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1 Introduction

1.1 What is thermodynamics?

Thermodynamics is the study of the equilibrium states of a system subject to a specified
process. A system is a specific sample of matter. The equilibrium state of a system can be
completely specified by a small number of properties such as pressure, temperature, and
volume. These properties are known as state variables or thermodynamic variables.

An example of the type of question that we can answer using the laws of thermodynam-
ics is the following: What is the final temperature of 1 kg of air saturated with water vapor,
initially at a pressure of 1000 mb and a temperature of 0◦ C, if it is allowed to expand,
without the addition of or loss of energy from or to its surroundings, until its pressure is
500 mb?

It will be useful to set down at the outset the laws of thermodynamics, even though
they can not be fully understood until they are actually applied.

Equation of state of a perfect gas An equation of state is a relationship among the
state variables that defines the state of a system. The simple form that applies to
an idealized or perfect gas is sufficiently accurate for real gases. The most common
form expresses the relationship between the pressure, temperature, and volume of a
sample of gas.

First law of thermodynamics This is the law of conservation of energy for a thermo-
dynamic system.

Second law of thermodynamics This law specifies the direction in which heat (molec-
ular kinetic energy) may flow during a thermodynamic process.

1.2 The atmosphere

The earth’s atmosphere is a mixture of gases. The chief variable constituent is water vapor.
It may occupy up to 4 per cent of the volume of a sample of air. The composition of pure
dry air in the troposphere and lower stratosphere is given in Table 1.

2 The Equation of State

2.1 State variables

A small sample of matter is described thermodynamically by its volume V , mass M ,
pressure p, temperature T , and composition. For the cases we will consider, a sample’s
mass and composition will remain constant.
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Table 1: Composition of pure dry air up to 25 km (Hess 1959). The units for molecular
weight are g mol−1.

Constituent Per cent by volume Per cent by mass Molecular weight
Nitrogen 78.09 75.51 28.02
Oxygen 20.95 23.14 32.00
Argon 0.93 1.3 39.94
Carbon dioxide (var) ∼ 0.03 ∼ 0.05 44.01
Neon 180. × 10−5 120. × 10−5 20.18
Helium 52. × 10−5 8. × 10−5 4.00
Krypton 10. × 10−5 29. × 10−5 83.7
Hydrogen 5.0 × 10−5 0.35 × 10−5 2.02
Xenon 0.8 × 10−5 3.6 × 10−5 131.3
Ozone (var) ∼ 0.1 × 10−5 ∼ 0.17 × 10−5 48.00

It is more convenient to use the specific volume, α ≡ V/M , or the density, ρ ≡ M/V =
1/α, in place of the volume V . Then α, p, and T completely describe the state of the
system.

In a gas, the pressure is the force per unit area produced by gas molecules hitting a
plane surface. The pressure is independent of the orientation of the plane surface, and
is considered to be uniform within a thermodynamic system. However, in atmospheric
dynamics, small variations of pressure are very important.

Temperature is a concept with which we are familar. To define a precise temperature
scale, we must find certain fixed and reproducible temperatures. A mixture of ice and
water in equilibrium at a pressure of 1 atmosphere (1013.25 mb) has a temperature of 0◦

C. Steam (water vapor) in equilibrium with boiling water at a pressure of 1 atmosphere has
a temperature of 100◦ C. If these two temperatures are marked on a mercury thermometer,
we can subdivide the interval between the two marks into 100 equal degrees.

2.2 Charles’ Law and absolute temperature

By measuring the specific volume of a gas at any two temperatures, both at the same pres-
sure, Charles found that the corresponding change in specific volume is directly propor-
tional to the change in temperature. If one temperature is 0◦C and the second temperature
is the Celsius temperature t, then

t = k(αt − α0), (1)

where k is a constant. We can determine k by measuring α at 100◦C. At that temperature,

100◦C = k(α100 − α0),
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so
k =

100◦C
α100 − α0

.

The temperature t in (1) is essentially independent of the gas used. This equation forms
the basis for gas thermometers. The international standard of thermometry is a gas ther-
mometer using helium.

Rewrite (1) as
t + kα0 = kαt. (2)

This suggests that we can define a new temperature scale so that the temperature T is
directly proportional to the specific volume:

T = t + kα0 = t + T0 = t + 273.16◦C.

This temperature scale is the absolute temperature scale or the Kelvin temperature scale.
Absolute temperatures are measured in degrees Kelvin. Note that one Kelvin degree (K)
is the same size as one Celsius degree (◦C). When t = 0◦C, T = T0 = 273.16 K.

Use the absolute temperature scale and k = T0/α0 in (2), and divide the result by αT

to obtain
T

αT
=

T0

α0
,

or
αT

T
=

α0

T0
.

This form of Charles’ Law shows most clearly that at constant pressure the specific volume
is directly proportional to the absolute temperature.

2.3 Boyle’s Law

For a sample of dry air at a fixed temperature, Boyle found that the specific volume and
the pressure are inversely proportional to each other:

pα = C,

where C depends on the temperature.

2.4 Equation of state of an ideal gas

Real gases follow Charles’ and Boyle’s Laws only approximately. An ideal or perfect gas
follows them exactly. Charles’ and Boyle’s Laws can be combined to produce the equation
of state of an ideal gas, which is

pα = RT, (3)

where R, the specific gas constant, is a constant for the gas (such as oxygen) being consid-
ered.
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Another form of the equation of state is

pα =
R∗

m
T, (4)

where R∗, the universal gas constant, is a constant for all gases, and m is the molecular
weight (the weight of 1 mole) of the gas. Either of these forms of the equation of state is
sometimes called the ideal gas law.

To derive (4) from (3), consider a sample of gas with M = m. From the definition of α
it follows that V = mα, so (3) becomes pV = mRT . Next, use Avogadro’s Law which is
an empirical law that states that at the same p, T a mole of any gas has the same volume.
(For example, at p = 1 atm and T = 0◦ C, V = 22.415 liters.) Consider two gases with
molecular weights m1 and m2 and specific gas constants R1 and R2. If the gases are at
the same p, T , then the equation of state for gas 1 is pV1/T = m1R1, while for gas 2 it is
pV2/T = m2R2. According to Avogadro’s Law, V1 = V2, so

m1R1 = m2R2 ≡ R∗ = 8.3144 J mol−1 K−1

is a constant for all gases. We see that for any gas, mR = R∗. Using this in (3) gives (4).
The equation of state (4) can be displayed graphically by plotting lines of constant

temperature (isotherms) on a graph of specific volume versus pressure (α, p diagram). We
will prefer to make the ordinate −p so that pressure decreases upward as it does in the
atmosphere. The resulting α,−p diagram is shown schematically in Fig. 1.

