Nitric acid uptake on subtropical cirrus cloud particles

P. J. Popp,1,2 R. S. Gao,3 T. P. Marcy,1,2 D. W. Fahey,1,2 P. K. Hudson,1,2 T. L. Thompson,1
B. Kärcher,4 B. A. Ridley,5 A. J. Weinheimer,5 D. J. Knapp,5 D. D. Montzka,5
D. Baumgardner,6 T. J. Garrett,7 E. M. Weinstock,8 J. B. Smith,8 D. S. Sayres,8
J. V. Pittman,8 S. Dhaniyala,9,10 T. P. Bui,11 and M. J. Mahoney12

Received 16 October 2003; revised 9 January 2004; accepted 2 February 2004; published 17 March 2004.

[1] The redistribution of HNO3 via uptake and sedimentation by cirrus cloud particles is considered an important term in the upper tropospheric budget of reactive nitrogen. Numerous cirrus cloud encounters by the NASA WB-57F high-altitude research aircraft during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) were accompanied by the observation of condensed-phase HNO3 with the NOAA chemical ionization mass spectrometer. The instrument measures HNO3 with two independent channels of detection connected to separate forward and downward facing inlets that allow a determination of the amount of HNO3 condensed on ice particles. Subtropical cirrus clouds, as indicated by the presence of ice particles, were observed coincident with condensed-phase HNO3 at temperatures of 197–224 K and pressures of 122–224 hPa. Maximum levels of condensed-phase HNO3 approached the gas-phase equivalent of 0.8 ppbv. Ice particle surface coverages as high as 1.4×10^{14} molecules cm$^{-2}$ were observed. A dissociative Langmuir adsorption model, when using an empirically derived HNO3 adsorption enthalpy of -11.0 kcal mol$^{-1}$, effectively describes the observed molecular coverages to within a factor of 5. The percentage of total HNO3 in the condensed phase ranged from near zero to 100% in the observed cirrus clouds. With volume-weighted mean particle diameters up to 700 μm and particle fall velocities up to 10 m s$^{-1}$, some observed clouds have significant potential to redistribute HNO3 in the upper troposphere.

INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 0320 Atmospheric Composition and Structure: Cloud physics and chemistry; 0322 Atmospheric Composition and Structure: Constituent sources and sinks;

KEYWORDS: cirrus clouds, nitric acid, uptake, ice particles

1. Introduction

[2] Cirrus clouds are ubiquitous throughout the upper troposphere (UT) and can cover as much as 40% of Earth’s surface [Liao et al., 1995; Jin et al., 1996; Wang et al., 1996; Wylie and Menzel, 1999]. Composed of ice crystals [Lynch, 2002], cirrus clouds are known to play a complex and significant role in the global radiation budget [Liou, 1986]. Cirrus clouds can be formed in situ in the UT [Kärcher, 2002], as a result of synoptic weather disturbances, or in the anvil outflow at the top of cumulonimbus clouds [Sassen, 2002]. Tropical cirrus clouds around the peak convective detrainment level are formed primarily via the latter mechanism, and can reach altitudes of up to 18 km when produced in deep convective systems. The broad lateral and vertical extent of anvil cirrus clouds produced in the tropics is expected to exert a greater influence on Earth’s climate system than midlatitude cirrus [Heymsfield and McFarquhar, 2002]. Owing to the high altitudes and often-remote locations of tropical cirrus, however, comprehensive in situ measurements of these clouds have been limited.
[3] Model simulations by Lawrence and Crutzen [1998] suggest that the uptake and gravitational redistribution of nitric acid (HNO₃) by cirrus cloud particles may represent a significant sink of HNO₃ in the UT. Nitric acid serves as a primary reservoir species for nitrogen oxides (NOₓ) [Neuman et al., 2001], which are directly involved in the photochemical production of tropospheric ozone [Jaeglé et al., 1998]. Model studies of cirrus-processed air have demonstrated that the sedimentary removal of HNO₃ from the UT can effect strong local reductions in NOₓ with the consequence of significant reductions in the net ozone production rate [Meier and Hendricks, 2002]. Since ozone is known to be an effective greenhouse gas in the troposphere [Albritton et al., 2001], particularly near the tropopause [Lacis et al., 1990], understanding the uptake and redistribution of HNO₃ by cirrus cloud particles may be important in assessing the contribution of cirrus clouds to the radiative forcing of climate change.

