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GROWTH OF FACETED CRYSTALS
IN A SNOW COVER

Samuel C. Colbeck

INTRODUCTION

Snow is a fascinating crystalline material that is of interest in many ways. For example, normal
changes in weather patterns often cause rapid changes in the various crystal types that compose a
seasonal snow cover. The fact that snow can adjust rapidly to new environmental conditions is
illustrated by the rapid hardening of the outside of an igloo as vapor diffuses from the relatively
warm interior to the cold exterior. In a similar fashion snow on the ground can undergo a remark-

able recrystallization as vapor moves upward through the pore space away from the warmer ground.
In this situation faceted crystals grow at the expense of fully rounded crystals, often leading to the
development of "depth hoar," a cohesionless faceted crystal (see Fig. 1) which is sometimes re-
sponsible for avalanche release (Seligman 1936, p. 68).

I III

0 0.5 1.0 1.5 cm

Figure 1. Depth hoar crystals that grew in a shallow snow cover (about 15
cm) in the northeastern United States. These crystals are cohesionless.
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Figure 2. Two photoqraphs of seasonal snow held at a constant, subfreezing

temperature (no temperature qradient) in a laborator~v for several years. Un-

der these conditions the grains qrow very slow/v and develop a well rounded

shape. The equilibrium form may he spheroidal rather than spherical and

it may he fatuted at lower temperatures.
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Seligman (1936) referred to the early observations of Wolley (1858) and Paulcke (1932), who
found both hollow and solid types of depth hoar (the hollow version is shown in Fig. 1) and re-
ported crystal sizes as large as 1.25 in. (3.18 cm). The growth of depth hoar as well as other fac-
eted grains was observed in the laboratory by de Quervain (1958) where the temperature and tem-
perature gradient could be controlled over long periods of time. He found that fully rounded crys-
tals (see Fig. 2) prevailed at low temperature gradients, while faceted crystals grew in snow with high
temperature gradients (with depth hoar development at the highest gradient). The Commission on
Snow and Ice (1954) classified these faceted crystals as "class d" or "depth hoar" depending on
the degree of recrystallization, while Sommerfeld and LaChapelle (1970) put faceted crystals into a
class they called "temperature-gradient metamorphism" because of the obvious involvement of the
upward heat and vapor flows.

In addition to the importance of the seasonal snow cover per se, it is worth understanding the
development of both the rounded and faceted crystals because the snow cover is a natural labora-
tory in which the slow processes of crystal growth at a low supersaturation can be studied. I re-
viewed the growth of fully rounded snow grains in the absence of an imposed temperature gradient
(Colbeck 1980); the grain configuration in snow with the liquid phase present is also well under-
stood (Colbeck 1979). However, the growth of the faceted grains and, in particular, the transition
from conditions of rounded grain growth to faceted grain growth are not as well understood.
Giddings and LaChapelle (1962), Yosida and Colleagues (1955), de Quervain (1963), Yen (1969),
and Palm and Tveitereid (1979) have calculated the vapor movement associated with a temperature
gradient in snow and, while some understanding of vapor movement in a homogeneous, infinite
snow cover has been achieved, a number of important questions remain:

1. What are the conditions of temperature, temperature gradient, vapor pressure, heat flux,
vapor flux and overburden pressure that favor the growth of rounded versus faceted grains? Why
is there a transition between the growth regimes of rounded and faceted crystals?

2. What are the dominant mechanisms for the growth of fully rounded versus fully faceted
grains?

3. Are faceted grains stable only during active growth?
4. Why do grain bonds develop in snow consisting of fully rounded grains while depth hoar is

nearly cohesionless?
5. How do internal snow layers and other snow properties affect the growth of faceted grains?

VAPOR FLOW

During the period of recrystallization when faceted grains grow in a snow cover, the snow is
warmed from below by the ground and cooled from above by the cold winter air. Water vapor
moves upward according to

J=-D L- +Sp0 (1)

where is the flux of water vapor, D is its diffusion coefficient in snow (depending on porosity 0),
p is its density, z is the vertical coordinate, and S is the velocity of air. We assume that thermal
convection is negligible, although it may be important in shallow snow covers in very cold environs.
The flux can be approximated from the Clausius-Clapeyron relation as

28- d (2)
R7 T2 / dz

where R is the gas constant for water vapor, T is the temperature in K, L is the latent heat of sub-
limation, p is the vapor pressure, and dTldz is the temperature gradient.
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The equilibrium vapor pressure over a well-rounded ice surface varies with temperature and the
mean radius of curvature of the ice/vapor interface. For a specified mean radius of curvature (ro),
the Clausius-Clapeyron equation relates vapor pressure and temperature,