2.5 Mixtures of gases

Dalton’s Law states the total pressure p of a mixture of k gases is equal to the sum of the
partial pressures pn:

p =
k∑
1

pn.

The partial pressure is the pressure that each consituent gas would have if it were the only
gas present. It is therefore given by (4), the equation of state:

pn =
R∗

mn

Mn

V
T,

where Mn is the mass of the nth gas, and mn its molecular weight, and we used α = V/Mn.
From Dalton’s Law,

p =
∑

pn =
R∗T

V

∑ Mn

mn
,

or, after multiplying by α = V/
∑

Mn,

pα = R∗T

∑ Mn
mn∑
Mn

. (5)
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Figure 1: Isotherms on an α,−p diagram (Hess 1959).
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This will have the same form as the ideal gas law if we define the mean molecular weight
m̄ as the total mass divided by the total number of moles:

m̄ ≡
∑

Mn∑ Mn
mn

. (6)

Then
pα =

R∗

m̄
T.

For dry air, m̄ = 28.966 g mol−1, and R = R∗/m̄ = 287.04 J kg−1 K−1.
The expression for the mean molecular weight given by (6) can be simplified by recog-

nizing that the number of moles of the nth gas is Nn = Mn/mn and that the total number
of moles in the mixture is

N =
∑

Nn =
∑ Mn

mn
.

Then (6) becomes

m̄ =
∑

Mn

N
=

∑
Nnmn

N
=

∑ Nn

N
mn =

∑ Vn

V
mn. (7)

Note that Nn/N is the molar fraction of the nth gas. Since a mole of any gas at the same
temperature and pressure occupies the same volume, Vn/V = Nn/N , where Vn/V is the
volume fraction of the nth gas.

2.6 Ideal gas law: molecular viewpoint

Consider N identical molecules in a cubical container of volume V . The edges of the
container are parallel to a Cartesian coordinate system. We assume that the molecules do
not attract or repel each other. However, they do collide with each other and with the
walls of the container.

The number of molecules per unit volume is called the number density of molecules,
n ≡ N/V . We assume that the molecules are moving in all directions with equal probability,
so that only half of them will be moving toward a particular wall of the container at any
instant. Let this wall be parallel to the y−z plane. Then the number of molecules colliding
with the wall per unit area and time is nvx/2, where vx is the x component of the molecular
velocity.

We assume that each molecule undergoes no change in kinetic energy upon collision
(such a collision is ”elastic”), and that the molecule’s angle of incidence equals its angle
of reflection. With these assumptions, the molecule’s x component of momentum after
collision is −mvx, where m is the molecule’s mass. (The y and z components of momentum
are unchanged.) Therefore, the change in momentum is 2mvx.

Newton’s second law of motion for a mass acted upon by a force F is

dp
dt

= F,
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where p is the momentum. The molecule’s change of momentum is due to a force exerted
upon it by the wall. But if the wall exerts a force on the molecule, the molecule must
exert an equal and opposite force Fx on the wall. The time integral of this force is the
momentum change: ∫

Fxdt = ∆px = 2mvx.

During the time interval t, Atnvx/2 molecules hit an area A of the wall. The time-integrated
force acting on this area is ∫ t

0
Fxdt = (2mvx)(Atnvx/2).

The average force acting on the area A over time t is

1
t

∫ t

0
Fxdt = Anmv2

x.

The average force divided by the area over which it acts is the pressure, p:

p = nmv2
x.

We assumed that all molecules have the same speed. In reality, their speeds are dis-
tributed about an average. We simply replace v2

x by its average, so that

p = nm〈v2
x〉, (8)

where the angle brackets denote an average over the distribution of molecular speeds. If
the molecules are moving randomly, averages for the three velocity components must be
the same:

〈v2
x〉 = 〈v2

y〉 = 〈v2
z〉.

Since
〈v2〉 = 〈v2

x + v2
y + v2

z〉 = 〈v2
x〉+ 〈v2

y〉+ 〈v2
z〉,

we can write (8) as

p =
1
3
nm〈v2〉 =

1
3

N

V
m〈v2〉.

The pressure of a gas is 2/3 of its molecular kinetic energy density.
At this point we define absolute temperature, T , by

1
3
m〈v2〉 = kT,

where k, called Boltzmann’s constant, has the value 1.38×10−23 J K−1. With this definition,

pV = NkT.

This is the fundamental form of the ideal gas law, from which all other forms can be
derived.
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3 Conservation of Energy

3.1 Conservation of energy in mechanics

Newton’s Second Law for a single point mass in a gravitational field is

m
dv
dt

= mg,

where m is the mass, v is its velocity, and g = −gk is gravity. If we multiply this equation
by v, we obtain

d

dt

(
1
2
mv2

)
= − d

dt
(mgz),

which can be written as
d

dt
K = − d

dt
P,

where K is the kinetic energy and P is the potential energy. This relation implies that the
total energy E = K + P is constant, or conserved.

We see that the dimensions of energy are those of mass × velocity2, or force × distance.
The conservation of kinetic plus potential energy is (approximately) exhibited by a

tennis ball thrown into the air and allowed to bounce. However, what if we replace the
tennis ball with a ball of putty? When the ball of putty hits the ground, both its kinetic
energy and its potential energy become zero. Is energy not conserved in this case?

3.2 Conservation of energy: A system of point masses

Consider a system consisting of interacting point masses, each with a fixed mass mi (i =
1, 2, . . .) and position xi. The jth point mass exerts a force Fji on the ith point mass. In
addition, an external force Fe

i may act on the ith point mass. The equation of motion for
the ith point mass is

mi
d2xi

dt
=

∑
j 6=i

Fji + Fe
i . (9)

By summing (9) over all i, the sum of the internal forces vanishes, leaving only the sum of
the external forces: ∑

i

mi
d2xi

dt
=

∑
i

Fe
i = Fe. (10)

If we define the center of mass by

X =
∑

i mixi

M
,

where M =
∑

i mi is the total mass of the system, then (10) can written

M
d2X
dt

= Fe, (11)
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which shows that the motion of the center of mass of the system of point masses is deter-
mined only by the external forces.

By multiplying (9) by vi and summing over i, we find that

Kcm + Kint + Pint + P e = const, (12)

where Kcm is the kinetic energy of a body with mass M moving with the center-of-mass
velocity, Kint is the kinetic energy of the point masses due to their motion relative to the
center of mass (their average velocity relative to the center of mass is zero), Pint is the sum
of all potential energies of mutual interaction, and P e is the sum of the external potential
energies.

Now we see that when the ball of putty hits the ground, its center-of-mass kinetic
energy, Kcm, is converted into internal kinetic energy, Kint, so that energy is conserved.

