Chapter 5 Multiple Scattering

From now on neglect phase
i.e. incoherent light

Pile of Plates theory

Layer i has properties R_i and T_i:

\[\begin{array}{c}
\text{Incident} \\
\hline
R_i, T_i \\
\hline
\text{Reflected} \\
F_i \\
\hline
\text{Transmitted} \ T_i
\end{array} \]

So

\[F_i = T_i + F \uparrow R_i \]
\[F \uparrow = F_i R_i \]

Note, same R for F_i and $F \uparrow$; principle of reciprocity

From above

\[F \uparrow = T_i + F_i R_i \]

\[F_i = \frac{T_i}{1 - R_i^2} \]

\[F \uparrow = \frac{R_i T_i}{1 - R_i^2} \]

Note as $R_i \to \infty F \downarrow \to 0$
Two Plates

\[\uparrow R_2 \]

\[\downarrow V \]

\[R_1 T_1 \]

\[F \]

\[R_1, T_1 \]

\[\downarrow V F \]

\[\Gamma_2 \]

\[R_2 = R_1 + F \Gamma_1 \]

\[T_2 = T_1 F \Gamma_1 \]

Include (1) and (2)

\[R_2 = R_1 + \frac{R_1 T_1}{1-R_1^2} \]

\[T_2 = \frac{T_1}{1-R_1^2} \]

Suppose no absorption

\[R_1 + T_1 = 1 \implies R = 1 - T \]

\[R_2 = R_1 + R_1 (1-R_1)^2 \]

\[= R_1 + R_1 (1-R_1) \frac{(1+R_1)}{(1+R_1)} \]

\[= \frac{2R_1}{(1+R_1)} \]
\[\Gamma_2 = \frac{1 - R_1}{1 + R_1} \]

Double up, \(R_4 \)

\[\frac{R_2}{1 - R_1} \]

\[\frac{R_2}{1 + R_1} \]

\[R_4 = \frac{4R_1}{1 + 3R_1} \]

Doubling - adding method

start: small and build up to any

arbitrary \(N \) of plates

By induction:

\[R_n = \frac{NR_1}{1+(N-1)R_1} \]

If \(N \gg 1 \)

\[R_n \to \infty = \frac{NR_1}{1 + NR_1} \]
\(B + C \) suggest

\[N R_1 = \tau \quad \text{optical thickness} \]

\[R_n = \frac{\tau}{2 + \tau} \quad \text{important equation} \]

Important equation

\[
\text{keep in mind that}
\text{this is not quite}
\text{same } \tau \text{ discussed}
\text{in rad. trans.}
\]

Note: for \(\tau \ll 1 \), \(R_n \propto \tau \)

But asymptotes as \(\tau \gg 1 \)