[4] A number of laboratory studies have investigated the uptake of HNO₃ on ice surfaces at temperatures typical of the UT. Experiments performed by Zondlo et al. [1997] on vapor-deposited ice films at 211 K resulted in observed HNO₃ surface coverages of 1.5 × 10⁻¹⁵ molecules cm⁻². A series of similar experiments reported by Hudson et al. [2002] at an HNO₃ pressure (P(HNO₃)) of 1.1 × 10⁻⁶ hPa indicated a negative temperature dependence to the observed uptake, with coverages of 1.1 × 10⁻¹⁴ to 5.9 × 10⁻¹⁵ molecules cm⁻² over a temperature range of 214–220 K. Uptake studies performed on ice films by Abbott [1997] yielded coverages of up to 2.9 × 10⁻¹⁴ molecules cm⁻² at temperatures as low as 208 K, with no apparent dependency on P(HNO₃) values over the range 1.7 × 10⁻⁶ to 4.1 × 10⁻⁶ hPa. Hynes et al. [2002] reported comparable coverages using a similar technique, although they observed coverages increasing by factor of 2 over a nearly 10-fold increase in P(HNO₃), from 5.0 × 10⁻⁷ to 3.0 × 10⁻⁶ hPa. A laboratory study of HNO₃ uptake on nebulized half-micron diameter ice particles at 230 K yielded coverages similar to those observed on the ice films (1.2 × 10⁻¹⁴ molecules cm⁻²), although these experiments were performed at the relatively high P(HNO₃) of 7 × 10⁻⁶ hPa [Arora et al., 1999]. There has not yet been an extensive laboratory study of HNO₃ uptake on ice surfaces performed at P(HNO₃) values typical of the UT (<2.0 × 10⁻⁷ hPa).

[5] Prior field studies of HNO₃ uptake on cirrus cloud particles have been made at mid and high latitudes. Measurements of total reactive nitrogen (NOₓ = NO + NO₂ + 2N₂O₅ + HNO₃ + . . .) in a mountain wave cloud over the continental United States reported by Weíheimer et al. [1998] indicated that levels of condensed NOₓ in the cloud approached 20% of total NOₓ. Surface coverages on the wave cloud ice particles were calculated to be as high as 2.5 × 10⁻¹² molecules cm⁻² [Hudson et al., 2002]. Measurements of condensed-phase NOₓ in cirrus layers in the Arctic UT by Kondo et al. [2003] yielded HNO₃ coverages as high as 1.6 × 10⁻¹⁴ molecules cm⁻² at temperatures of approximately 200 K, with coverages decreasing at warmer temperatures. Meilinger et al. [1999] conducted similar measurements in Arctic cirrus clouds at 196 K and reported coverages of only 1 × 10⁻¹³ molecules cm⁻². An extensive dataset of measurements made at midlatitudes revealed median levels of condensed NOₓ (assumed to be HNO₃) in the Northern Hemisphere of 3.6 × 10¹² molecules cm⁻² to be greater than twice that observed in the Southern Hemisphere [Ziereis et al., 2004].

[6] We report here an extensive dataset of in situ measurements, including gas- and condensed-phase HNO₃ and ice particle surface area density (SAD), obtained in subtropical and tropical in situ and anvil cirrus clouds. These measurements were conducted onboard the NASA WB-57F high-altitude research aircraft as part of the Cirrus Regional Study of Tropical Anvils and Cirrus Layers Florida Area Cirrus Experiment (CRYSTAL-FACE) mission. The data are used here to assess the uptake of HNO₃ by subtropical cirrus cloud particles and explore the partitioning of HNO₃ between the gas and ice particle phases in cirrus clouds.

2. Instrumentation

[7] This study utilizes data from a number of in situ instruments onboard the NASA WB-57F aircraft. Gas-phase and condensed-phase HNO₃ measurements made by chemical ionization mass spectrometry are described in more detail below. Particle size distribution and number density measurements made by the Cloud, Aerosol and Precipitation Spectrometer (CAPS) were used to derive SAD and volume-weighted mean diameter (VMD) for ice particles in the size range between 0.35–1550 μm [Baumgardner et al., 2001]. Note that all particle sizes cited herein refer to particle diameter, and not radius. A second, independent measurement of SAD was provided by the Cloud Integrating Nephelometer (CIN) [Gerber et al., 2000]. Ice water content (IWC) and water (H₂O) vapor were measured by the Harvard University Lyman-α hygrometer [Weinstock et al., 1994; E. M. Weinstock et al., manuscript in preparation, 2004]. Nitric oxide (NO) and total reactive nitrogen (NOₓ) were measured by catalytic reduction and chemiluminescence (A. J. Weinheimer et al., manuscript in preparation, 2004). Ambient temperature and pressure, and WB-57F true air speed were measured by the Meteorological Measurement System (MMS) [Scott et al., 1990]. The precision and accuracy of these measurements are summarized in Table 1. Tropopause height was measured by the microwave temperature profiler (MTP) [Denning et al., 1989].

[8] HNO₃ was measured using the NOAA chemical ionization mass spectrometer (CIMS) located in the third pallet position of the NASA WB-57F aircraft. This instrument measures HNO₃ with an accuracy of ±20% and precision of 30 pptv (1σ, 10-s averages), and has been described in detail elsewhere [Neuman et al., 2000]. Prior to CRYSTAL-FACE, the NOAA CIMS was modified by the addition of a second independent channel for the measurement of HNO₃ and the relocation of the original sample inlet on the CIMS inlet pylon (Figure 1). The two CIMS channels are designed to provide identical measurements of gas-phase HNO₃. Owing to differences in the particle sampling efficiencies of the two inlets, however, the two channels have different sensitivity to condensed-phase HNO₃. When sampling in cirrus clouds, the forward facing front inlet samples both gas-phase HNO₃ and any HNO₃ condensed on the cirrus particles. The downward facing bottom inlet samples primarily gas-phase HNO₃ because the plane of the sampling orifice is parallel to the direction of flow over the inlet, which is set by the flow straightener.
Semiempirical calculations indicate that approximately 50% of 0.1 μm particles and greater than 90% of 1 μm and larger particles are inertially stripped from the air sampled by the bottom inlet [Vincent et al., 1986]. Calculations further suggest that ice particles greater than 10 μm in diameter (typical of cirrus clouds observed during CRYSTAL-FACE) are almost entirely removed from the sampled air. Thus, for most of the cirrus clouds sampled, the HNO$_3$ from the bottom inlet is taken to be a measure of the gas-phase HNO$_3$ abundance.

