## Radiative Flux Divergence Observations during C-FOG



2019 C-FOG Science Meeting – University of Notre Dame, South Bend, IN 25-26 April 2019





# Report on observations & initial analysis from C-FOG

- Ceilometers
- Micro Rain Radars (MRRs)
- Radiation and Surface Energy Balance
- Radiative Flux Divergence (RFD)

### **Ceilometer Analysis**

Several ceilometers (Vaisala CL31)were deployed during C-FOG

#### Downs (Ferryland)



#### Blackhead



#### **RV** Sharp



#### Battery (Ferryland)



#### Osborne Head (Halifax)



#### Example ceilometer comparison Super-IOP 10



Time-Height crosssection of backscatter coefficient

Temporal evolution similar over large spatial scales!

### Micro Rain Radar (MRR) Analysis

Several MRRs were deployed during C-FOG



**RV** Sharp MRR

#### Battery (Ferryland)







9 **Drizzle Formation during IOP** 

### Radiation Measurements / Radiative Flux Divergence



### Surface Radiation Balance (SRB)

 $NR = SW^{\clubsuit} - SW^{\bigstar} + LW^{\clubsuit} - LW^{\bigstar}$ 



### Surface Energy Balance (SEB)

To complete the SEB at *Ferryland/Battery*, we measured

- sensible heat flux (H, 5 levels),
- latent heat flux (L, 2 levels), and
- ground heat flux (G).

Ferryland/Battery Site:

Kipp and Zonen CMP21 pyranometers (SW) and CGR4 pyrgeometers (LW) on sawhorse structure

- ventilated
- heated

#### Blackhead Site:

Kipp and Zonen CNR1 & CNR4 net radiometer

At **Blackhead**, we measured

- sensible heat flux (H, 3 levels),
- latent heat flux (L, 1 levels), and
- ground heat flux (G).

### Radiation Measurements / Radiative Flux Divergence

Fog can form when the near-surface air is cooled below its dew-point temperature and when enough cloud or ice condensation nuclei are available.

Condensation conditions can be reached by different mechanisms including local cooling and mixing processes of different air masses.

C-FOG observations were designed to directly measure the local cooling contributions.

$$\frac{\partial T}{\partial t} + \vec{v_h} \nabla_h T + w \frac{\partial T}{\partial z} = \nu_T \frac{\partial^2 T}{\partial z^2} - \frac{1}{\rho c_p} \left( \frac{\partial SW}{\partial z} + \frac{\partial LW}{\partial z} + \frac{\partial H}{\partial z} \right).$$

This research investigated the **role of** *clear-air radiative cooling* or *Radiative Flux Divergence (RFD)* in the surface layer and its relative importance under different conditions.





~14 m

~8m

~2m





### Design of balloon-borne observations of RFD

- Arduino-based measurements and logging (LEMS)
- Based on Apogee SL-510 / SL-610 pyrgeometers
- For ARL ship-based TLS system





Nipun Gunawardena





### Radiative Flux Divergence - Challenges

- Small changes in LW fluxes need to be resolved
- Kipp and Zonen CGR4 research-grade pyrgeometers at three levels
- To maximize instrument accuracy, sensors are ventilated with heated air.



A careful *Relative Calibration* is necessary.

Calibration setup at Ferryland/ Battery during C-FOG



| Flux Uncertainties | best pair                | least good pair          |
|--------------------|--------------------------|--------------------------|
| LW in              | ± 0.38 W m <sup>-2</sup> | ± 0.56 W m <sup>-2</sup> |
| LW out             | ± 0.16 W m <sup>-2</sup> | ± 0.70 W m <sup>-2</sup> |
| LW net             | ± 0.42 W m <sup>-2</sup> | ± 0.61 W m <sup>-2</sup> |

| Uncertainties Heating Rate |                           |  |
|----------------------------|---------------------------|--|
| Full tower (14 - 2m)       | ± 2.4 K day <sup>-1</sup> |  |
| Bottom (8 - 2 m)           | ± 5.5 K day⁻¹             |  |
| Upper (14 - 8 m)           | ± 5.6 K day⁻¹             |  |

#### 23 Sep 2018 (clear sky)

#### 29 Sep 2018 (super-IOP10)





#### Backscatter CL31 Ferryland Battery, Newfoundland













Backscatter CL31 Ferryland Battery, Newfoundland

Advection / Sea Breeze Circulation seems to play an important role for local cooling



# Summary

- C-FOG offered the unique opportunity to make direct measurements of longwave radiative flux divergence (clear air radiative cooling).
- Radiometers could be calibrated to a sufficient accuracy to resolve small flux differences in the near-surface layers.
- The magnitude of RFD is on the same order of the observed heating rate.
- RFD is suppressed under low stratus and fog conditions (compared to clear-sky conditions), but some interesting patterns are revealed.
- A rich dataset has been collected for further investigation ...



# Acknowledgements

### Funding from ONR



**Entire C-FOG Team** 

Alexei Perelet Travis Morrison Nipun Gunawardena