P r0 , T) =P) exp IL- (1 I (3)

where T, is fixed and p. is the vapor pressure over an ice surface with that mean radius and tem-
perature. For a fixed temperature (7 ') the Kelvin equation reIates vapor pressure and mean radius
of curvature

pi(r,T') =p' e~p 2 (4)

wherep' is the 'apor pressure over a flat ice surface at that temperature, o is the interfacial energy,
pi is the density of ice, and r is the mean radius of curvature defined by

2= 1+ 1 (5)
r t'2'

where r1 and r, are the two principal radii of curvature of the surface (or the radii of curvature
measured in any two orthogonal planes). The use of Kelvin's equation (eq 4) and the mean radius
of curvature is valid only if the surface free energy is independent of orientation in ice at the tem-

peratures considered. The evidence from snow crystals such as those shown in Figure 2 is that the
equilibrium forn is otten sphere-like and that the surface free energy is essentially isotropic, pos-
sibly because of a disordered surface layer covering the ice that is at temperatures close to the
melting point. Since this disordered layer could be much thinner at lower temperatures (Golecki
and jaccard 1978), the equilibrium form of ice crystals at lower temperatures could be the hexa-
gonal prism suggested by Krastanow (1941). Then the equilibrium vapor pressure over a crystalline

facet would hase to be described by o1/h i where oa is the surface free energy for a face of orienta-
tion / and h i is the perpendicular distance of the Wulff center from a plane tangent to the crystal
at orientation/.

Assuming that the vapor pressure is determined by the temperature and mean radius of curva-
ture at each depth (this assumption may not hold at flow restrictions such as ice layers and the
soil/snow boundary), we take

dp ap dT+ ap dr (6)
C// T dl ar dz

where p/aTand ap/ar can be determined from eq 3 and 4 respectively. Combining eq 1, 3, 4

and 6, we find that the vapor flux is given by

Dp L dT 2o dr
R2 T2 T dz pir2

where the first term is the contribution of the temperature gradient and the second term arises
from variations in the radius of curvature.

Isopleths of equal contributions to the vapor flux from the temperature and radius of curvature
gradients are shown in Figure 3 for snow giains of various sizes. The radius of curvature differences
between snow layers are normally quite smill while temperature gradients as large as 0.5 °C/cm
are not unusual (the mean radius of curvature of fully rounded grains usually falls between 10- 3

and 10-1 cm). Accordingly, the vapor movement upward through a snow cover is dominated by
the temperature gradient and differences in radius of curvature among particles can only be im-
portant locally. For particles of the size of snowflake branches (about 10- 3 cm), the radius of

4
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Figure 3. Isopleths of equal contributions to
vapor flux from temperature ('C) and radius of
curvature gradients for different particle radii.

In the upper left, flux is'dominated by temper-
ature gradients and in the lower right, flux is
dominated by radius of curvature gradients.

curvature differences can make a substantial contribution to the vapor flux under most conditions,
but these vapor pressure gradients due to curvature variations drop markedly once the initial meta-

morphism eliminates the original snow dendrites. In the laboratory in the absence of an imposed

temperdture gradient, the complete destruction of snow dendrites takes many days ide Quervain

1954, Bader 1962). However, in a seasonal snow cover, where temperature gradients are imposed

by nature, we observe that the destruction of the dendrites and the growth of fully rounded grains

is rmuch faster than what occurs under isolated conditions in a laboratory. It follows that the tem-

perature gradient term in eq 7 must be an important part of the metamorphism of snow under

natural conditions, even when only fully rounded grains develop.

As I describe in more detail later, the vapor flux arising from the temperature gradient con-

tributes significantly to the rate of metamorphism, whether fully rounded or faceted grains are

the dominant form. Since the vapor flux is the rate-limiting process in the growth of rounded

crystals (Colbeck 1980), the presence of a temperature gradient can greatly accelerate grain growth.

For example with 10-2 cm grains and a temperature gradient of 0.1 "C/cm, the temperature gradient

is about 50 times more effective at moving vapor than the radius of curvature differences generally

found in a snow cover.
At higher temperature gradients the growth of faceted crystals is dominant and fully rounded

crystals are commonly observed to disappear. I investigate this recrystallization in several ways:
first I examine heat and vapor flow in more detail and then I examine the relationship between the

crystal habit and the growth kinetics.