The conclusion that ice particles greater than approximately 1 μm are inertially separated from air sampled by the bottom inlet is further supported by measurements made in the contrail of the WB-57F during CRYSTAL-FACE. The contrail contained ice particles with high number densities (100–200 cm$^{-3}$) and volume-weighted mean

Table 1. Measurement Details

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Institution</th>
<th>Precisiona</th>
<th>Accuracy</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNO$_3$</td>
<td>NOAA Aeronomy Lab</td>
<td>30 pptv, 10 pptvb</td>
<td>±20%</td>
<td>Neuman et al. [2001]</td>
</tr>
<tr>
<td>SAD-CAPS</td>
<td>Univ. Nacional Autonoma de Mexico</td>
<td>-</td>
<td>±50%</td>
<td>Baumgardner et al. [2001]</td>
</tr>
<tr>
<td>SAD-CIN</td>
<td>University of Utah</td>
<td>-</td>
<td>±15%</td>
<td>Gerber et al. [2000]</td>
</tr>
<tr>
<td>IWC</td>
<td>Harvard University</td>
<td>0.7 ppmv</td>
<td>±17%</td>
<td>E. M. Weinstock et al. (manuscript in preparation, 2004)</td>
</tr>
<tr>
<td>Water vapor</td>
<td>Harvard University</td>
<td>0.5 ppmv</td>
<td>±5%</td>
<td>Weinstock et al. [1994]</td>
</tr>
<tr>
<td>NO</td>
<td>NCAR</td>
<td>5 pptv</td>
<td>±6%</td>
<td>A. J. Weinheimer et al. (manuscript in preparation, 2004)</td>
</tr>
<tr>
<td>NO$_3$</td>
<td>NCAR</td>
<td>8 pptv</td>
<td>±12%</td>
<td>A. J. Weinheimer et al. (manuscript in preparation, 2004)</td>
</tr>
<tr>
<td>Temperature</td>
<td>NASA Ames</td>
<td>0.01 K</td>
<td>±0.3 K</td>
<td>Scott et al. [1990]</td>
</tr>
<tr>
<td>Pressure</td>
<td>NASA Ames</td>
<td>0.1 hPa</td>
<td>±0.3 hPa</td>
<td>Scott et al. [1990]</td>
</tr>
<tr>
<td>True air speed</td>
<td>NASA Ames</td>
<td>0.1 m s$^{-1}$</td>
<td>±1 m s$^{-1}$</td>
<td>Scott et al. [1990]</td>
</tr>
</tbody>
</table>

aPrecision values are reported for 10-s averages.

b10 pptv is the precision for condensed-phase HNO$_3$.

Figure 1. Schematic diagram of the NOAA CIMS inlet pylon. Labeled components are as follows: (a) front channel inlet, (b) bottom channel inlet, (c) zero gas addition, (d) calibration gas addition, (e) reagent gas carrier addition, (f) reagent gas addition, (g) HNO$_3$ permeation cell (calibration standard), (h) flow control valve motor, (i) flow control valve body, (j) flow tube, (k) ion source, and (l) flow straightener. For clarity, complete components are shown only for the front channel. Inlet lines are constructed of Teflon$^\text{TM}$ tubing (6.4 mm outside diameter, 4.0 mm inside diameter), heated to temperatures of 40°C (bottom channel inlet) and 48°C (front channel inlet) to avoid wall losses. The higher temperature of the front inlet ensures that ice particles entering the inlet evaporate upon impaction with the tubing wall. The operating principles of the NOAA CIMS instrument have been described in detail by Neuman et al. [2000].
diameters on the order of 2 μm [Gao et al., 2003]. HNO₃ was present in the contrail because of mixing between the exhaust gases and ambient air containing approximately 0.4 ppbv HNO₃. Measurements in the contrail as soon as 4 min after formation indicated a difference between the front and bottom CIMS channels. The minimum signal from the bottom channel was near zero inside the contrail. This low HNO₃ signal is consistent with the removal of gas-phase HNO₃ by uptake onto the 2-μm ice particles in the contrail, and the inertial stripping of these particles from the bottom inlet sample flow. As expected, a simultaneous increase in HNO₃ above ambient values occurred in the front CIMS channel, which does not discriminate against 2 μm particles. If the bottom CIMS inlet sampled 2 μm particles with any significant efficiency, HNO₃ observed in the bottom channel during the contrail intercept would not be significantly lower than the ambient values immediately outside the contrail.

