewness and scatter at ASOS stations (Fig. 14c–f). At SNOTEL stations, the 320 
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GFSv14 bivariate histogram exhibited minimal skewness and, for small events, small scatter, 321 

indicating near-neutral bias and moderately high precision (Fig. 15a). Precision declined, however, 322 

for larger events and for longer lead times (cf. Figs. 15a,b). The GFSv15.0 bivariate histograms 323 

exhibit similar characteristics (Fig. 15c,d). HRES, however, skewed below the 1:1 line and thus 324 

displayed slight underprediction, consistent with its weak dry bias (Fig. 15e,f). Overall, these 325 

results indicate that all three global models produce excessive lowland precipitation, but the bias 326 

is neutral or dry in upland regions, with the HRES featuring the largest upland underprediction, 327 

especially for larger events.   328 

HR and ETS are generally highest for HRES and lowest for GFSv14 at both ASOS and 329 

SNOTEL stations on Day 1 and Day 3 (Figs. 16a,b,e,f).  For FAR, differences between the models 330 

are modest at ASOS stations, but the drier HRES leads to much lower values at SNOTEL stations, 331 

especially on Day 1 (Figs. 16c,d).  Focusing on ETS as an overall indicator of model performance, 332 

on Day 1, the HRES produces the highest ETS for all but the smallest [≤ 1.27 mm (0.05 in)] events 333 

at ASOS stations and all events at SNOTEL stations, with the improvement relative to GFSv14 334 

and GFSv15.0 significant at a 95% confidence level in several size bins (Figs. 16e,d).  Although 335 

ETS declines by Day 3, the gap between HRES and GFSv15.0 is smaller at both ASOS and 336 

SNOTEL stations and not significant at a 95% confidence level for all event sizes.  The gap 337 

between GFSv15.0 and GFSv14 also increases from Day 1 to Day 3 for most event sizes.   338 

Fig. 17 illustrates the relationship between absolute thresholds and percentile thresholds 339 

for the three global models.  Validating based on percentile thresholds helps account for model 340 

bias, which is more significant for the three global models than the HRRR.  Based on these 341 

percentile thresholds, the HRES produces the highest HR, lowest FAR, and highest ETS on Day 342 

1 and Day 3 for all event sizes at both ASOS and SNOTEL stations.  The difference between 343 
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GFSv15.0 and GFSv14 is small on Day 1, especially at ASOS stations, but increases by Day 3, 344 

with the former producing a higher HR, lower FAR and higher ETS in all categories.  For ETS, 345 

the difference between HRES and GFSv15.0 or GFSv14 is statistically significant in nearly all 346 

thresholds on Day 1 at ASOS stations and all thresholds at SNOTEL stations, but consistent with 347 

the ETS for absolute thresholds, GFSv15.0 closes the gap by Day 3.  The gap between GFSv15.0 348 

and GFSv14 also increases from Day 1 to Day 3, for which it is significant at a 95% confidence 349 

level for all event sizes at SNOTEL stations.   350 

In summary, all three global models produce too much and too frequent precipitation at 351 

lowland ASOS stations.  Biases at upland SNOTEL stations are closer to neutral or dry, with the 352 

HRES tending to produce too little precipitation overall and too infrequent larger events.  Model 353 

skill scores illustrate superior performance of the HRES at both lowland ASOS stations and upland 354 

SNOTEL stations, especially if one validates based on percentiles, which helps account for the 355 

HRES dry bias.  The difference between GFSv15.0 and GFSv14 is small on Day 1, but increases 356 

by Day 3 when the former has also closed the gap relative to HRES.  Based on the traditional 357 

metrics used here, the shorter range (Day 1 and Day 3) precipitation forecasts produced by 358 

GFSv15.0 produce comparable to superior forecasts to GFSv14, although they lag HRES.    359 