TEMPERATURE PROFILE

Vapor flow is generally the rate-limiting process in snow metamorphism (Colbeck 1980), which

explains why convection, which contributes greatly to vapor flow at very high temperature gradi-

ents, could enhance the rate of growth of depth hoar, as deduced by Trabant and Benson (1972).
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The rate of increase in snow density (p) due to vapor flow alone is given by the conservation of

mass (other mechanisms may also contribute to snow densification; this equation describes only

changes due to the gradient of vapor flow),

dl + 0 .o (8)

From eq I, where variations in convection are ignored and the snow cover is assumed to be homo-

geneous,

-0D d .p + s . (9)

dz 2

Heat flow is

dT

where k is thermal conductivity due to heat conduction alone, cp is the heat capaci.y of water

vapor at constant pressure, and Tm is the melting temperature (normally L >> cp I T- Tm j). For

the conser ation of heat, in steady state,

d-L p =0 (11)
dz

where p. is again the rate of change of density due only to condensation or evaporation. Combining

eq 9, 10 and I I and using L >> cp (T-Tm), we find that the distribution of temperature and vapor

density in a semi-infinite snow cover is

g LD
T: =r o + i-z + 2 D (p,-P (12)

where po and T,, are the vapor density and temperature at the snow/ground interface and

=2L ( zz LP k oT(3

The first term in g arises from the latent heat flux and the second term from the heat conduction

across the lower boundary. The first term is zero unless the underlying soil acts as a source of

water vapor. Thus q represents an important boundary condition.
The temperature and vapor density in a homogeneous snow cover without transients vary with

height above the ground surface as shown in eq 12. Snow is a finely dispersed material with a large

specific surface area; hence, the vapor pressure cannot deviate far from thermodynamic equilibrium

as given by eq 3 and 4. Thus eq 12 shows that the temperature profile at steady state in a homo-
geneous snow cover must be quasi-linear; the vapor term is relatively small except at the soil/snow
boundary, where the small vapor flow out of the warm soil may lead to undersaturation of the

pore air. This is an important aspect of the heat and mass transfer in snow because soil, being of
a lower porosity, tends to conduct heat more readily than snow whilc snow tends to pass water

vapor more readily than soil. The resulting undersaturation at the snow/soil surface leads to the

decrease in snow density reported by Giddings and LaChapelle (1962).
As stated earlier, various authors have described the general features of vapor flow in homoge-

neous snow without flow restrictions. It has always been assumed that the vapor pressure is given

by thermodynamic equilibrium over a flat surface (Palm and Tveitereid's [19791 assumption was

even more restrictive). However, since no crystal growth can occur at equilibrium, the calculated

6



density changes are impossible because equilibrium was assumed. Complete equilibrium requires
three conditions: the vapor pressure will be given by the specified temperature and mean radius of
curvature, the gradient of the vapor flux must be zero since the snow density is constant, and the
gradient of the heat flux must be zero since there is no net latent heat exchange. Recrystallization,
for example the simultaneous sublimation of small fully rounded crystals concurrent with the growth
of faceted crystals described by Yosida and Colleagues (1955) as the "hand-to-hand delivery of water
vapor," can occur under these conditions. However, it must be understood that only the average
conditions and not local environments around the ice grains are being described by thermodynamic
equilibrium. The rate of growth of these crystals is described later, but first we find the heat and
vapor flow in a snow cover that has no vapor barriers or transients.

Assuming that thermodynamic equilibrium prevails, we see that

S =! d = Ps = 0 (14)dz dz

and the vapor pressure is given by the Clausius-Clapeyron equation (eq 3). Then from eq 1 and 10,
in the absence of air movement, the temperature distribution is given by the implicit equation (for
L >> cp iT-T])

q~z+k(T-TO) + -R - -0 (15)

where X, is L I - I

The vapor flux is restricted by

DPo L-RT. dT (16)
R2  T3 .Io

0

and the vapor density is

200

Sm -Inflnte

150-

Z Surface

50

220 230 240 250 260 270
Temperature (K

Figure 4. The distribution of temperature In semi-infinite
and 1 00-cm snow covers for various assumed basal tempera-
ture gradients (for k = 12,600 erg cm "1 0C-1 s-1 ). Tran-
slents and conductivity variations have been ignored.
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Po L - RTo dT (17)

P, 1o0R2 7; T z

where the subscript refers to the conditions at the soil/snow boundary. It is important that the
equilibrium condition can prevail only when the vapor flux at the boundary is constrained as shown
by eq 16. As shown in Figure 4, this temperature distribution is nearly linear for usual values of
the parameters. The temperature profiles reported by Armstrong et al. (1974) generally confirm
this quasi-linearity, although they show some variation among different layers and considerable
variation near the snow surface due to radiation penetration and diurnal variations.