[10] The front CIMS inlet samples subisokinetically, meaning the sample air velocity inside the inlet (U) is less than the WB-57F true air speed (U₀) of 140–200 m s⁻¹ at sampling altitudes. As a result, cirrus cloud particle number densities in the sampled air stream are inertially enhanced relative to those in the ambient air. A computational fluid dynamics program (Fluent Inc., New Hampshire) was used to estimate particle enhancement factors (EF) in the front inlet by simulating the flow field and particle trajectories around a two-dimensional horizontal cross section of the CIMS pylon and inlet structure (Figure 1). The value of EF is near unity for small particles (<0.1 μm) and increases with particle size, as found for similar configurations [Northway et al., 2002]. For particles larger than approximately 10 μm in diameter, typical of cirrus cloud ice particles sampled during CRYSTAL-FACE, EF for the front inlet approaches the maximum value of U₀/U. Since both CIMS channels sample at a constant mass flow of 1.85 standard liters per minute (slpm), U, and therefore, EF, are dependent upon the ambient temperature and pressure. Under typical WB-57F sampling conditions during CRYSTAL-FACE (temperature = 213 K, pressure = 170 hPa, U₀ = 200 m s⁻¹), EF has a maximum value of approximately 16.

[11] Cirrus cloud particles entering the front CIMS inlet travel through a 20 cm length of Teflon™ tubing (6.4 mm outside diameter, 4.0 mm inside diameter) upstream of the CIMS flow control valve and flow tube (Figure 1). The use of Teflon™ sample lines ensures that HNO₃ will not readily absorb on the inlet surfaces [Neuman et al., 1999]. This tubing, which is heated to 48°C in flight, has two bends to help ensure that large particles entering the inlet will impact on the tubing walls and subsequently evaporate prior to reaching the flow control valve. Particles with diameters greater than approximately 20 μm have large enough stopping distances at the freestream velocity that they...
impact at the first bend. Some particles that do not fully evaporate will impact in the body of the flow control valve or the flow tube entrance. HNO₃ condensed on the particle surfaces is liberated to the gas phase early in the evaporation process and measured as a gas-phase equivalent volume mixing ratio. The HNO₃ mixing ratio measured by the front CIMS channel, therefore, represents the sum of the gas- and the condensed-phase values, with the condensed-phase component enhanced by the value of EF.

3. Observations

[12] Condensed-phase HNO₃ was observed coincident with cirrus cloud observations on 4 WB-57F science flights conducted as part of CRYSTAL-FACE. These flights originated and terminated at the United States Naval Air Facility, Key West (24.6°N, 81.7°W) in Florida on 11, 13, 19, and 21 July 2002. Time series data of HNO₃ mixing ratios observed from the front and bottom CIMS channels (HNO₃|front and HNO₃|gas, respectively), as well as particle SAD, IWC (represented as a gas-phase equivalent volume mixing ratio) and meteorological parameters are shown for 11, 13, 19, and 21 July in Figures 2–5, respectively. The presence of cirrus cloud particles is indicated by increases in SAD and IWC above background values. The presence of condensed-phase HNO₃ in a flight segment is indicated by HNO₃|front values that are significantly greater than HNO₃|gas values. Flight segments identified by purple bars in panel (b) for 13 July (Figure 3) and 19 July (Figure 4) represent the observation of contrail cirrus clouds. As stated previously, these clouds are characterized by having high particle number densities with volume-weighted mean diameters typically much lower than cirrus clouds formed by natural processes. Owing to the uncertainties in the SAD measurements in the contrail-formed cirrus clouds and in the value of EF for particles in this size range, these clouds are not considered in the data analysis presented here.

[13] Cirrus clouds were observed from the WB-57F at pressures between 122 hPa and 224 hPa during the flights of 11, 13, 19, and 21 July, corresponding to pressure altitudes between 11 km and 15 km (Figures 2–5). These clouds were observed at temperatures between 197 K and 224 K. Figures 2–5 show the strong temporal correlation of (HNO₃|front − HNO₃|gas) with both SAD and IWC in cirrus clouds, with HNO₃|gas approaching zero during a number of cirrus events. Outside of clouds, measured values of HNO₃|front and HNO₃|gas generally agree well (with an overall correlation coefficient, r, of 0.92). However, some periods in Figures 2–5 show offsets between the two channels that are best explained as changes in the inlet line surfaces during the flight. Figure 4 also indicates elevated values of relative humidity (with respect to ice) during a number of cirrus cloud encounters, as described by Gao et al. [2003].

[14] Condensed-phase HNO₃, proportional to the difference between the values of HNO₃|front and HNO₃|gas, was
Figure 4. Same as Figure 2, for the flight on 19 July 2002. Purple bars in Figure 4b represent 2 flight segments in which cirrus clouds formed in the contrail of the WB-57F were observed. The insets in Figure 4a show 1-s averages of $\text{HNO}_3$$_\text{front}$ and $\text{HNO}_3$$_\text{gas}$ during the two contrail intercepts. The purple bars in the first and second insets represent the same time periods as the first and second purple bars in Figure 4b. The vertical scale on the inset panels is 0–0.5 ppbv.

Figure 5. Same as Figure 2, for the flight on 21 July 2002.
observed primarily at SADs greater than 200 μm² cm⁻³ during CRYSTAL-FACE (Figure 6). Note that for the values of (HNO₃_front/HNO₃_gas) shown in Figure 6, HNO₃_front is not corrected for particle oversampling. Values of (HNO₃_front/HNO₃_gas) at SADs less than 200 μm² cm⁻³ are near the detection limit and highly variable due to CIMS instrument noise. In the analyses presented here, observations at SADs greater than 200 μm² cm⁻³ are selected to represent measurements made in cirrus clouds.