For another example of energy conservation, consider a fan that is causing air to circu-
late in a room. What happens to the kinetic energy of the breeze after the fan is turned
off? As with the putty, Kcm is converted to Kint.

After one turns on a hot plate, an air current will rise above it. In this case, Kint is
(partly) converted into Kcm. A similar process produces many atmospheric circulations.

3.3 Kinetic energy exchange in molecular collisions

What happens on average when two molecules of unequal kinetic energy interact (i.e.,
collide)? For now, consider molecules to be point masses (later, we will abandon this to
understand the specific heats of gas molecules). In an elastic collision, the total momen-
tum and total kinetic energy of the molecules are conserved. There are six unknowns:
the velocity components of the two molecules after the collision. But we have only four
equations: three for the components of the total momentum, and one for the total kinetic
energy. Therefore, we cannot uniquely determine the velocities of the two molecules after
the collision from their velcocities before the collision. However, it can be shown that, on
average, the molecule that has the lower kinetic energy before the collision gains kinetic
energy due to the collision.

3.4 Working and Heating

In section 3.2, interactions between a system and its surroundings was described by the
external potential energy, P e, which is often unknown, or too complicated to be useful.
We therefore use an alternative description of the interaction between a macroscopic sys-
tem (i.e., a large collection of molecules) and its surroundings (another large collection of
molecules).

The equation of motion for a point mass acted upon by a force F is

m
dv
dt

= F.
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As before in section 3.1, we take the scalar product of this equation with v to obtain the
equation for the kinetic energy of the point mass, K = mv2/2:

mv · dv
dt

=
dK

dt
= v · F = W,

where W is the rate of working, since work is defined as force acting over a distance. This
equation is another way of stating energy conservation: The kinetic energy of the point
mass does not change unless work is done on it by an external force. This can be extended
to a system of point masses:

d

dt
(Kcm + Kint + Pint) =

∑
i

vi · Fe
i , (13)

which is Eq. (12) written using

−dP e

dt
=

∑
i

vi · Fe
i .

We can decompose the right side of Eq. (13) into two components. One component,
denoted by Ḣ, the rate of heating, is the contribution from external forces, Fe

i , that vanish
on average, although ∑

i

vi · Fe
i

may not vanish. In particular, this sum does not vanish if the average kinetic energy
of the surrounding molecules is different from that of the system molecules. The other
component, denoted by −Ẇ , the rate of working, is the contribution from external forces
that do not vanish on average (such as gravity).

If we define U = Kint + Pint, we can write Eq. (13) as

dU

dt
+

dKcm

dt
= Ḣ − Ẇ . (14)

Under many conditions, we may ignore the rate of change of Kcm in Eq. (14) and write

dU

dt
= Ḣ − Ẇ . (15)

Equation (15) can be summarized in words as follows: U is an internal energy of a
system of molecules is the sense that it is the sum of a potential energy arising from forces
exerted by the system molecules upon each other and a kinetic energy of motion about the
the system’s center of mass. U may change due to two types of interactions of the system
with its surroudings: (1) those interactions for which the force vanishes on average yet the
energy of the system changes because of random collisions with surrounding molecules that
have a different average kinetic energy; (2) those interactions for which the force does not
vanish on average.
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4 The Principles of Thermodynamics

4.1 Conservation of energy and the first law of thermodynamics

4.1.1 Conservation of energy

In section 3.2, we found that for a macroscopic system (i.e., for a large collection of
molecules)

d

dt
(Kcm + Kint + Pint) = Ḣ − Ẇ , (16)

where Kcm is the kinetic energy of a body with the mass of the system moving with the
center-of-mass velocity, Kint is the kinetic energy of the molecules due to their motion
relative to the center of mass (their average velocity relative to the center of mass is
zero), Pint is the sum of all potential energies of mutual molecular interaction, and Ḣ −
Ẇ represents the rate of energy change due to interactions between the system and its
environment.

If we define U = Kint + Pint, we can write Eq. (16) as

dU

dt
+

dKcm

dt
= Ḣ − Ẇ . (17)

The energy U is called the internal energy.
Joule showed by experiment that kinetic energy and internal energy are two forms of

energy. Joule used falling weights to turn paddles which stirred water in a container and
raised the water’s temperature. In Joule’s experiment, dU/dt = −dKcm/dt.

4.1.2 The first law of thermodynamics

Under many conditions, we may ignore the rate of change of Kcm in Eq. (17) and write

dU

dt
= Ḣ − Ẇ . (18)

A thermodynamic process changes a system from an initial state to a final state over
an unspecified time interval. If we integrate Eq. (18) over such a time interval, from a time
t1 when the system is in its initial state to a time t2 when it is in its final state, we obtain

Uf − Ui = ∆U = H −W. (19)

Equation (19) is the first law of thermodynamics.

H =
∫ t2

t1
Ḣ dt

is the energy added by heating (often called the “heat added”), and

−W = −
∫ t2

t1
Ẇ dt

11



is the work done on the system.
Any number of processes may produce the same change in the system. If H − W is

calculated for any one of these processes, we find that H −W is always the same. This is
because H −W is the change in the internal energy, U , of the system, which is a function
of thermodynamic state variables (i.e., of p, α, T ). We write this as

Uf − Ui = ∆U = H −W. (20)

This is the first law of thermodynamics in its most general form. Recall that if H > 0, heat
is added to the system, while if W > 0, work is done by the system. If we divide (20) by
the mass of the system, the first law can be written

uf − ui = ∆u = h− w.

For small amounts of heat added or work done, we write the first law as

du = dh− dw. (21)

The first law of thermodynamics expresses the conservation of internal energy. When
energy is added to (or extracted from) a system, the internal energy of the system is
increased (or decreased). The energy added is equal to the energy added by heating minus
the work done. The first law cannot tell us whether a process can actually occur. The
second law is needed to for that.

In contrast to energy transfer between a system and its surroundings by heating, which
always involves a temperature difference, work is energy that is transmitted in such a
way that a temperature change is not directly involved. The energy added or lost by the
system by heating, H, and the work done by or on the system, W , are characteristics of the
thermodynamic process by which a system moves from one equilibrium state to another,
by interacting with its environment.

4.1.3 Work

Work is defined as follows: When a force F is applied to a mass which moves a distance
dS, the work done is dW = F·dS. The only force with which a sample of nonviscous fluid
can do work on the surrounding fluid is that due to the pressure along its surface. Each
surface element of area dA exerts a force on the surrounding fluid equal to pdA. This
force is normal to the surface element. Suppose the fluid sample expands so that a surface
element moves a distance dS normal to the surface. Then

dW = F·dS = pA dS = p dV, (22)

where dV = A dS is the differential change in the volume of the sample.

