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Abstract

Sensitivity studies are performed on the assimilation of TRMM (Tropical Rainfall Measuring Mis-
sion) Microwave Imager (TMI) derived rainfall data into a mesoscale model, using a four-dimensional
variational data assimilation (4DVAR) technique. A series of numerical experiments is conducted to
evaluate the impact of TMI rainfall data on the numerical simulation of Hurricane Bonnie (1998). The
results indicate that rainfall data assimilation is sensitive to the error characteristics of the data, and
the inclusion of physics in the adjoint model. In addition, assimilating the rainfall data alone is helpful
for producing a more realistic eye and rain bands in the hurricane, but does not ensure improvements in
hurricane intensity forecasts. Further study indicated that it is necessary to incorporate TMI rainfall
data together with other types of data, such as wind data into the model, in which case the inclusion of
the rainfall data further improves the intensity forecast of the hurricane.

1. Introduction

The Tropical Rainfall Measuring Mission
(TRMM) is a joint Japan-U.S. project to mea-
sure rainfall over the global tropics. With the
world’s first precipitation radar aboard a sat-
ellite, the TRMM satellite has provided the
first detailed and comprehensive dataset on the
four-dimensional distribution of rainfall and
latent heating over the tropics (between 35�N
and 35�S). TRMM offers a unique opportunity
to improve the understanding of tropical mete-
orology, and to evaluate the impact of rain-

fall data on tropical weather forecasts. Early
studies have demonstrated that assimilation
of TRMM microwave imager (TMI) derived
rainfall data into large-scale global models is
beneficial for the analysis of the atmospheric
general circulation (Hou et al. 2000), and also
consequently can have significant impact on
mesoscale forecasts (e.g., Supertyphoon Paka in
1997 (Pu et al. 2002)), as the global analysis
provide initial guess filed and boundary con-
ditions for the mesoscale model. Instead of di-
rect assimilation of rainfall data into the global
model, as in Hou et al. (2000) and Pu et al.
(2002), this paper evaluates the impact of TMI
rainfall on mesoscale forecasts via the direct
assimilation of TMI-derived rainfall rates into
the mesoscale regional model itself, using a
four-dimensional variational data assimilation
(4DVAR) technique.
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The description of the model and the 4DVAR
system, and that of the hurricane case and the
TMI data are addressed in section 2 and 3, re-
spectively. Detailed numerical results, includ-
ing sensitivity studies and forecast impacts, are
given in section 4. A summary and discussion
are given in section 5.

2. Description of the mesoscale model
and 4DVAR system

The Penn State University/National Center
for Atmospheric Research (PSU/NCAR) meso-
scale forecast model (MM5) and its adjoint
system are used in this study. The MM5 is a
limited-area, non-hydrostatic primitive equa-
tion model with multiple options for various
physical parameterization schemes (Dudhia
1993; Grell et al. 1995). The model employs a
terrain-following s vertical coordinate, where s

is defined as s ¼ ðp � ptopÞ/ðpsfc � ptopÞ, where
p is pressure, and psfc and ptop are the pres-
sures at the surface and model top, respec-
tively. Physics options used for the forecast
model in this study include the Grell cumulus
parameterization, a simple ice microphysics
scheme (Dudhia 1993), the Blackadar high-
resolution planetary boundary layer parame-
terization scheme (Blackadar 1976, 1979;
Zhang and Anthes 1982), and a cloud atmo-
spheric radiation scheme (Dudhia 1993). The
land surface temperature is predicted using
surface energy budget equations as described
in Grell et al. (1995). For a more detailed de-
scription of MM5, see Dudhia (1993) and Grell
et al. (1995).

The MM5 adjoint modeling system (Zou et al.
1998) is employed in the data assimilation
experiments. For the variational data assimila-
tion system, the physics options in the adjoint
model are the Grell cumulus parameterization,
a simple ice microphysics scheme (Dudhia
1989), and the Blackadar high-resolution plan-
etary boundary layer parameterization scheme.
Application of the MM5 adjoint model to a
variety of mesoscale weather systems has been
demonstrated in papers by Kuo et al. (1996)
and Zou and Kuo (1996).