3.1. Quantifying Condensed-Phase HNO₃

As stated previously, HNO₃_front represents the sum of gas-phase and condensed-phase HNO₃, with the condensed-phase component enhanced by the value of EF. The amount of HNO₃ condensed on cirrus cloud particles (HNO₃_con) can therefore be calculated according to equation (1),

$$HNO₃_{con} = \frac{HNO₃_{front} - HNO₃_{gas}}{EF},$$

(1)

where HNO₃_con is reported as a gas-phase equivalent volume mixing ratio with a precision of 10 pptv (1σ, 10-s averages). The use of equation (1) in calculating HNO₃_con is illustrated in Figure 7 for a cirrus cloud encounter by the WB-57F on 13 July 2002. Increases in SAD and IWC during this cloud event are accompanied by an increase in HNO₃_front above the gas-phase value of approximately 0.5 ppbv (Figures 7a, 7d, and 7e). Accounting for the particle enhancement factor of approximately 13.7 using equation (1), maximum values of HNO₃_con during this cloud event approached 0.1 ppbv (Figures 7b and 7c). It should be noted here that calculated values of HNO₃_con in cirrus clouds are not always consistent with the observed decreases in HNO₃_gas that result from HNO₃ uptake. Quantitative agreement between HNO₃_con and deficits in HNO₃_gas can only occur if the cloud particles are sampled in the same air mass in which uptake occurred. Owing to gravitational settling, however, cirrus particles may sediment into air masses that may be more or less depleted in gas-phase HNO₃ at the time of sampling.

3.2. Cirrus Cloud Particle Measurements

Cirrus cloud particle SAD was derived from measurements provided by both the CAPS and CIN instruments observed primarily at SADs greater than 200 μm² cm⁻³ during CRYSTAL-FACE (Figure 6). Note that for the values of (HNO₃_front – HNO₃_gas) shown in Figure 6, HNO₃_front is not corrected for particle oversampling. Values of (HNO₃_front – HNO₃_gas) at SADs less than 200 μm² cm⁻³ are near the detection limit and highly variable due to CIMS instrument noise. In the analyses presented here, observations at SADs greater than 200 μm² cm⁻³ are selected to represent measurements made in cirrus clouds (shown by the dashed line in Figure 6).
to introduce no more than 10% uncertainty into the value of \(\text{HNO}_3 \)_{\text{cond}}.

[18] The VMD of cirrus cloud particles observed during CRYSTAL-FACE ranged from approximately 3 \(\mu \)m up to 700 \(\mu \)m, with most clouds having VMDs greater than 20 \(\mu \)m (Figure 9a). The largest particles (>500 \(\mu \)m) were observed primarily in clouds with SADs greater than \(10^4 \) \(\mu \)m\(^2\) cm\(^{-3}\). As expected, IWC shows a strong correlation with SAD (Figure 9b). IWCs as high as 1000 ppmv were observed during some cloud events (Figure 9b). The highest values of VMD and IWC were observed from the WB-57F primarily at temperatures between 205 K and 215 K during the flights shown in Figure 9.

4. Discussion

4.1. \(\text{HNO}_3 \) Uptake on Cirrus Cloud Particles

[19] The coincident observation of cirrus clouds and condensed-phase \(\text{HNO}_3 \) during CRYSTAL-FACE is assumed here to result from the uptake of \(\text{HNO}_3 \) on the surface of cirrus cloud particles. Laboratory studies indicate that the low solubility of \(\text{HNO}_3 \) in ice will not allow a significant fraction of \(\text{HNO}_3 \)_{\text{cond}} to reside in the bulk of the cirrus particles [Sommerfeld et al., 1998; Hanson and Ravishankara, 1991]. Furthermore, Dominé and Thibert [1996] have suggested that the high diffusivity of \(\text{HNO}_3 \) in ice is such that \(\text{HNO}_3 \) trapped in the bulk ice during particle formation will migrate to the particle surface. We note, however, that the measurements presented here cannot distinguish between surface uptake and \(\text{HNO}_3 \) that may be condensed in the bulk of the particles. \(\text{HNO}_3 \) uptake on cirrus cloud particles can be represented in terms of molecular coverage, given by the ratio of \(\text{HNO}_3 \)_{\text{cond}} to SAD in units of molecules cm\(^{-2}\). \(\text{HNO}_3 \) surface coverages observed during CRYSTAL-FACE are shown as a function of temperature in Figure 10, with symbols colored according to \(P(\text{HNO}_3) \) (see legend). Data shown by triangles at temperatures less than 200 K in Figure 10 represent observations under conditions in which nitric acid trihydrate (NAT) is stable, as predicted by ambient temperature and the ratio of \(\text{HNO}_3 \)_{\text{gas}} to \(\text{H}_2\text{O} \) vapor [Hanson and Mauersberger, 1988; Gao et al., 2003]. It has been proposed that, under conditions in which NAT is stable, \(\text{HNO}_3 \) forms NAT clusters or layers on the particle surface which interfere with the condensation of \(\text{H}_2\text{O} \) molecules on the particle surface, and thereby increase the relative humidity with respect to ice in the cirrus cloud [Gao et al., 2003].

