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Mo

tivation

of Ice Water Path (I

WP)

* Large differences exist between modeled
cloud ice and observations (Li et al., 2012)

* Yet models show consensus for a positive high
cloud feedback (Vecchi and Soden, 2011)

e Examine cloud radiative effects as a function

 Which type of cirrus contribute most to
neating the upper troposphere?

e Use A-Train satellite data to evaluate ice
clouds in a global climate model
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FIG. 1 A typical cloud scene in the analysis region

Asia during monsoon season

(CloudSat, MODIS, AMSRE) to
derive the liquid cloud
microphysical properties

the CloudSat/CALIPSO 2C-ICE
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 Rapid Radiative Transfer Model
algorithm suite (RRTM; Mlawer et al., 1997)

* Qutputs: profiles of shortwave
and longwave fluxes

A-Train Results

Use idea of cloud radiative
kernels (Zelinka et al.,
2012a) to examine the
radiative impact of ice
clouds at the Top Of
Atmosphere (TOA)

FIG. 2 Sensitivity of TOA
fluxes to perturbations in
cloud fraction (K)

Clouds with the highest
cloud top and moderate
IWP (25-90 gm) produce
the strongest warming
effect at TOA

For cirrus clouds with IWP
> 225 g m?, solar effects
begin to dominate over
the IR effects and clouds
produce net cooling
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FIG. 4 Contribution of each

cloud type to TOA radiation

(R), where R =K*C
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Thick Cirrus > 10Km 3-6 Km 23% 64 gm™ % 440
Deep Layers > 10Km > 6Km 34% 744 gm™ % ::z
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Preliminary Model Analysis

Examine ice clouds in Community Atmosphere Model Version 5 (CAMS5)

 Qutput from 2005-2008 global run with 30 vertical levels and a 96x144 horizontal grid (~ 1.9° latitude x 2.5° longitude)

 2-moment bulk stratiform cloud microphysics scheme (Morrison et al. 2005) with four hydrometeor species

* Process-based treatment of ice supersaturation and ice nucleation (Gettelman et al., 2010)

Clear-sky Net Solar Flux at TOA = 1191.15 Clear-sky Net Longwave Flux at TOA = 259.670
Net Longwave Flux at TOA = 187.895

Net Solar Flux at TOA= 487.540
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FIG.5 Thermodynamic and cloud microphysical variables
from a CAMS5 grid box [latitude: 12.32°, longitude: 102.5°]
in our study domain at 12Z on August 1, 2007.

Grid box quantities won’t produce the same variability found in
statistics from satellite data (grid box >> CloudSat footprint)

Using a maximum-random cloud overlap assumption (Jakob and
Klein 1999) we divide the grid box data into 100 sub columns
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FIG. 6 Generated sub columns of cloud microphysical
properties for the grid box data shown in Fig. 7.

Future Work

* Calculate the radiative properties and run the
radiative transfer for the model sub-columns
in Southeast Asia

 Perform cloud radiative kernel analysis with
CAMS5

* How do modeled ice clouds differ from
observed clouds?

e Do climate models show a similar
distribution of cloud ice and radiative effect?

 Use output from CAMS5, run in weather
forecast mode (Xie et al., 2012), to see how
quickly ice cloud biases develop

Berry, E., and G. G. and Mace (2014), Cloud
properties and radiative effects of the Asian

summer monsoon derived from A-Train data. J.
Geophys. Res. Atmos., 119, 9492-9508.