In general, a 4DVAR system tries to mini-
mize the following cost function:

Jðx0Þ ¼
X

k¼1;m

Jk þ Jb; ð1Þ

where x is the analysis variable and the sub-
script ‘‘0’’ denotes the initial state. Jb is the
background term, and Jk is the contribution
to the cost function from an individual type of
data. The subscript k denotes the type of data
and m is the total number of available data
types. For example, the contributions from one
arbitrary type of observation can be described
as follows:

Jkðx0Þ ¼
X

i¼0;D

ðHiðMiðx0ÞÞ � OiÞT

� WðHiðMiðx0ÞÞ � OiÞ; ð2Þ
where O is the observation data, ‘‘i’’ denotes the
‘‘ith’’ time step for the non-linear forecast model
M, at which the observations are available, and
i A ð0;DÞ, while D is the number of time steps in
the assimilation window. W is a weighting fac-
tor that depends on the statistical error char-
acteristics of the observational data. H is a so-
called observation operator (possibly no-linear),
which transfers the grid-space model variable x
to the observational type. In order to minimize
the cost function, the adjoint of the tangent
linear model of the nonlinear forecast model is
required (Talagrand 1987).

In this study, Jb is a simple background term
measuring the distance between the model
state and the MM5 analysis based on the large-
scale ECMWF analysis (first guess field). Only
approximated variances are included in the
background weighting matrix.

The effectiveness of the 4DVAR technique
for assimilation of precipitation observations
has been addressed by Zou and Kuo (1996) and
Zupanski and Messinger (1995). However, this
paper will further investigate strategies on the
assimilation of TMI data particularly.

3. Hurricane case and TMI rainfall data

The TRMM Microwave Imager (TMI) is one
of several TRMM satellite sensors. The TMI
measures the horizontal distribution of rainfall
by receiving microwaves emitted or scattered
by raindrops and ice particles in nine micro-
wave channels. At NASA Goddard Space Flight
Center, the TMI microwave radiances are used
to retrieve surface rainfall rate information, via
the Goddard Profiling (GPROF) algorithm. The
basis for the rainfall retrieval algorithm is the
Bayesian technique, described in Kummerow
et al. (1996) and Olson et al. (1996, 1999). In
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order to evaluate the impact of TMI rainfall
data on mesoscale forecasts, these retrieved
surface rainfall data are assimilated into the
MM5 model.

The TMI footprints usually cover the global
tropics (35�N–35�S) in a 24-hour period. How-
ever, during a typical mesoscale analysis period
(usually a 3 h or 6 h period) and for a specific
regional domain, there are only limited TMI
observations available. In most cases, the
TMI samples only about twice a day for a cer-
tain region, and the time interval between the
swathes may exceed 6 h. Considering the data
availability during a 6 h analysis cycle, Hurri-
cane Bonnie (1998) was selected from several
storm cases to perform the sensitivity studies
in this paper.

There were two TRMM swathes that passed
over Bonnie in the Atlantic Ocean, with a time
interval of about 6 h. The two overpasses were
around 1139 UTC 22 August 1998, and 1807
UTC 22 August 1998 (Fig. 1), respectively. At
the time, Bonnie was a category 1 hurricane
based on the Saffir-Simpson intensity scale,
having recently developed from a tropical
storm. 1200 UTC 22 August 1998 was selected
as the initial time for the experiments. A 6 h
data assimilation window was set for the period
1200 UTC–1800 UTC 22 August 1998.

Based on TMI-derived surface rainfall data,
being typically defined as an hourly ‘‘rain rate’’
and the actual data availability, the TMI-
derived rainfall was treated as ‘‘hourly rain-
fall’’. Therefore, Eq. (2) can be written as fol-
lows:

J1ðx0Þ ¼
X

i¼0;D

XTj

j¼0

CRij � RRi

 !T

� WRR

XTj

j¼0

CRij � RRi

 !
; ð3Þ

where Tj is the number of time steps in a one
hour time period, RR the retrieved TMI rain
rate, and CR the model-generated rainfall in
one time step, WRR is a weighting factor that
depends on the statistical error characteristics
of the rain rate data.