[20] The mean \(\text{HNO}_3 \) coverage observed during CRYSTAL-FACE was \(\approx 10^{13} \) molecules cm\(^{-2}\), with maximum coverages reaching \(1.4 \times 10^{14} \) molecules cm\(^{-2}\) during a few cirrus cloud events (Figure 10). While the greatest coverages were observed at temperatures between 205 K and 210 K, mean coverages binned according to temperature showed no temperature dependence above 200 K (black symbols in Figure 10). The average value for measurements between 195 K and 200 K is approximately a factor of 3 greater than values above 200 K. Generally higher \(\text{HNO}_3 \) coverages at lower temperatures have been observed in field measurements reported by both Kondo et al. [2003] and Ziereis et al. [2004]. \(\text{HNO}_3 \) coverages show a minimal dependence on \(P(\text{HNO}_3) \), with the lowest cover-
ages occurring at $P(\text{HNO}_3)$ values below 2.5×10^{-8} hPa (Figure 10). A number of laboratory studies have also reported increased HNO$_3$ coverages with increasing $P(\text{HNO}_3)$, albeit at $P(\text{HNO}_3)$ values substantially higher than those presented here (5.0×10^{-7} to 3.0×10^{-6} hPa) [Hudson et al., 2002; Hynes et al., 2002]. These results highlight the need for a comprehensive laboratory study of HNO$_3$ uptake on ice surfaces at $P(\text{HNO}_3)$ values below 2.0×10^{-7} hPa that are typical of the subtropical UT.

[21] The coverage of HNO$_3$ on ice, in general, can be modeled or predicted using the kinetics or thermodynamics of the uptake process [Gao et al., 2003; Hudson et al., 2002]. Using laboratory measurements and a semiempirical equilibrium surface coverage model, Hudson et al. [2002] have predicted HNO$_3$ coverage on ice surfaces as a function of temperature and $P(\text{HNO}_3)$. This multilayer Frenkel-Halsey-Hill (FHH) model was fitted to equilibrium HNO$_3$ coverages observed on vapor-deposited ice films at temperatures between 213 K and 219 K with a $P(\text{HNO}_3)$ of 1.1×10^{-6} hPa. HNO$_3$ surface coverages predicted by the FHH model are shown as a function of temperature in Figure 11a, together with the HNO$_3$ coverages observed in cirrus clouds during CRYSTAL-FACE. The isobaric lines representing the modeled coverages are colored on the same scale as the observed coverages according to the values of $P(\text{HNO}_3)$ input to the model. Figure 11a indicates better agreement between the modeled and observed HNO$_3$ coverages at temperatures higher than approximately 205 K, while at lower temperatures the modeled coverages increase to values far greater than those observed at comparable temperatures and $P(\text{HNO}_3)$ values. The high model coverages...
below 205 K may result from the fact that the model was fitted to laboratory data at temperatures above 213 K, and the coverages presented here, therefore, are extrapolated to lower temperatures where the uncertainty in the model increases.

A number of studies have described the uptake of HNO$_3$ on ice surfaces using a Langmuir surface chemistry model [Tabazadeh et al., 1999; Hynes et al., 2002; Meier and Hendricks, 2002]. The Langmuir isotherm predicts the fractional HNO$_3$ surface coverage (θ) according to equation (2),

$$\theta = \frac{K_{eq}^{1/2} \cdot P(HNO_3)^{1/2}}{1 + K_{eq}^{1/2} \cdot P(HNO_3)^{1/2}},$$

where K_{eq} represents the equilibrium adsorption constant, given by the ratio of the rates of adsorption and desorption (k_a/k_d) [Laidler and Meiser, 1982]. The value of θ is unity when the HNO$_3$ surface coverage reaches a complete monolayer (1.0×10^{15} molecules cm$^{-2}$). We note that the surface density of HNO$_3$ molecules when forming a complete monolayer is somewhat uncertain, and the density of 1.0×10^{15} molecules cm$^{-2}$ stated here should be considered an upper limit [Hudson et al., 2002]. If the HNO$_3$ surface density is lower than 1.0×10^{15} molecules cm$^{-2}$ for a complete monolayer, the resulting fractional surface coverages will be higher than those stated here. Application of the dissociative form of the Langmuir isotherm is supported here by spectroscopic studies of HNO$_3$ uptake on thin ice films at 211 K, which indicate, by the presence of H$_3$O$^+$ and NO$_3^-$ ions on the ice surface, that HNO$_3$ dissociates upon adsorption [Zondlo et al., 1997]. The temperature-dependent equilibrium adsorption constant in equation (2) can be calculated according to equation (3) [Adamson and Gast, 1997],

$$K_{eq} = \frac{100 \cdot N_A \cdot \sigma_0 \cdot \tau_0}{(2\pi \cdot M \cdot R \cdot T)^{1/2}} e^{(-\Delta H_{ads}/kT)},$$

where N_A is Avogadro’s number (6.02×10^{23} mol$^{-1}$), σ_0 is the area of one adsorption site (10^{-19} m2), τ_0 is the time constant for adsorbate oscillation perpendicular to the surface (10^{-13} s), M is the molecular weight of HNO$_3$ (0.063 kg mol$^{-1}$), R is the ideal gas constant (8.314 J mol$^{-1}$ K$^{-1}$), T is temperature (in K), c is a unit conversion factor (2.39×10^{-9} kcal J$^{-1}$) and ΔH_{ads} is the adsorption enthalpy of HNO$_3$ on ice (in kcal mol$^{-1}$).