12



Figure 2: Graphical representation of work done in an arbitrary process of expansion from
α1 to α2. (Hess 1959).

We denote quantities that refer to the entire mass of a sample with capital letters, and
quantities that refer to a unit mass with small letters. If we divide (22) by the mass of the
sample, we get

dw = p dα, (23)

where dw is the specific work done.
If the system (the fluid sample) expands and does work its environment (the surrounding

fluid), then dw is positive. If the system is compressed, then work has been done on the
system and dw is negative.

The total specific work done during a finite expansion from α1 to α2, during which p
may vary, is

w =
∫ α2

α1

p dα.

This may be shown graphically on an α,−p diagram as in Fig. 2. The work done is shown
by the hatched area. Since there are many different ways in which a system can be taken
from the initial state (α1, p1) to the final state (α2, p2), the work done by a system depends
not only on the initial and final states but also on the intermediate states, that is, on the
path of the process.

4.1.4 Energy transferred by heating

Energy transferred by heating, H, is that which is transferred between a system and its
surroundings as a result of temperature differences only.
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4.2 Quantity of energy transferred by heating

The unit of energy transferred by heating is defined quantitatively in terms of a specified
change produced in a body by a specified process. If the temperature of one kg of water
is raised from 14.5 to 15.5◦C by heating, one kilocalorie (kcal) of energy has been added.
The calorie (= 10−3 kcal) is also used as an energy unit. Joule’s experiment shows that 1
kcal = 4186 joules.

The ratio of the energy ∆H supplied to a body by heating to its corresponding tem-
perature change ∆T is called the heat capacity C of the body:

C =
∆H

∆T
.

The heat capacity per unit mass of a body, called the specific heat c, is characteristic of
the material of which the body is composed:

c =
∆H

M∆T
.

Thus, we properly speak of the heat capacity of a penny, and of the specific heat capacity
of copper.

Neither the heat capacity of a body nor the specific heat capacity of a material is
constant. They both depend on the temperature. At any temperature, the specific heat is
defined by

c =
dH

MdT
=

dh

dT
, (24)

where dh = dH/M is the energy added by heating per unit mass.
Eq. (24) does not define specific heat uniquely. We must also specify the conditions

under which the energy ∆H is added to the sample by heating. If the heating is isobaric,
we obtain the specific heat at constant pressure cp from (24):

cp =
(

dh

dT

)
p
.

If the heat is isosteric, then we obtain the specific heat at constant volume cv:

cv =
(

dh

dT

)
α

.

Thus, the amount of energy that is transferred to a system depends on how the system
is heated. Just as for the work done by a system, the amount of energy transferred to or
from a system by heating depends not only on the initial and final states but also on the
intermediate states, that is, on the path of the process.

For dry air, cp = 1004 J kg−1 K−1, and cv = 717 J kg−1 K−1. The variation of the
specific heat capacities of dry air with temperature is negligible. We expect that cp > cv

14



Table 2: Specific heat capacities at constant pressure (p = 1 atm).

Substance Temperature Specific heat capacity
(◦C) (kcal kg−1 K−1)

0 1.007pure water
30 0.998

pure ice 0 0.503
Al 20 0.215
Cu 20 0.092
Ag 20 0.056

since in a constant pressure process some of the energy added by heating is used to perform
work on the surroundings as the gas expands, while in a constant volume process all of
the energy added by heating is used to raise the temperature of the gas. Table 2 lists the
specific heat capacities of various other substances at constant pressure.

4.3 The first law of thermodynamics for an ideal gas

For an ideal gas, internal energy is a function of temperature only, since energy added by
heating at constant volume only increases the random molecular motion, which is propor-
tional to the temperature. Thus,

du = cvdT.

We can subsitute this and dw = p dα into (21) to obtain

cvdT = dh− p dα,

or, after rearranging,
dh = cvdT + p dα. (25)

We can use the equation of state for an ideal gas to write the first law in an alternate
form. From the equation of state, we obtain

p dα + α dp = R dT.

Using this, the first law (25) becomes

dh = (cv + R) dT − α dp.

For an isobaric process,
dh = (cv + R) dT.
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Figure 3: Graphical representation of an isothermal process.

But from the definition of cp,
dh = cpdT.

Thus, cv + R = cp, and we obtain the alternate form of the first law:

dh = cpdT − α dp. (26)

The enthalpy of an ideal gas, like the internal energy, is a function of temperature only.
In differential form the specific enthalpy is

db = cp dT.

In meteorology, the quantity cp dT is also called the sensible heat. It is the energy trans-
ferred to a system by heating during an isobaric process.

4.4 Applications of the first law

We will compute the specific energy added by heating h, the specific work done w, and the
changes in specific internal energy ∆u and specific enthalpy ∆b for isothermal, isobaric,
and isosteric (constant volume) process of an ideal gas.

4.4.1 Isothermal process

Fig. 3 is a graphical representation of an isothermal process. Since dT = 0 during an
isothermal process, the changes in specific internal energy, ∆u = cv∆T , and enthalpy,
∆b = cp∆T , are both zero.
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Figure 4: Graphical representation of an isobaric process.

Since ∆u = 0 for this process, the first law (4.1.2) becomes simply

h = w =
∫ α2

α1

p dα = RT ln
α2

α1
.

All of the energy transferred to the system by heating during an isothermal expansion is
used by the system to do work on the surroundings.

4.4.2 Isobaric process

Fig. 4 is a graphical representation of an isobaric process. Since ∆T > 0 for an isobaric
expansion, the changes in specific internal energy, ∆u = cv∆T , and enthalpy, ∆b = cp∆T ,
are also positive.

The specific work done by the system is

w = p(α2 − α1).

To calculate the energy transferred to the system by heating, we use the alternate form of
the first law (26),

dh = cpdT − α dp.

Since dp = 0 during an isobaric process, the first law becomes simply

h = ∆b.

All of the energy transferred to the system by heating during an isobaric process is used
to increase the specific enthalpy of the system.
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Figure 5: Graphical representation of an isosteric process.

4.4.3 Isosteric process

Fig. 5 is a graphical representation of an isosteric process. Since ∆T > 0 for an isosteric
(constant volume) process during which the pressure increases, the changes in specific
internal energy, ∆u = cv∆T , and enthalpy, ∆b = cp∆T , are also positive.

The specific work done by the system is zero since dα = 0 during an isosteric process.
The first law (4.1.2) becomes simply

h = ∆u.

All of the energy transferred to the system by heating during an isosteric process is used
to increase the specific internal energy of the system.

4.5 Adiabatic processes

Heating in the atmosphere can be due to radiation, condensation, freezing, or conduction
from the underlying surface. Heating is often of secondary importance for synoptic scale
motions for one to two day time periods. Processes that include heating are diabatic; those
without heating are adiabatic.