4. Numerical experiments and results

The data assimilation experiments were con-
ducted at 36 km horizontal grid resolution. The
model domain is shown in Fig. 1. The model

vertical structure comprises 27 s levels with
the top of the model set at a pressure of 50 hPa.
The s levels are placed at values of 1.0, 0.99,
0.98, 0.96, 0.93, and 0.89, and then decrease to
0.01 at an interval of 0.04. For the experiments,
the first guess of initial field and boundary
conditions are derived from ECMWF global
analyses.

4.1 Sensitivity studies
Numerical experiments were conducted to

test strategies for assimilating TMI-retrieved
rainfall rates. Two groups of sensitivity studies

Fig. 1. Rain rates (mm/hr) for two TMI
swathes that passed over the Hurricane
Bonnie (1998) around a) 1139 UTC
22 August 1998 and b) 1807 UTC 22
August 1998.
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were performed to test the sensitivity of speci-
fication of the error characteristics of the data
and the inclusion of physics in the adjoint
model to the TMI rainfall data assimilation.
Table 1 lists the experimental configuration for
all numerical experiments in this paper.

a. Sensitivity of the specified rainfall data
error characteristics

The W factor in Eq. 2 (e.g., WRR in Eq. 3) is
a weighting factor that depends on the statisti-
cal error characteristics of the observations. To
some extent, this factor represents how much
the 4DVAR system would ‘‘trust’’ the observa-
tions. Because the correlations between the ob-
servations are usually unknown or difficult to
define, the W matrix is often defined as a diag-
onal matrix. In the previous studies, W term
usually set as either a constant number (e.g.,
Zou and Kuo 1996) based on the variances of
the available observations, or the inversion of
the error variances based on an assumed per-
centage of data error (e.g., Hou et al. 2000). Due
to the large data sample, the error character-
istics of TMI retrieved rain rate were specified
by Bauer et al. (2002). In order to examine the
impact of W on rainfall assimilation, three ex-
periments were conducted with the specifica-
tion of the error characteristics as follows: in
Experiment 1, W was set up as a unified num-
ber and defined as the inversion of variances

based on all available data (i.e., unified W ); in
Experiment 2, a 20% error was assumed for
the retrieved rainfall rate, and W was defined
as the inversion of the error variances (i.e., 20%
error); and in Experiment 3, the error charac-
teristics were specified following Bauer et al.
(2002) and Olson (personal communication) as:

over ocean ss ¼ 1:357RR0:7;

over land ss ¼ 2:516RR0:558;

where RR is the retrieved rain rate and ss the
standard deviation of the rain rate. The ss was
obtained from a large sample of retrieved rain-
fall rate datasets.

Figure 2 shows the variation of the cost-
function with the number of iterations. The
definition of W mainly impacts the conver-
gence of the minimization in terms of both cost-
function reduction and speed of convergence.
As a consequence, W effects how much infor-
mation can be gained from the observations.
The results show that it is obviously advanta-
geous to use the error specification suggested
by Bauer et al. (2002) and Olson (personal
comm.) as it lead to a better convergence per-
formance.

b. Inclusion of physics in the adjoint
For a common forecast model (forward

model), the cumulus parameterization and mi-
crophysical processes usually help the model to

Table 1. Experimental Design

Experiment
number

Definition of
W term for
rainfall

Physics
included in
adjoint

Bogus
vortex

Rainfall
assimilation

CTRL No Grell cumulus scheme No No
Dudhia microphysics

1 Unified Grell cumulus scheme No Yes
Dudhia microphysics

2 20% error Grell cumulus scheme No Yes
Dudhia microphysics

3 Bauer Grell cumulus scheme No Yes
Dudhia microphysics

4 Bauer Grell cumulus scheme No Yes
5 (Same as Experiment 3)
6 Bauer None No Yes
7 No Grell cumulus scheme Yes No

Dudhia microphysics
8 Bauer Grell cumulus scheme Yes Yes

Dudhia microphysics
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produce a better rainfall forecast. However, due
to the difficulties in deriving an adjoint model
for the physics package, in some previous
studies (e.g., Zou and Kuo 1996), not all of the
physics processes were included in the adjoint
model. In order to test the impact of including
physics in adjoint models on data assimila-
tion results, the following three experiments
were conducted: in Experiment 4, the adjoint
model include cumulus parameterization but
not microphysics; in Experiment 5 (same as
Experiment 3), both cumulus parameterization
and microphysical processes are included in the
adjoint model; and in Experiment 6, neither
cumulus parameterization nor microphysical
process are included in the adjoint model. For
all Experiment 4@6, the specified error charac-
teristics followed those in Experiment 3.