The ratio of vapor flux to heat flux for pure diffusion is from eq 1 and 10,

/ = DdpIdT (18)
q k + DLdp/dT

Taking the gradient of vapor pressure with respect to temperature from the Clausius-Clapeyron
equation (eq 3), we find that this ratio is

L Dp°(L-RT)eX (19)

q kR 2 T3 +DLpo(L-RT)eX

The fact that this ratio increases at higher temperatures, as shown in Figure 5, partly explains why
faceted crystals are observed to form at the base of the snow cover where it is warmer. As discussed
later the kinetic growth form of the fully faceted crystals only appears when larger vapor pressures
and growth rates can be sustained. Increased diffusion or thermal convection would thus tend to
favor the growth of faceted crystals.

4
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Figure 5. Rot/o of vapor flux to heat flux versus temperature.
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CRYSTAL GROWTH RATES

The growth of faceted crystals at the expense of the fully rounded crystals can only occur if the
vapor pressure lies between that for a fully rounded crystal and that for a non-singular flat-face
crystal. This vapor pressure difference could be increased if the temperature differences among the
grains are increased by concentrated heat flow through the highly conductive ice grains, but this
effect will have to be quantified later. We explore this recrystallization here without assigning dif-
ferent temperatures to the rounded and faceted crystals.

According to Wulff's theorem the equlibrium vapor pressure over a flat-faced crystal depends on
the crystal size. For crystals greater than I pm, however, the supersaturation needed for a reason-
able growth rate is much greater than the supersaturation caused by a departure from the equilibrium
shape (Frank 1958). Thus rapidly growing crystals are not aecessarily in equilibrium.

The growth rate of a crystal increases as the supersaturation in the vapor increases. Since, with-
out temperature differences, the supersaturation can only vary over a range of 10-5 between that
for a flat surface and that for a rounded crystal, a linear relationship between growth rate and
supersaturation is assumed, although Burton et al. (1951) suggested a parabolic relationship for
dislocation-aided growth at supersaturations below 1016 of the equilibrium vapor pressure. Lewis
(1974b) reports that the linear relationship has been observed at low supersaturations.

The flux of molecules to the surface of a crystal is given by ca' (27r m k'T) / where c is the con-
densation coefficient, a' the supersaturation, m the molecular mass, and k' is Boltzmann's constant.
The rate of increase in density of faceted crystals (Pf) is given by the surface area per unit volume
of these crystals (approximately of 3pf/rfp i for equant particles) times the molecular mass times
the flux of molecules to the surfaces, or

dpf cmlp-p(T)I 3 pf (20)

dt (27r m k' T) " pirf

where p is the actual vapor pressure, p (7) is the vapor pressure over a flat ice surface as given by
eq 3 for any specified geometry, and pi is the density of ice. Likewise, the rate of growth (or evap-
oration) of fully rounded crystals is

dPr c m [p-p (r)J 3Pr (21)

dt (21r m k' T)Y' prr

where p(r) is the equilibrium vapor pressure over a fully rounded crystal from eq 4 and rf is the
"effective radius" of a fully rounded crystal.

The increase in snow density away from impermeable boundaries over a period of weeks as
measured during faceted grain growth (Armstrong 1980, Marbouty 1980) is generally very small.
Accordingly, the rate of increase in the density of faceted crystals must about equal the rate of
decrease in density of fully rounded crystals while the total snow density equals the sum of the
densities of the two types of crystals. Therefore, combining eq 20 and 21 to eliminate p, we have

"of (ps pf) rf +pfrr df = 3cm [p(r) -p(T)j (22)f ,of (," Pf) pi (21r m k' T)YI

Pf,o

where the initial density of faceted crystals is Pf,0. Vapor pressures p(") and p(r) can be obtained
from eq 3 and 4, respectively, using known distributions of temperature and mean radius of cur-
vature.

Assuming a simplified case of constant and equal crystal sizes, we see that eq 22 yields

9



lo 3cm p(r)-p(T)j - log Ps-pf'°  (23)
P S r p,(2i m k'fl 71y,

Given the temperature profile, the size of the crystals and the initial concentration of faceted
crystals, we can calculate the distribution of the density of faceted crystals with depth and time.
Such a distribution is shown in Figure 6 where the ratio of faceted to fully rounded crystal den-
sities is shown to increase rapidly near the bottom of the snow cover. This rapid increase arises be-
cause of the feedback between the crystal growth rate and the crystal surface area available for
vapor deposition. Once a layer of faceted crystals builds at the base, a transition between fully
rounded and faceted crystals sweeps upwards with time. This mode of formation is common in
nature (Bradley el al. 1977), where it is accentuated by the layering of the snow cover and perhaps
by transient effects as well. Because of the feedback mechanism between crystal growth rate and
surface area, the choice of an arbitrary initial condition has little effect on the growth rate after a
short period of time.