Using equations (2) and (3), a Langmuir isotherm was fitted to the CRYSTAL-FACE observations of fractional surface coverage and $P(HNO_3)$ (Figure 12). Using the median temperature of 208 K for the observations shown in Figure 9, the best fit to the experimental data was achieved with a ΔH_{ads} of -11.0 kcal mol$^{-1}$, or 46.0 kJ mol$^{-1}$ (red line in Figure 12). Note that the data are largely bound by ΔH_{ads} values of -10.0 kcal mol$^{-1}$ and -12.0 kcal mol$^{-1}$. Also shown in Figure 12 are Langmuir isotherms at the same temperature for ΔH_{ads} values of -14.2 kcal mol$^{-1}$ and -12.9 kcal mol$^{-1}$ reported by Tabazadeh et al. [1999] and Hynes et al. [2002], respectively. Fractional coverages predicted using these previously published values of ΔH_{ads} far exceed the coverages observed during CRYSTAL-FACE,
indicating these adsorption enthalpies are too high to accurately describe the observations presented here. Bartels-Rausch et al. [2002], using a chromatographic technique, have recently reported a ΔH_{ads} for HNO$_3$ uptake on ice of \sim10.5 kcal mol$^{-1}$ that is in good agreement with the value of \sim11.0 kcal mol$^{-1}$ presented here. We caution that the effective ΔH_{ads} reported here is empirically derived from observations in a dynamic system which may or may not be in steady state, and this value, therefore, cannot be considered a fundamental thermodynamic parameter. Nonetheless, the Langmuir formalism, using a ΔH_{ads} of \sim11.0 kcal mol$^{-1}$, effectively describes the CRYSTAL-FACE observations of HNO$_3$ uptake on cirrus cloud particles to within a factor of 5 (Figure 12). It should be noted that the data shown in Figure 12 span a temperature range from 197 K to 218 K, and that the Langmuir isotherms were fitted at the median observed temperature of 208 K. Use of a single temperature in fitting the isotherms is supported by the results of Hynes et al. [2002], who reported a variation of less than 2% between values of ΔH_{ads} derived from laboratory measurements at 218 K and 228 K.

Having derived an effective value of ΔH_{ads} for HNO$_3$ adsorption on cirrus cloud particles in the UT, HNO$_3$ coverages predicted by the Langmuir surface chemistry model (as a function of temperature) can be compared to the CRYSTAL-FACE observations (Figure 11b). As in Figure 11a, the isobaric lines are colored on the same scale as the observed coverages. The calculated coverages shown in Figure 11b indicate that the model does not adequately describe the considerable variability in the observed coverages at a given temperature and P(HNO$_3$).

Nonetheless, when using the empirically derived ΔH_{ads} of \sim11.0 kcal mol$^{-1}$, the Langmuir model is capable of predicting the observed coverages within a factor of 5 or better. The variability in the observed coverages, and the less than perfect agreement with the uptake models, can be explained, in part, if the adsorbed HNO$_3$ is not in equilibrium with HNO$_3$ in the gas phase. Previous field studies have also shown HNO$_3$ surface coverages to be highly variable throughout the temperature and P(HNO$_3$) ranges observed [Kondo et al., 2003; Ziereis et al., 2004].

4.2. HNO$_3$ Partitioning in Cirrus Clouds

[25] The fraction of total HNO$_3$ present on cirrus cloud particles was observed to increase with SAD during CRYSTAL-FACE (Figure 13). The mean value of HNO$_3$ partitioned in the condensed phase at SADs greater than 200 $\mu m^2 cm^{-3}$ was 16%. Up to 100% of the total HNO$_3$ was partitioned on ice particles during some cirrus cloud encounters, at SADs between 350 and 4.2 \times 104 $\mu m^2 cm^{-3}$ and temperatures between 201 K and 213 K. Measurements reported by Ziereis et al. [2004] in midlatitude cirrus clouds reveal a similar relationship between condensed-phase NO$_y$ partitioning and SAD, although maximum reported values of

![Figure 12](image-url)
Figure 12. Fractional HNO$_3$ surface coverage (q) versus P(HNO$_3$) measured during the flights of 11, 13, 19, and 21 July 2002. Colored lines are isotherms fitted according to equations (2) and (3) (see text) with values of ΔH_{ads} shown in the legend and the median observed temperature of 208 K. All data are represented as 10-s averages for measurements made at SADs greater than 200 $\mu m^2 cm^{-3}$.