For adiabatic processes, the first law in its alternate form (26) is

0 = cpdT − α dp.

Using the ideal gas law for α and dividing by cpT , this becomes

0 =
dT

T
− R

cp

dp

p
.
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By integrating between state 1 and state 2, we get

ln
T2

T1
=

R

cp
ln

p2

p1
.

By exponentiating, we get
T2

T1
=

(
p2

p1

)R/cp

=
(

p2

p1

)κ

, (27)

where κ ≡ R/cp = 0.286. This is Poisson’s equation. It describes how T and p are related
during an adiabatic process. Similar equations relate T and α and α and p:

T2

T1
=

(
α2

α1

)−R/cv

,

α2

α1
=

(
p2

p1

)−cv/cp

.

If p1 = p0 ≡ 100 kPa =1000 mb, T1 = θ, p2 = p, and T2 = T , then (27) becomes

T

θ
=

(
p

p0

)κ

. (28)

The temperature θ is called the potential temperature. It is the temperature a parcel
of dry air would have if it was brought adiabatically to a pressure of 1000 mb. It is a
characteristic property of a parcel of air which is invariant during adiabatic processes and
i s a conservative property.

The potential temperature is also a state variable, since it is a function of two state
variables. Lines of constant θ can therefore be drawn on an α,−p diagram. Such a line is
called a dry adiabat. Fig. 6 shows schematically some adiabats and isotherms on an α,−p
diagram. With the aid of such a diagram, one can graphically portray changes of state
during adiabatic processes.
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Figure 6: Schematic representation of dry adiabats (solid lines) and isotherms (dashed
lines) on an α,−p diagram (Hess 1959).
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5 The Thermodynamics of Water Vapor and Moist Air

5.1 Thermal properties of water substance

Water vapor is an exceptional gas in the earth’s atmosphere because it can coexist with
liquid water and solid water (ice). The specific volume of ice at 0◦C is 1.091×10−3 m3 kg−1.
The specific heat capacity of ice at 0◦C = 0.503 kcal kg−1 K−1. The specific volume of
water is 1.00× 10−3 m3 kg−1. The specific heat capacity of water at 15◦C is exactly 1.00
kcal kg−1 K−1. The properties of liquid water vary so little with temperature that we may
neglect the variations.

We will assume that water vapor satisfies the equation of state of an ideal gas. The
specific heat capacities of water vapor at low concentrations (partial pressures) are cvv =
0.331 kcal kg−1 K−1 and cpv = 0.441 kcal kg−1 K−1. The subscript v indicates that these
are values for water vapor. These quantities may vary appreciably with temperature, so
that water vapor does not satisfy the second condition for an ideal gas (i.e., that the specific
heat capacities are independent of temperature). However, we will always be concerned
with a mixture of dry air and a small amount of water vapor, so the specific heat capacities
of the mixture will not be seriously affected by the variations in the vapor properties.

5.2 Equation of state of moist air

Moist air is a mixture of dry air and wate vapor. Therefore, the mean molecular weight of
moist air is (see section 2.5)

1
m̄

=
1

Md + Mv

(
Md

md
+

Mv

mv

)
,

where subscript d indicates dry air and subscript v indicates water vapor. Expressing m̄
in terms of md gives

1
m̄

=
1

md

Md

Md + Mv

(
1 +

Mv/Md

mv/md

)
.

Mv/Md is the water vapor mixing ratio. It is the mass of water vapor per unit mass of dry
air. Using w ≡ Mv/Md, we can write the equation above as

1
m̄

=
1

md

1 + w/ε

1 + w
,

where ε = mv/md. The equation of state for a mixture of water vapor and dry air may
now be written as (see section 2e)

pα =
R∗

md

(
1 + w/ε

1 + w

)
T.
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Instead of using a variable gas constant for moist air, we define a new temperature,

Tv ≡
(

1 + w/ε

1 + w

)
T,

called the virtual temperature. It satisfies the equation of state for dry air,

pα =
R∗

md
Tv = RTv.

The virtual temperature is the temperature that dry air would have if its pressure and
specific volume (or density) were equal to those of a given sample of moist air.

The virtual temperature is always greater than the actual temperature. Using ε = 0.622,
we may write

Tv =
(

1 + 1.609w

1 + w

)
T ≈ (1 + 0.61w)T.

5.3 Mixing ratio

According to Dalton’s law, each gas in a mixture of gases behaves as if it were the only
gas present. Thus in a mixture of water vapor and dry air, water vapor obeys the ideal gas
law,

eαv =
R∗

mv
T,

where e is the partial pressure of water vapor, or the vapor pressure. Likewise in such a
mixture, dry air obeys the ideal gas law,

(p− e)αd =
R∗

md
T,

where p − e is the partial pressure of dry air. We can use these relations to express the
mixing ratio in terms of e and p:

w ≡ Mv

Md
=

ρv

ρd
=

αd

αv
=

mv

md

e

p− e
≈ mv

md

e

p
.

5.4 Moisture variables

Vapor pressure, e The pressure exerted by water vapor in a mixture of air and water
vapor.

Saturation vapor pressure, es(T ) The vapor pressure of water that is in equilibrium
with a plane surface of water. It is a function of temperature only. Bolton’s (1980)
formula for es(T ) is sufficiently accurate for most purposes:

es(T ) = 611.2 exp
(

17.67 Tc

Tc + 243.5

)
,

where es is in Pa and Tc ≡ T − T0 is temperature in degrees Celsius.
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Mixing ratio, w The ratio of the mass of water vapor present to the mass of dry air:

w =
ρv

ρd
=

mv

md

e

p− e
= ε

e

p− e
≈ ε

e

p
.

Saturation mixing ratio, ws(T, p) The mixing ratio for which water vapor is in equilib-
rium with a plane surface of water. It is a function of temperature and pressure:

ws = ε
es(T )

p− es(T )
≈ ε

es(T )
p

.

Relative humidity, r The ratio of the actual vapor pressure to the saturation vapor
pressure:

r =
e

es
≈ w

ws
.

Dew-point temperature, Td The temperature at which moist air becomes just satu-
rated after being cooled during a process in which p and w remain constant. Al-
ternatively, the temperature at which the mixing ratio equals the saturation mixing
ratio:

w = ws(Td, p).

The dew-point temperature may be calculated from

Td =
T

1− TRv
Le

ln(e/es)
,

where Rv ≡ R∗/mv = R/ε and Le is the latent heat of evaporation (see section 5.5).

Saturation pressure, ps Also called the lifting condensation level or LCL. The pressure
at which unsaturated air becomes saturated after a dry adiabatic ascent (expansion).