It is implicitly assumed for the moment that the vapor supply is adequate to maintain the rapid
growth rates shown in Figure 6. The role of the temperature gradient in sustaining the necessary
vapor flow is obvious, and it is well known that recrystallization cannot take place without a large
temperature gradient. Once the density of the faceted crystals is known as a function of depth
and time, the actual vapor pressure can be calculated from

Pr p(r) + pfp(T) (24)

Ps

which arises from eq 20 and 21 and conservation of mass. Again, this equation could be modified
to account for temperature differences among the grains, a level of sophistication which will have
to be added later.

The excess vapor pressure (relative to a flat ice surface at the temperature corresponding to each
depth) required to drive the recrystallization shown in Figure 6 is itself shown in Figure 7. Initially,
the vapor pressure is close to the equilibrium vapor pressure over curved ice grains,p(r), which in-
creases with depth because of the increasing temperature with depth. However, the vapor pressure
at the base of the snow cover quickly approaches the equilibrium vapor pressure over a flat ice

00

Time (s)

80 3 x -06

Ci

2 x o6
0

It 4010
U°

0 06

20
0 4XI7 x10

5

0 2 4 6 8 10
Ratio of Faceted to Rounded Crystals

Figure 6. Calculated distribution of the ratio of faceted crystal density
to fully rounded crystal density for a 100-cm snow cover with a basal
temperature of 270 K, surface temperature of 235 K, crystal radius of
0.05 cm, snow density of 0.20 g/cm3, and Initial density of fully faceted
crystals of 0.002 g/cm 3. The distribution is shown for various times and
for an assumed value of 0.5 for the condensation coefficient
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Figure 7. The excess vapor pressure (relative to a flat ice surface at the
temperature corresponding to each depth) is shown versus depth for
various times during the recrystallization shown in Figure 6. Temper-

ature differences among sources and sinks would further increase the
vapor pressure.

surface, p(T), because of the rapid recrystallization taking place at the bottom. At least one reason

for the rapid growth of the faceted grains in the lower, warmer portions of the snow cover is appar-

ent from Figure 7: the growth rate of faceted crystals increases with the excess vapor pressure, which
in turn increases with temperature. In this simplified model the level of maximum excess pressure
and maximum rate of disappearance of the rounded grains increases with height as the fully rounded

crystals are depleted near the bottom. Also, the surface of the snow is little affected by the rapid
recrystallization occurring below. The vapor pressure and density of faceted crystals change very

slowly near the upper surface; hence, the depth hoar is not evident at the surface.
The equilibrium vapor pressure of the fully rounded crystals is higher than the prevailing vapor

pressure during recrystallization, so the fully rounded grains evaporate while the faceted grains grow
by vapor condensation. However, well-developed depth hoar in the laboratory occurs only in the
presence of a temperature gradient of at least 0.17 to 0.25 CC/cm (Akitaya 1974, de Quervain

1958, Marbouty 1980) for reasons that are not clear. In particular, we must examine why the high

pressure fully rounded crystals do not spontaneously recrystallize into lower pressure faceted crys-

tals at any temperature gradient.

EQUILIBRIUM VERSUS KINETIC GROWTH FORMS OF SNOW CRYSTALS

The growth of individual ice crystals has been observed often in experimental apparatus in the

laboratory (e.g. Nakaya 1954) at growth rates and supersaturations much larger than those shown
in Figure 7. Nevertheless, Marbouty (1980) finds an approximate correspondence of the variation
of crystal type with temperature between the individually grown crystals in the laboratory and

crystals grown within snow at large temperature gradients. At smaller temperature gradients,
faceted crystals fail to develop in the snow cover and are in fact unstable. That is, in the absence
of a large temperature gradient, the faceted crystals shown in Figure 1 revert back to fully rounded

crystals (as shown in transition in Fig. 8). The apparent mechanism for this rounding is the move-

ment of molecules away from the corners because, unless the crystal is rapidly growing, the equil-

ibrium vapor pressure over the corners of an ice crystal is very large due to the small radius of cur-
vature (see eq 4). Hobbs and Mason (1964) and Hobbs and Radke (1967) used eq 4 to describe

the growth of intergrain bonds in snow in an isolated environment. In the absence of imposed
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temperature gradients, the growth of fully rounded ice crystals is described by the same equation
(Colbeck 1980).