 360 

4. Conclusions 361 

This study has examined the performance of newly-upgraded NCEP operational models 362 

compared to their predecessors focusing on precipitation over the western CONUS during the 363 

2017/18 cool season.  Results of the evaluation can be condensed into two principal conclusions. 364 

First, changes in bias and performance between HRRRv2 and HRRRv3 are small.  In the case of 365 

performance, HRRRv3 produced marginally higher ETS at lowland and upland stations, although 366 
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the difference was not significant at a 95% confidence level.  Second, as evaluated using traditional 367 

metrics, GFSv15.0 produces forecasts that are comparable to (Day 1) or superior to (Day 3) 368 

GFSv14, but that still lag HRES, although the gap closes from Day 1 to Day 3.  All three global 369 

models (GFSv15.0, GFSv14, and HRES) produce too much and too frequent lowland 370 

precipitation, but exhibit near neutral or dry biases in upland regions, with the HRES producing 371 

the largest underprediction of larger upland precipitation events.  These elevation-dependent biases 372 

may reflect insufficient terrain representation.  Superior performance of the HRES is especially 373 

apparent if one verifies using event percentiles, which helps account for these biases.  Operational 374 

forecasters should be aware of the general biases described here, but also that there are variations 375 

by location and event size.   376 

These results are, however, based on a single cool season characterized by near or slightly 377 

above average precipitation in the northwest CONUS and below average precipitation in the 378 

southwest CONUS.  Thus, precipitation events in the northwest CONUS have a strong influence 379 

on overall results.  Large station-by-station variations in bias ratio were identified at ASOS 380 

stations, but likely reflect undersampling.  Although a multi-cool-season model comparison study 381 

is desirable, it is not always possible with operational modeling systems.  GFSv15.0 reforecasts 382 

are, however, available for three cool seasons, although for brevity we focused this paper on the 383 

2017/18 cool season given that HRRRv2 and HRRRv3 were only available that cool season.    384 

This study also utilized observations from the ASOS and SNOTEL networks, which 385 

enables comparison of model performance in lowland and upland areas.  Both station types, 386 

however, likely experience undercatch, which is not accounted for here, and the quality control 387 

and assessment of 24-hour precipitation amounts at SNOTEL stations is difficult and lacks data 388 

precision.  A major advantage of the SNOTEL network, however, is its high density in mountain 389 
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areas that are poorly sampled by radar and exhibit large uncertainties in gridded precipitation 390 

analyses.  Future validation studies over the western CONUS should continue to leverage the 391 

SNOTEL network (and potentially other mountain observing stations) to better identify model 392 

biases and performance characteristics in upland areas where forecasts are critical for recognizing 393 

impacts related to flooding, debris flows, avalanches, and road maintenance and safety.     394 
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Tables 565 

 566 

Table 1. Contingency table used for validation  567 

Observed 

(a)	Hit (b)	False	alarm 

(c)	Miss (d)	Correct	
rejection 

Yes 

Yes 

No 

Forecast No 
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Figures 568 

 569 

Figure 1. ASOS (red) and SNOTEL (blue) stations used for this study with 30 arc-second 570 

topography (km AMSL, shaded).  571 
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 572 

Figure 2. 30-year average accumulated cool-season precipitation at (a) SNOTEL and (b) ASOS 573 

stations [based on PRISM gridded climate data (Daly et al. 1994)], and 2017/18 cool-season total 574 

precipitation as a fraction of PRISM climatology at (c) SNOTEL and (d) ASOS stations.  575 
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 576 

Figure 3. (a) HRRRv2 and (b) HRRRv3 bias Ratios at ASOS stations with 30 arc-second 577 

topography (as in Fig. 1). Mean and standard deviation (SD) annotated. 578 

  579 



 29 

 580 

Figure 4. Same as Fig. 3 except for SNOTEL stations. 581 

  582 
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 583 

Figure 5. HRRRv2 (red lines) and HRRRv3 (blue lines) frequency bias as a function of event 584 

size at (a) ASOS and (b) SNOTEL stations. Number of events sampled into each bin shown in 585 

inset histograms. Green band shows 0.85–1.20 range defined as near neutral by the authors. 586 