![Figure 13](image-url)
Figure 13. Fraction of total HNO$_3$ in the condensed phase versus SAD measured during the flights of 11, 13, 19, and 21 July 2002. Data are represented as 10-s averages for measurements made at SADs greater than 200 $\mu m^2 cm^{-3}$ and are colored according to temperature. Black squares represent mean values of the 10-s data grouped into quintiles. Vertical bars represent the standard deviation about the mean value in each quintile and horizontal bars represent the upper and lower boundaries of each quintile. Values of condensed-phase partitioning greater than 100% occur when zero or near-zero HNO$_3$ gas abundances are measured as negative values. The dashed line at 16% represents the mean value of HNO$_3$ partitioned in the condensed phase during CRYSTAL-FACE.
condensed-phase NO$_y$ partitioned in cirrus clouds did not exceed 50% of the total observed NO$_y$. Measurements of NO$_y$ uptake in a mountain wave cirrus cloud reported by Weinheimer et al. [1998] indicate complete uptake of HNO$_3$, provided that the ambient HNO$_3$/NO$_y$ ratio in the cloud was 0.1–0.2. Gas-phase HNO$_3$ was not measured in either of these previous studies, making an accurate assessment of the fraction of HNO$_3$ remaining in the gas phase after uptake difficult.

Kra"mer et al. [2003] have recently studied the partitioning of HNO$_3$ in Arctic cirrus clouds, and have modeled the role of HNO$_3$ uptake by interstitial HNO$_3$-H$_2$SO$_4$-H$_2$O ternary solution aerosols in partitioning. This study concluded that some fraction of the total HNO$_3$ in Arctic cirrus clouds must remain in the gas phase, with the remainder partitioned predominately in interstitial aerosols at temperatures less than 205 K when SADs are low, and on cirrus cloud particles at higher SADs. Measurements in subtropical cirrus clouds reported here, however, indicate that up to 100% of the total HNO$_3$ can be partitioned in cirrus ice particles both at low temperatures and low SADs. Furthermore, we see no evidence of significant uptake of HNO$_3$ in ternary solution aerosols in the near absence of cirrus ice particles on at least one other CRYSTAL-FACE flight (9 July 2002) (A. J. Weinheimer et al., manuscript in preparation, 2004). We also note that HNO$_3$ may be contained in a ternary solution on the surface of the cirrus ice particles.

4.3. HNO$_3$ and HNO$_3$/NO$_y$ in the Cloud-Free Upper Troposphere and Lower Stratosphere

Measurements in the cloud-free subtropical UT during CRYSTAL-FACE indicate that the gas-phase HNO$_3$/NO$_y$ ratio is highly variable, ranging from zero to approximately 0.5 (colored symbols in Figure 14a). The HNO$_3$/NO$_y$ ratio is generally higher and also variable in the subtropical lower stratosphere (LS), with values observed between 0.05 and 1 (black symbols in Figure 14a). HNO$_3$ is expected to be the predominate NO$_y$ species in the LS away from the tropopause region [Neuman et al., 2001]. The lower HNO$_3$/NO$_y$ ratios (<0.3) observed in the UT are affected by low observed values of HNO$_3$, due to HNO$_3$ removal by uptake and sedimentation by cloud particles in cirrus processed air masses (yellow symbols in Figure 14b), or from elevated levels of NO$_y$ due to NO production from lightning strikes (purple symbols in Figure 14b). Previously measured values of the HNO$_3$/NO$_y$ ratio in the midlatitude UT over the continental United States were also highly variable and ranged from approximately 0.1 to 0.5 [Neuman et al., 2001]. The large range and variability of HNO$_3$/NO$_y$ ratios observed in the UT during CRYSTAL-FACE highlights the value in measuring gas-phase HNO$_3$ when assessing HNO$_3$ uptake on cirrus cloud particles, over deriving gas-phase HNO$_3$ from measured NO$_y$ and a constant assumed HNO$_3$/NO$_y$ ratio.
5. Conclusions and Implications

A number of cirrus clouds observed in the subtropical UT during CRYSTAL-FACE had VMDs between 200 \(\mu m \) and 700 \(\mu m \). Terminal fall velocities for cirrus ice particles in this size range are 1 m s\(^{-1}\) to 10 m s\(^{-1}\) (Figure 9a) [Meier and Hendricks, 2002]. With 16% of the total HNO\(_3\) in cirrus clouds adsorbed on ice particles, the gravitational redistribution of a significant fraction of the total HNO\(_3\) in these clouds can therefore occur on a timescale of minutes to hours. Cirrus clouds with up to 100% of the total HNO\(_3\) partitioned in the condensed phase have even greater potential to redistribute HNO\(_3\) in the UT.

Acknowledgments.

The authors wish to thank the air and ground crews of the NASA WB-57F aircraft. Helpful discussions with J. P. D. Abbott, E. R. Lovejoy, and H. Ziereis are also appreciated. This work was partially supported by the National Aeronautics and Space Administration Upper Atmospheric Research Program and Radiation Science Program. Work done by JPL at the Jet Propulsion Laboratory, California Institute of Technology, was carried out under contract with the National Aeronautics and Space Administration.

References

Gao, R. S., et al. (2003), Evidence that ambient nitric acid increases relative humidity in low-temperature cirrus clouds, Science, in press.

Vincent, J. H., et al. (1986), On the aspiration characteristics of large-diameter thin-walled aerosol sampling probes at yaw orientations with respect to the wind, J. Aerosol Sci., 17(2), 211–224.