The active growth of ice crystals at large supersaturations is characterized by the growth of
faceted crystals, where the crystal habit is determined primarily by the temperature of growth
(Nakaya 1954) and the secondary features are determined by the supersaturation (Hallet and
Mason 1958, Kobayashi 1961). Lamb and Hobbs (1971) account for the variation in habit by the
variation with tempelature of the growth rates of the prism and basal faces. During rapid growth
the diffusional limitations in the gas phase affect the crystal shape (Faktor et al. 1971, Nenow and
Stoyanova 1977, Gonda 1980), a very important fact for crystal growth in the snow cover because
of the presence of air in the pores of the snow. Lamb and Scott (1972) show that highly rounded
crystals tend to grow in pure vapor because the vapor supply is more uniiorm in the absence of air.
They observed slower growth rates in the presence of air. As stated earlier the slow diffusion of
water vapor is the rate-limiting process in the growth of crystals in a snow cover.

Faceted ice crystals with some rounded portions can develop at temperatures close to the melting
point (Pavlovska and Nenow 1972) and are sometimes observed in snow covers. Gilmer and Bennema
(1972) explain these crystals by suggesting a critical temperature above which some crystal surfaces
are "roughened" by thermal fluctuations such that growth can occur without nucleation or the
screw dislocation mechanism of Burton et al. (1951). Of course at the melting point faceted crystals
disappear altogether, except during very rapid growth or evaporation.

Crystal shape during rapid growth from the vapor phase is determined by the kinetics of the sur-
face processes rather than by the shape which minimizes the surface energy (Herring 1953). At low
supersaturations the growth on the low energy planes (the basal and prism faces in ice) is limited
by the nucleation rate of low-energy kink sites, whereas the high energy planes (prismatic planes
in ice) grow out because kink sites are plentiful (Lewis 1974a). Cahn (1960) suggests a transition
from non-singular (rounded) to singular (plane) crystal surfaces by the application of a sufficient
driving force for growth (i.e. a sufficient supersaturation). Hirth and Pound (1963) state that crys-

tals which are non-singular at equilibrium may become vicinal (i.e. they exhibit a step structure in
which low-index steps are separated by monomolecular risers) with increasing supersaturation. In
this case, the relaxation time for the roughening of the low-index surfaces must be long, compared
to the period for the the addition of a monomolecular layer. In other words, the growth rate must
be sufficient to overcome the tendency toward relaxation of the step structure necessary for growth.

The critical vapor pressure for the onset of "ideal" growth by spiral dislocations that intersect
free surfaces as given by Hirth and Pound (1963) is

p/p0 
= exp (1921 2/2xk' T) (25)

where x is the average diffusional distance of a molecule on the surface, k' is Boltzmann's constant
and 12 is the molecular volume. According to Mason et al. (1963), the mean diffusional distance
for ice is about 4 x 10 - 4 cm; thus, the critical vapor pressure ratio is about 1.0029:1. If the evap-
orating rounded snow grains are at the same temperature as the growing faceted crystals and the
snow grains are in the observed range of 0.01 to 0.1 cm, the critical excess vapor pressure from eq
25 exceeds the calculated excess vapor pressure by about 103. This shows that the evaporating
rounded crystals must be at a higher temperature than the growing faceted crystals. Thus the tem-
perature differences among the particles due to their relative heights in the snow cover must be in-
cluded in the future for a more complete description of faceted grain growth in snow.

In the absence of a large temperature gradient, I (Colbeck 1980) have shown that the diffusion
of vapor is the rate-limiting process in the metamorphism of snow. Since the flux of vapor increases
with the imposed temperature gradient (see eq 7 and Fig. 3), it is not surprising that a transition
from fully rounded (equilibrium form) to faceted (kinetic growth form) crystals has been observed
when the temperature gradient increases. From eq 7, a temperature gradient of 0.2 0Cfcm increases

13



the vapor flux for normal size particles (0.02 cm) and radius of curvature gradients (0.1) by about
103. Thus, in the presence of a large temperature gradient, the movement of vapor is not limited
by the small radius of curvature difference among particles, but vapor flow from the evaporating
rounded crystals to the growing faceted crystals is driven by the temperature gradient. When the
temperature gradient is large enough to sustain the necessary growth rate, the kinetics of the growth
form dictate the faceted crystal shape, whereas at lower temperature gradients and slower growth
rates, the equilibrium shape dominates. These two distinctive forms have been classified as "tem-
perature-gradient" and "equi-temperature," respectively, although the temperature gradient largely
determines the growth rate in both cases. One is a kinetic growth form whereas the other is an
equilibrium form.