Whiskers display 95% confidence intervals as determined using bootstrap resampling. 587 

  588 
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 589 

Figure 6. Bivariate histograms of forecast and observed precipitation at ASOS stations for (a) 590 

HRRRv2 and (b) HRRRv3. Green (blue) dots denote mean modeled (observed) event size for 591 

each observed (modeled) event size in each bin. Dots not shown for bins with < 100 events. 592 

  593 
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 594 

Figure 7. Same as Fig. 6 except for SNOTEL stations. 595 

  596 
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 597 

Figure 8. HRRRv2 (red) and HRRRv3 (blue) verification metrics as functions of absolute 598 

thresholds at ASOS (a,c,e) and SNOTEL (b,d,f) stations. (a,b) Hit rate. (c,d) False Alarm Ratio. 599 

(e,f) Equitable Threat Score. Whiskers display 95% confidence intervals as determined using 600 

bootstrap resampling. 601 

  602 
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 603 

Figure 9. Observed (grey) and forecast HRRRv2 (red) and HRRRv3 (blue) absolute and 604 

precipitation thresholds at (a) ASOS and (b) SNOTEL stations. 605 

  606 
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 607 

Figure 10. Same as Fig. 8 except for precipitation thresholds. 608 

  609 
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 610 

Figure 11. (a) Day 1 GFSv14, (b) Day 3 GFSv14, (c) Day 1 GFSv15.0, (d) Day 3 GFSv15.0, (e) 611 

Day 1 HRES, and (f) Day 3 HRES bias ratios at ASOS stations with 30 arc-second topography 612 

(as in Fig. 1). Mean and standard deviation (SD) annotated. 613 
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 614 

Figure 12. Same as Fig. 11 except for SNOTEL stations.  615 
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 616 

Figure 13. Day 1 (dashed) and Day 3 (solid) GFSv14 (blue), GFSv15.0 (black), and HRES (red) 617 

frequency bias as a function of event size at (a) ASOS and (b) SNOTEL stations. Number of 618 

events sampled into each bin shown in inset histograms. Green band shows 0.85–1.20 range 619 

defined as near neutral by the authors. Whiskers display 95% confidence intervals as determined 620 

using bootstrap resampling. 621 

  622 
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 623 

Figure 14. Bivariate histograms of forecast and observed precipitation at ASOS stations for (a) 624 

Day 1 GFSv14, (b) Day 3 GFSv14, (c) Day 1 GFSv15.0, (d) Day 3 GFSv15.0, (e) Day 1 HRES, 625 

and (f) Day 3 HRES.  Green (blue) dots denote mean modeled (observed) event size for each 626 

observed (modeled) event size in each bin. Dots not shown for bins with < 100 events. 627 
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 628 

Figure 15. Same as Fig. 14 except for SNOTEL stations.  629 
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 630 

Figure 16. Day 1 (dashed) and Day 3 (solid) GFSv14 (blue), GFSv15.0 (black), and HRES (red) 631 

verification metrics as functions of absolute thresholds at ASOS (a,c,e) and SNOTEL (b,d,f) 632 

stations. (a,b) Hit rate. (c,d) False Alarm Ratio. (e,f) Equitable Threat Score. Whiskers display 633 

95% confidence intervals as determined using bootstrap resampling. 634 

  635 
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 636 

Figure 17. Observed (grey) and forecast Day 1 (dashed) and Day 3 (solid) GFSv14 (blue), 637 

GFSv15.0 (black), and HRES (red) absolute and percentile precipitation thresholds at (a) ASOS 638 

and (b) SNOTEL stations. 639 

  640 
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 641 

Figure 18. Same as Fig. 16 except for percentile thresholds. 642 