Figure 3 shows the variation of the cost-
function with the number of iterations. As
expected, including all of the physics packages
has the largest benefit in terms of both conver-
gence and assimilation results.

4.2 Impact on forecasts
Figure 4 shows rainfall rates at the end of

the data assimilation (6-h forecast) from Ex-
periment 5, compared with the control experi-
ment (CTRL) where rainfall data were not
assimilated. Obviously, assimilating the rain-

fall data helps the model to produce a more
realistic eye and rain bands in the hurricane.
The results are quite encouraging. Twenty-four
hour forecasts were conducted to test the im-
pact of the rainfall data on the hurricane in-
tensity forecast. Unfortunately, there was no
improvement in the consequent forecasts. The
forecasted track and intensity (in terms of
maximum surface wind and minimum sea level
pressure) were almost the same in cases both
with and without the TMI rainfall data assimi-
lation (figure not shown), indicating the impact
of rainfall data on consequent forecasts is al-
most negligible. This is not consistent with
previous results (Pu et al. 2002), in which the
rainfall assimilation improved hurricane fore-
casts.

In order to explore additional strategies for
rainfall data assimilation, an additional exper-
iment was performed to assimilate rainfall data
along with other data sets. As other conven-
tional data is unavailable for this case, bogus
vortex wind information is introduced into the
assimilation process. Following Pu and Braun
(2001), the bogus wind data was derived from
the gradient balance equations as follows:

Vbogus
g ðrÞ ¼ ½ABðpn � pcÞ expð�A/r BÞ/rr B�1/2;

ð4Þ

Fig. 2. Variation of normalized cost-
function with iteration number for Ex-
periment 1 (dotted line), Experiment 2
(dashed line) and Experiment 3 (solid
line).

Fig. 3. Same as Fig. 2, but for Experi-
ment 4 (dotted line), Experiment 5
(solid line) and Experiment 6 (dashed
line).
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where Vbogus
g is the gradient surface wind at

radius r, r the air density (assumed constant
at 1.15 g m�3), pc the central pressure and pn

the ambient pressure (theoretically at infinite
radius, however, here taken from represen-
tative values in the hurricane environment).
The scaling parameters A and B are defined
by maximum wind information. By setting
dV bogus

g /dr ¼ 0, the radius of maximum sur-
face wind (RMW) is Rm ¼ A1/B, and substitu-
tion back into (4) gives the maximum wind
speed, Vm ¼ Cðpn � pcÞ1/2, where C ¼ ðB/reÞ1/2

and e is the base of the natural logarithm.
Based upon the best available estimates (ac-

cording to the report from the Hurricane Re-
search Division/AOML/NOAA), the parameters
defining the bogus vortex are given by pc ¼
980 hPa centered at (22.3�N, 69.8�W), pn ¼
1012 hPa, Vm ¼ 38:6 m s�1, and Rm ¼ 120 km.

The bogus wind information is defined on the
grid points and extends out to a radius of
350 km. The surface wind is then extended into
the vertical with a vertical profile following Pu
and Braun (2001). For the experiments, the
specified wind information is assimilated every
10 minutes within the first 30 minutes. During
the data assimilation, constant weightings are
giving to bogus data based on the inversion of
the variances of the data.

Two sets of numerical experiments were
performed in a 6-h assimilation window. In
the first experiment (Experiment 7), only bogus
wind information was assimilated into the
model. In the second experiment (Experiment
8), the rainfall data are incorporated along with
the bogus wind information.