DISCUSSION

Given the small excess vapor pressure at which the snow cover recrystallizes into faceted grains
(probably less than 1% supersaturation), it does not seem possible that these grains are nucleated
either homogeneously or heterogeneously by impurities (at 170 K the critical supersaturation for
a large nucleation rate for water vapor is about four times the equilibrium vapor pressure over a
flat surface lHirth and Pound 1963, p. 311). The faceted crystals grow on fully rounded ice par-
ticles; possibly, the relatively strain free and the larger particles serve as sites for faceted grain growth
while the grains carrying the maximum load of overburden and the smallest grains evaporate due to
their higher chemical potentials. Of most importance, the grains in a chain that conducts away more
than the average amount of heat would be at a different temperature than the neighboring grains.
Once the fully rounded grains have completely disappeared, the faceted grains can continue to grow
by the evaporation of the stressed grains now carrying the overburden pressure or by the evaporation
of grains in the most effective heat paths. If the increased chemical potential due to radius of cur-
vature was important, grain growth could slow markedly once the fully rounded crystals have dis-
appeared because the increase in chemical potential due to radius of curvature is large compared
to the increase in chemical potential due to an elastic strain. For particles larger than 10- 5 cm,
Cabrera (1964) says that stresses are not important. This explains why de Quervain (1958) ob-
served very little influence of overburden pressure during faceted crystal growth. However, it is
likely that the radius of curvature effect is much less than the effect of preferential heat flow paths
at temperature gradients of 0.2 0C/cm.

So far we have assumed that the snow cover is homogeneous, whereas snow covers in nature are
almost always layered. Snow covers are deposited by discrete snow storms; hence, the layers are
often separated by "crusts" of fine-grained, higher density snow. These crusts have a relatively
low permeability and the vapor pressure tends to ircrease beneath them. With the vapor pressure
increased locally, faceted grains are often observed to form just below crusts in spite of the lower
snow layers being warmer. Of course this vapor deposition reduces the permeability of the crust
even further as the crusts densify from within the snow cover. A similar phenomenon was observed
in the laboratory by de Quervain (1958) when he placed foil sheets in a snow sample and observed
vapor condensation on the warm side of the sheet. On the cold side of a vapor barrier (e.g. imme-
diately above the ground surface), a decline in snow density is often observed and in extreme con-
ditions cavities may even form (Giddings and LaChapelle 1962).

The temperature distribution below an impermeable crust can be calculated by combining eq 1,
9, 10 and 11 with a flux distribution of the form that deposits condensate just beneath the crust,

/ = /. (I -ZIH) i l n  (26)

where /o is the flux at the base of the snow cover, n is an arbitrary constant greater than unity,
and the height of the crust above the origin is H. Assuming that the vapor pressure is closely
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Figure 9. The steady state temperature distribution below an
impermeable crust for various values of the parameter n. The
temperature distribution above an impermeable crust or soil
would have the opposite curvature.

approximated by the equilibrium vapor pressure (eq 3) and taking L >> cp (T-Tm), we find that
the temperature distribution is

d-T 0 + cIT 2L Jn

T . . . +H (I- zH) n (27)T=T +"z k I l+n I +nI

which is a slightly nonlinear distribution, as shown in Figure 9. The nonlinearity would increase
with thermal convection, which was ignored in this derivation. If we assume an increasing vapor
flux above the soil surface or above a crust in the snow, we would find a temperature distribution
with a curvature of the opposite sense to that shown in Figure 9.

Several crusts are likely to develop in any particular snow cover; hence, the temperature dis-
tribution should be scalloped due to the increased deposition near the base of each crust. The
quasi-linear temperature distribution of eq IS should describe the average temperature profile,
although the profile within each snow layer will have the shape of eq 27. According to eq 27 the
temperature gradient reaches its largest negitive value just below each crust, where the condensa-
tion rate and latent heat release are greatest.

As long as the critical temperature gradient maintains the rapid vapor flow required to achieve
the kinetic growth form, snow will undergo continuous recrystallization. Marbouty (1980) found
a linear increase in crystal size with time, and very large crystals (3 cm) can be observed in nature
when steep temperature gradients are maintained for months. The effects of increasing crystal size
with time were not included in eq 22 or Figures 6 and 7. Equation 20 suggests that the rate of
density increase of the faceted crystals will decrease as their size increases; hence, the transition
between the layers of fully rounded and faceted crystals would not be as sharp as suggested by
Figure 6 unless the crusts, which normally exist in a snow cover, have a large effect.

It is unlikely that the average size of a fully rounded crystal would decrease in a linear fashion
since the vapor pressure over a particle increases rapidly with decreasing radius (see eq 4) and the
rate of evaporation varies as the vapor pressure difference divided by the radius (see eq 21). This
driving mechanism for grain evaporation includes a positive feedback between grain size and the
rate of change of grain size, which leads to an accelerating rate of grain shinkage. Typically, a
fully rounded grain would decrease slowly in size at first but then disappear quickly after reaching
a certain critical size. This mode of sublimation of the rounded grains would have little effect on
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the growth of the faceted grains, since the average size of the rounded grains would vary little with
time despite the decreasing density of the rounded grains.