Saturation temperature, Ts The temperature at the saturation pressure. At p = ps, T =
Ts, the mixing ratio becomes the saturation mixing ratio, so

w = ws(Ts, ps).

An approximation for Ts is

Ts =
(

1
T − 55

− log r

2840

)−1

+ 55.

Height of LCL, zLCL This is approximately

zLCL − z ≈ T (z)− Td(z)
8

.

Virtual temperature, Tv The temperature at which dry air would have the same density
as a sample of moist air, at the same pressure:

Tv =
(

1 + 1.609w

1 + w

)
T ≈ (1 + 0.61w)T.
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5.5 Changes of phase and latent heats

In the atmosphere, liquid water and water vapor can coexist in thermodynamic equilibrium,
as can ice and water vapor. Vapor, liquid, and solid are called phases. The following
phase changes of water substance occur in the atmosphere: evaporation, condensation,
sublimation, deposition, melting, and freezing. Evaporation occurs when liquid water
changes to water vapor, while condensation is the opposite. Sublimation occurs when ice
changes to water vapor, while deposition is the opposite. Melting occurs when ice changes
to liquid water, while freezing is the opposite. Both condensation and freezing require
“nuclei” to initiate the phase change. If sufficient nuclei are not present, supersaturation
of water vapor, or supercooling of liquid water, may occur.

Heating or cooling of the environment occurs during phase changes, even though the
phase change is isothermal. The energy transferred is called the latent heat. Cooling occurs
during evaporation, sublimation, and melting, while heating occurs during condensation,
deposition, and freezing. At 0◦C the latent heat of evaporation is Le = 2.5× 106 J kg−1,
the latent heat of melting is Lm = 0.334× 106 J kg−1, and the latent heat of sublimation
is Ls = 2.834× 106 J kg−1.

5.6 Adiabatic processes of saturated air

When condensation occurs during ascent, the latent heat that is released significantly
reduces the rate of temperature decrease due to adiabatic expansion. Consider two cases:

All condensed water remains suspended. This is called a moist adiabatic or
saturation adiabatic process, and is reversible.

All condensed water falls out of the parcel immediately. This is called a pseudo-
adiabatic process, and is irreversible.

The real situation lies between these two extremes. The rate of cooling in a pseudo-
adiabatic process is essentially equal to that in a truly moist adiabatic one.

We will now consider a pseudo-adiabatic process in which the amount of water vapor
condensed is −dws so the latent heating is −Ldws. Here we use L = Le for simplicity. The
first law for the mixture of dry air and water vapor is

−Ldws = cp dT −RT
dp

p
. (29)

Since ws and es are known functions of T and p, this is a differential relationship between
T and p during a pseudo-adiabatic process.

We will use the definition of potential temperature given by Eq. (28) to write another
form of the first law. Take the logarithm of (28) to get

ln
T

θ
=

R

cp
ln

p

p0
.
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Differentiate this to obtain

d lnT − d ln θ =
R

cp
(d ln p− d ln p0),

which becomes
dT

T
− dθ

θ
=

R

cp

dp

p
.

Rearrange this to get

cp
dθ

θ
= cp

dT

T
−R

dp

p
. (30)

By comparing (29) and (30), we see that the first law of thermodynamics for a pseudo-
adiabatic process is

−L
dws

T
= cp

dθ

θ
,

which can also be written as
dθ +

L

cpπ
dws = 0,

where π is the Exner function:

π =
(

p

p0

)R/cp

. (31)

It can be shown that (see Wallace and Hobbs, First Edition, Problem 2.33)

d

(
ws

T

)
≈ dws

T
,

so
−Ld

(
ws

T

)
≈ cp

dθ

θ
= cpd ln θ.

Integrate from the original, saturated state (p, T, ws(T, p), θ(T, p)) to a state where ws = 0
and θ = θe:

Lws

cpT
= ln(θe/θ),

then exponentiate and rearrange to obtain

θ = θe exp(−Lws/cpT ).

This describes a pseudo-adiabat which is characterized by θe, the equivalent potential tem-
perature:

θe = θ exp(Lws/cpT ). (32)
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5.7 More moisture variables

The thermodynamic processes that define the following four variables are easily visualized
on a a skew T -log p diagram, as shown in Fig. 7.

Equivalent potential temperature, θe The potential temperature of a parcel that has
ascended pseudo-adiabatically until all water vapor has been condensed. Eq. (32):

θe = θ exp(Lws/cpT ) ≈ θ + Lws/cp.

Equivalent temperature, Te The temperature of a parcel that has first ascended pseudo-
adiabatically until all water vapor has been condensed, then descended (dry adiabat-
ically) to its original pressure:

Te = θe

(
p

p0

)R/cp

= T exp(Lws/cpT ) ≈ T + Lws/cp.

Wet-bulb temperature, Tw (i) The temperature of a parcel that has been isobarically
cooled by evaporation until saturated. (ii) The temperature of a parcel that has first
ascended dry adiabatically to its LCL, then descended moist (saturated) adiabatically
to its original pressure.

Wet-bulb potential temperature, θw (i) The temperature of a parcel that has first
been isobarically cooled by evaporation until saturated, then descended moist (sat-
urated) adiabatically to 1000 hPa. (ii) The temperature of a parcel that has first
ascended dry adiabatically to its LCL, then descended moist (saturated) adiabati-
cally to 1000 hPa.

Liquid water mixing ratio, wl The mass of liquid water (droplets) per unit mass of
dry air.

Total water mixing ratio, wt The mass of water vapor plus liquid water (droplets) per
unit mass of dry air: wt = w + wl.

During a reversible process, the total water mixing ratio (wt = w + wl) in a parcel
remains constant. During a pseudo-adiabatic process, any condensed water immediately
falls out of the parcel (as precipitation) so that the liquid water mixing ratio (wl) is always
zero.

Naturally occurring processes are usually neither exactly reversible nor pseudo-adiabatic,
but somewhere in between: some, but not all, of the condensed water falls out of the parcel
as precipitation so that the liquid water mixing ratio may be greater than zero, but the
total water mixing ratio is reduced by the loss due to precipitation.

Given the total water mixing ratio, one can then determine the remaining unknown
mixing ratios. We will assume that the parcel is either exactly saturated, or unsaturated
with no liquid water. If a parcel is exactly saturated: w = ws(T, p), so wl = wt −ws(T, p).
If a parcel is unsaturated with no liquid water: wl = 0, so w = wt.
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Figure 7: Depiction of thermodynamic variables and processes on a skew T -log p diagram
(Bohren and Albrecht 1998).
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6 Hydrostatic Equilibrium

6.1 The hydrostatic equation

Up to this point we have dealt with the properties and physical processes of individual air
parcels. Now we shall consider some aspects of the spatial distribution of these properties.