Figures 5 and 6 show the rainfall rates at
the end of the data assimilation (e.g., 6-h fore-

Fig. 4. Hourly accumulated rainfall rate
(mm/h) at the end of data assimilation
(6 h) for a) the control run (CTRL), b)
Experiment 5 and c) the differences be-
tween a) and b).
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casts) for Experiment 7 and 8, respectively.
Compared with the TMI observations (Fig. 1b),
the rainfall patterns in Fig. 8 are closer to the
observed rainfall structure, indicating that as-
similation of rainfall data further improves the
asymmetric hurricane rainfall structure.

Further comparison is illustrated by histo-
grams of the probability density function (PDF)
of 1-h rainfall amounts at the end of the data
assimilation (Fig. 7). The figure shows that
rainfall is generally overestimated in the lower-

band of rainfall rate and underestimated in the
higher-band of rainfall rate in the case without
rainfall data assimilation. However, when the
rainfall data are assimilated into the model,
the spectrum of rainfall rates becomes more
close to this feature from the observations.
Both light and heavy rainfall rates (@10 mm/
hr) are better represented compared to the case
without rainfall assimilation.

Figure 8 shows the time variation of the
forecast hurricane intensity in terms of the
maximum surface wind and minimum sea-level
pressure for the subsequent 24 h forecasts. It
indicates that rainfall data assimilation is not
only helpful for producing better vortex rain-
bands, but also improves subsequent forecasts.
The differences in the forecasted track for two
cases are negligible, but slight improvement
has been seen in the case with rainfall assimi-
lation (figure not shown). The positive impact
shown in this group of experiments indicates
that it may be necessary to incorporate TRMM
rainfall data together with other types of data,
such as wind data, in order to further improve
the intensity forecasts for hurricanes.

Fig. 5. Hourly accumulated rainfall rate
(mm/h) at the end of data assimilation
for assimilation of bogus wind only (Ex-
periment 7).

Fig. 6. Same as Fig. 5, but both bogus
wind and rainfall data assimilated (Ex-
periment 8).

Fig. 7. Histograms of probability density
functions of 1-h rainfall amounts at the
end of data assimilation for Experiment
7 (dot line), Experiment 8 (dash line)
and for TMI observations (solid line).
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5. Summary and discussion

The main conclusions from the numerical ex-
periments with TMI rainfall assimilation in
this study are:

. Rainfall data assimilation is sensitive to the
error characteristics of the data and the in-
clusion of physics in the forward and adjoint
models, suggesting that it is necessary to use
the full physics model in rainfall data as-
similation and to take into account the error
characteristic of the data;

. Assimilating the rainfall data alone produces
a more realistic eye and rain bands in the
hurricane, but does not ensure improvements
in hurricane intensity forecasts. Numerical
results indicate that it is necessary to in-
corporate TRMM rainfall data, together with
other types of data such as wind data into
the model, in which case the inclusion of the
rainfall data will further improve the inten-
sity forecast of the hurricane.

In addition to the TMI data, a similar ex-
periment was performed assimilating surface

rainfall data derived (from the same algorithm,
i.e. GPROF) from TRMM precipitation radar
(PR) for Hurricane Bonnie for the same assimi-
lation window. Fortunately, the PR swathes
overlap the TMI swathes in both time and
space, except that the PR swathes are much
narrower than the TMI swathes (i.e., they
cover one third of the TMI swathes, figure not
shown). A data assimilation experiment, simi-
lar to Experiment 3, was performed with the
PR data. The results are very similar to those
from the TMI data assimilation, suggesting
that the PR can also provide useful data sets
for rainfall assimilation.

Future studies will be conducted to further
confirm the above conclusions, and to explore
the possibility of incorporating TMI and PR
rainfall with other conventional and satellite
data to improve mesoscale precipitation and
storm forecasting. On the other hand, the cov-
erage of both TMI and PR data is very limited
for regional applications. Therefore, the use of
merged multi-satellite data (e.g., Huffman et al.
2001; Huffman and Bolvin 2003) will be an-
other alternative option for future study. How-
ever, since the Global Precipitation Mission
(GPM) is under preparation, a large benefit to
NWP could be obtained from that global pre-
cipitation data.
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