At low supersaturations and growth rates, crystal growth follows the kinetic growth laws for
liquids. At high supersaturations and growth rates, crystals grow by the diffusion of surface-absorbed
molecules to steps that propagate across the crystalline faces. At the higher growth rates, small quan-
tities of organic vapors modify the habit of ice crystals (Hallet and Mason 1958), presumably because
they influence the surface diffusion process. LaChapelle (1966) mentioned the potential use of or-
ganic compounds to prevent the growth of depth hoar in mountain snowpacks but much work re-
mains to be done before a reliable method is developed. Elimination of the depth hoar would re-
duce avalanches because one characteristic of depth hoar is the lack of cohesion among the ice par-
ticles. Part of the fragile nature of depth hoar may be due to the large mechanical advantage achieved
with stressed large grains; however, the large, cohesionless grains of fully developed depth hoar
quickly grow intergranular bonds and strength once the temperature gradient is removed. Interpar-
ticle bonds grow between fully rounded grains by vapor diffusion due to differences in radius of
curvature (Hobbs and Mason 1%4) as dictated by the principles of the equilibrium form. However,
the active growth of fully faceted crystals is controlled by the kinetic processes and concave grain
bonds do not develop because they are an equilibrium form. Also, since depth hoar develops rapidly,
there is not sufficient time for much sintering to occur. Once the temperature gradient is removed
and the faceted crystals revert to the fully rounded equilibrium form, grain bonds develop while
the facets disappear (see Fig. 8).

SUMMARY

Falling snow crystals are generally faceted with a crystal habit that depends primarily on the
temperature of growth. Upon reaching the ground, the faceted crystals lose their angularity and
assume the fully rounded equilibrium form. Initially, the snow crystals become rounded and bonded
together but can recrystallize into another faceted form if the snow cover experiences a critical tem-
perature gradient (0.1 to 0.2 °C/cm). Depth hoar, the most advanced case of the faceted form, is
often responsible for avalanche release because of its lack of cohesion.

The kinetic growth form (or faceted crystals) prevails during rapid crystal growth at large super-
saturations, whereas the equilibrium form (or fully rounded, well-bonded crystals) prevails during
the slow growth at very low supersations. At very small temperature gradients, the growth rate is
limited by the slow diffusion of water vapor from the evaporating smaller crystals to the growing
larger crystals. In this environment of restricted vapor diffusion through air, the equilibrium form
prevails. Above the critical temperature gradient, the movement of water vapor is greatly increased
by the vapor pressure gradient associated with the large temperature gradient. Vapor fluxes due to
the imposed temperature gradient are many times larger than those due to differences in radius of
curvature; hence, with a large temperature gradient, it is possible to sustain the rapid kinetic growth
rate which leads to the growth of the faceted crystals.

The growth of the faceted crystals typically starts at the base of the snow cover where the excess
vapor pressures are higher because the temperature and the rate of vapor movement are highest
there. Once the faceted crystals begin growing, their rate of growth increases as their total surface
area increases. There may be an additional effect due to heat piping through the lengthening grains.
A transition between the overlying layer of fully rounded and the underlying layer of fully faceted
crystals is seen to move upward as the snow cover recrystallizes. The level of maximum rate of
evaporation of the rounded crystals moves upward with time as these source crystals are depleted
at lower levels. When a less permeable crust develops within a snow cover, a distinct layer of faceted
grains may develop above the transition level shown in Figures 6 and 7 because of restricted vapor
flow and higher excess vapor pressure beneath the crust.
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The steady state temperature profiles given by eq 12 suggest a quasi-linear temperature profile
away from the upper surface regardless of flow restrictions or crystal growth. Figure 9 supports
this conclusion, even in the presence of an impermeable crust. Apparently, the steady state temper-
ature profile in a snow cover is approximately linear as long as large variations in thermal conduc-
tivity do not occur among layers. This shows that the common practice of equating the actual
vapor pressure and the equilibrium vapor pressure given by the Clausius-Clapeyron equation (eq 3)
is reasonable if only the temperature profile is desired. However, if density changes or the onset
of faceted crystal growth is being investigated, a more accurate estimate of the vapor pressure is
required.

Snowflakes begin as faceted crystals nucleated in the atmosphere. Once they fall to earth, they
can undergo many recrystallizations in response to changes in the snow cover's temperature gradient
and liquid water content. Regardless of where they fall on earth, they always end their life as well-
rounded grains in multilayer glacial snow or as well-rounded grains in a melting snow cover. The
path they take from snowflakes to glacial ice or meltwater involves many complicated processes.
The recrystallization of fully rounded to faceted grains in a snow cover is one of the most inter-
esting of these processes.
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