Thermodynamic variables in the atmosphere usually change more rapidly vertically
than horizontally. Forces acting along the vertical include gravity. The acceleration of
gravity, g, is approximately equal to 9.8 m s−2. No downward acceleration of the atmo-
sphere is observed so another force must balance gravity.

Figure 8: Change of pressure with height.

We know that pressure decreases with height in the atmosphere. Fig. 8 shows that over
a small height interval dz the pressure changes by dp (negative). This pressure difference
produces an upward directed force on the layer between heights z and z + dz. The force
per unit volume is dp/dz, while the force per unit mass is αdp/dz.

Observations show that the vertical pressure gradient force almost exactly balances
gravity. This balance is called hydrostatic equilibrium. It is expressed by the hydrostatic
equation:

α
dp

dz
= −g or

dp

dz
= −ρg. (33)

.

6.2 Height computations for upper-air soundings

Numerical weather prediction requires extensive information on the distribution of pressure,
temperature, and water vapor in the upper atmosphere. An upper-air sounding is taken
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by releasing a balloon carrying a radiosonde. This is an inexpensive instrument which
measures pressure, temperature, and relative humidity and transmits radio signals to a
ground station. Such soundings are taken at least twice a day at several hundred locations
around the world.

To make these soundings useful, one must determine the heights at which the measure-
ments are made. To do this one uses the hydrostatic equation,

−dp

dz
= ρg.

We will use the hydrostatic equation in the form

dz = −dp

ρg
.

To account for the effect of water vapor on density, we substitute for ρ from the equation
of state for moist air to get

dz = −RTv

g

dp

p
.

and integrate this differential equation between two heights z1 and z2 where the pressures
are p1 and p2 to obtain

z2 − z1 = −R

g

∫ p2

p1

Tv
dp

p
.

One can always find a mean virtual temperature T̄v so that∫ p2

p1

Tv
dp

p
= T̄v

∫ p2

p1

dp

p
= T̄v(ln p2 − ln p1) = T̄v ln

p2

p1
.

Then

z2 − z1 = −RT̄v

g
ln

p2

p1
. (34)

This is called the hypsometric equation. For dry air, Tv = T , so (34) becomes

z2 − z1 = −RT̄

g
ln

p2

p1
. (35)

6.3 The hydrostatics of special atmospheres

It is often useful to apply the hydrostatic equation to special cases of atmospheric structure.
Two such cases are considered in this section. For these cases, we will assume that the air
contains no water vapor.
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6.3.1 The isothermal atmosphere

If the hydrostatic equation for dry air (35) is integrated from a level z1 with pressure p1 to
a height z2 where the pressure is p2, while assuming that the temperature T is constant,
one obtains

p2 = p1 exp
(
−z2 − z1

H

)
, (36)

where H ≡ RT/g.

6.3.2 The constant-lapse-rate atmosphere

In this case, we assume that temperature varies linearly between heights z1 and z2 where
the temperatures are T1 and T2. Then

T (z) = T1 − γ(z − z1)

where the lapse rate γ ≡ −dT/dz is a constant. Integrate the hydrostatic equation for dry
air from z1 at pressure p1 to z2 at pressure p2 to obtain

p2 = p1

(
T2

T1

) g
Rγ

. (37)

6.3.3 The U. S. Standard Atmosphere

The U. S. Standard Atmosphere is meant to represent the average conditions over the
United States at latitude 40◦N. The following are the basic specifications of the U. S.
Standard Atmosphere up to an altitude of 32 km:

1. The surface temperature is 15.0◦C and the surface pressure is 1013.25 mb.

2. The air is assumed to be dry and to obey the ideal gas law.

3. The acceleration of gravity is assumed to be constant and equal to 9.80665 m s−2.

4. From sea level to 10.769 km the temperature decreases at a constant rate of 6.5 K
km−1. This region is the troposphere.

5. From 10.769 km to 32 km the temperature is constant at -55.0◦C. This region is the
stratosphere.

The standard atmosphere is a combination of the two special cases already discussed:
constant-lapse-rate and isothermal. Therefore, the pressure at any level can be computed
from Eqs. (36) and (37). The calculated characteristics of this atmosphere are listed in
Table 3.
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Table 3: Properties of the U. S. Standard Atmosphere up to 20 km. (Hess 1959).

Altitude Pressure Temperature Density
(km) (mb) (oC) (kg m−3)

0 1013.25 15.0 1.226
1 898.71 8.5 1.112
2 794.90 2.0 1.007
3 700.99 -4.5 0.909
4 616.29 -11.0 0.819
5 540.07 -17.5 0.736
6 471.65 -24.0 0.660
7 410.46 -30.5 0.590
8 355.82 -37.0 0.525
9 307.24 -43.5 0.466

10 246.19 -50.0 0.413
(10.769) (234.53) (-55.0) (0.375)
11 226.19 -55.0 0.361
12 193.38 -55.0 0.309
13 165.33 -55.0 0.264
14 141.35 -55.0 0.226
15 120.86 -55.0 0.193
16 103.30 -55.0 0.165
17 88.34 -55.0 0.141
18 75.53 -55.0 0.121
19 64.57 -55.0 0.103
20 55.21 -55.0 0.088
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7 Hydrostatic Stability and Convection

7.1 The dry and moist adiabatic lapse rates

The criteria for stability involve the lapse rates for a parcel moving dry adiabatically and
moist adiabatically. Therefore we will derive expressions for these lapse rates. In the
following descriptions, a variable with an overbar is a property of the environment; a
variable without an overbar is a property of the parcel.

The first law of thermodynamics is

dh = cp dT − α dp

for the parcel. The pressure change dp experienced by the parcel depends upon the en-
vironment. We assume that the pressure of the parcel is always the same as that of the
environment, and that the environment is in hydrostatic equilibrium, so that

dp = dp̄ = − 1
ᾱ

g dz. (38)

Use this in the first law to obtain

dh = cp dT +
α

ᾱ
dz.

The ratio α/ᾱ = Tv/T̄v is close to one, so that to a good approximation the first law of
thermodynamics for a parcel in a hydrostatic environment is

dh = cp dT + g dz. (39)

7.1.1 The dry-adiabatic lapse rate

Unsaturated air moving vertically changes state dry adiabatically. Therefore, we use the
adiabatic form of Eq. (39):

0 = cp dT + dz

to obtain the lapse rate for a dry-adiabatic process,

Γd ≡ −dT

dz
=

g

cp
.

The value of Γd for dry air is 9.76 K km−1.
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7.1.2 The saturation-adiabatic lapse rate

As saturated air ascends, heating due to condensation occurs. Therefore, we use Eq. (39)
with dh = −Ldws:

−Ldws = cp dT + g dz. (40)

Expand dws to make its dependence on dp and dT explicit:

dws =
(

∂ws

∂p

)
T

dp +
(

∂ws

∂T

)
p
dT.

Substitute this into (40), substitute for dp from (38), divide the result by cp dz, and assume
that α/ᾱ ≈ 1 to obtain:

−L

cp

[
−

(
∂ws

∂p

)
T

ρg +
(

∂ws

∂T

)
p

dT

dz

]
=

dT

dz
+

g

cp
.

Then solve for dT/dz to obtain the lapse rate for a saturation-adiabatic process,

Γs ≡ −dT

dz
=

g

cp

1− ρL
(

∂ws
∂p

)
T

1 + L
cp

(
∂ws
∂T

)
p

. (41)

Equation (41) may be rewritten in terms of ws by using the approximation

ws ≈ ε
es

p

and the Clausius-Clapeyron equation,

des

dT
=

mvLes

R∗T 2
.

The result is

Γs ≡ −dT

dz
=

g

cp

1 + L
R

ws
T

1 + εL2

cp R
ws
T 2

.

Note that Γs is not a constant, but is equal to Γd multiplied by a factor that depends on
temperature and pressure. Values of Γs for various pressures and temperatures are given
in Table 4.
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Table 4: Values of the saturated pseudoadiabatic lapse rate in K km−1 calculated from
Eq. (41) for saturation with respect to water (Hess 1959).

T (◦C) P (mb)
1000 700 500

-30 9.2 9.0 8.7
-20 8.6 8.2 7.8
-10 7.7 7.1 6.4

0 6.5 5.8 5.1
+10 5.3 4.6 4.0
+20 4.3 3.7 3.3

7.2 Stability criteria: The parcel method

If a parcel of air is displaced from its initial position in an atmosphere in hydrostatic
balance, the parcel’s resulting motion determines the atmospheric stability at that location.
If the parcel moves further away from its initial position, then the atmosphere is unstable.
If the parcel returns towards its initial position, then the atmosphere is stable. If the parcel
does not move, then the atmosphere is neutral.

We will use the equation for the vertical acceleration of an air parcel to calculate a
displaced parcel’s velocity and height as a function of time. In the following description, a
variable with an overbar is a property of the environment; a variable without an overbar
is a property of the parcel.

We assume that the environment of the parcel is in hydrostatic equilibrium:

dw̄

dt
= −g − ᾱ

dp̄

dz
= 0.

The parcel itself will have a specific volume α and an acceleration dw/dt. We assume that
the pressure of the parcel is the same as that of its environment so that

dw

dt
= −g − α

dp̄

dz
.

We use the hydrostatic equation to eliminate dp̄/dz from this equation:

dw

dt
= g

α− ᾱ

ᾱ
.

The right hand side is called the buoyancy and is due to the difference in specific volume
(or density) between the parcel and the environment. Substitute for α and ᾱ from the
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equation of state for dry air, pα = RT , (for simplicity, we ignore the effect of water vapor
on density) to obtain

dw

dt
= g

T − T̄

T̄
. (42)

Let z = 0 denote the parcel’s equilibrium location. Then at z = 0, T = T̄ , and
dw/dt = 0. Assume that the temperature in the environment varies linearly with height.
Then the temperature at any height z in the environment is

T̄ (z) = T̄ (0)− γz,

where γ = −dT̄ /dz is the environmental lapse rate. Similarly, the parcel temperature at
any height z is

T (z) = T (0)− Γdz = T̄ (0)− Γz,

where Γ= − dT/dz is the parcel lapse rate When these expressions are substituted in Eq.
(42), we obtain

dw

dt
=

g

T̄ (0)− γz
(γ − Γ)z ≈ g

T̄ (0)
(γ − Γ)z = bz. (43)

Eq. (43) describes how w changes with time. By definition,

dz

dt
= w. (44)

Eqs. (43) and (44) are coupled linear differential equations which are easy to solve analyt-
ically for z(t). If the coefficient b in Eq. (43) is negative (i.e., γ < Γ), the solution z(t) is
sinusoidal. The parcel will oscillate about its original position with period

τ =
2π√
−b

=
2π√

g
T̄ (0)

(Γ− γ)
. (45)

The atmosphere is thus stable in this case. If the coefficient b is positive (i.e., γ > Γ), the
solution z(t) is exponentially increasing, and the atmosphere is unstable. If b = 0 (i.e.,
γ = Γ), the atmosphere is neutral.

Recall that for unsaturated air, Γ = Γd, while for saturated air, Γ = Γs. Because
Γs < Γd, the atmosphere can have five responses with respect to parcel displacement in an
atmospheric layer of lapse rate γ. The atmosphere is said to be:

absolutely stable if γ < Γs,
saturated neutral if γ = Γs,
conditionally unstable if Γs < γ < Γd,
dry neutral if γ = Γd,
absolutely unstable if γ > Γd.
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7.3 Convective Available Potential Energy (CAPE)

Suppose the atmosphere is conditionally unstable (i.e., Γs < γ < Γd). An initially unsatu-
rated parcel will be stable to small upward displacements. If the parcel’s lifting condensa-
tion level (LCL) is reached, the parcel lapse rate becomes Γs. If the parcel is lifted further,
it will become positively buoyant at its level of free convection (LFC). Thus the parcel is
unstable to large upward displacements. Above the LFC, the parcel will eventually become
negatively buoyant at its level of neutral buoyancy (LNB). The parcel will overshoot, then
oscillate about this level.

Convective Available Potential Energy (CAPE) is proportional to the area between a
sounding and the parcel’s temperature plotted on a skew T -log p diagram. CAPE depends
on the parcel properties, which in turn depend on the parcel’s originating level. Thus,

CAPEi ≡
∫ LNB

zi

g
T − T̄

T̄
dz =

∫ pi

pn

R(T − T̄ ) d ln p,

where zi is the parcel’s initial height, pi its initial pressure, and pn the pressure at the
LNB.

We can also define negative area (NA) and positive area (PA):

NAi ≡ −
∫ pi

pf

R(T − T̄ ) d ln p,

PAi ≡
∫ pf

pn

R(T − T̄ ) d ln p,

so
CAPEi = PAi −NAi.

Here, pf is the pressure at the LFC.
The negative area is the amount of vertical kinetic energy per unit mass required for

a parcel to reach the LFC from zi. In this case, wf = 0 and w2
i /2 = NAi. The positive

area is the amount of vertical kinetic energy per unit mass that is acquired by the parcel
as it ascends from the LFC to LNB. If wLFC = 0, then w2

n/2 = PAi. In particular, the
maximum updraft speed (which is attained at the LNB) is then just

wn =
√

2PAi.

Exercise. Derive CAPEi from (42).
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