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The origin of the buoyancy force can be elucidated by first
rewriting (2.56), neglecting Fw , as

ρ
dw

dt
= −∂p

∂z
− ρg. (2.72)

Let us now define a horizontally homogeneous base state
pressure and density field (denoted by overbars) that is in
hydrostatic balance, such that

0 = −∂p

∂z
− ρg. (2.73)

Subtracting (2.73) from (2.72) yields

ρ
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∂z
− ρ ′g, (2.74)

where the primed p and ρ variables are the deviations
of the pressure and density field from the horizontally
homogeneous, balanced base state [i.e., p = p(z) + p′, ρ =
ρ(z) + ρ ′]. Rearrangement of terms in (2.74) yields

dw
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= − 1

ρ

∂p′
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− ρ ′

ρ
g (2.75)

= − 1

ρ

∂p′

∂z
+ B (2.76)

where B (= − ρ′

ρ
g) is the buoyancy and − 1

ρ
∂p′

∂z is the vertical
perturbation pressure gradient force. The vertical perturba-
tion pressure gradient force arises from velocity gradients
and density anomalies. A more thorough examination of
pressure perturbations is undertaken in Section 2.5.

When the Boussinesq approximation is valid
(Section 2.2), ρ(x, y, z, t) is replaced with a constant ρ0

everywhere that ρ appears in the momentum equations
except in the numerator of the buoyancy term in the
vertical momentum equation. Similarly, when the anelastic
approximation is valid, ρ(x, y, z, t) is replaced with ρ(z) in
the momentum equations except in the numerator of the
buoyancy term in the vertical momentum equation.

It is often sufficiently accurate to replace ρ with ρ in the
denominator of the buoyancy term, that is,

B = −ρ ′

ρ
g ≈

(
T ′

v

Tv
− p′

p

)
g, (2.77)

where we also have made use of the equation of state
and have assumed that perturbations are small relative to
the mean quantities. In many situations, |p′/p| $ |T ′

v/Tv|,
in which case B ≈ T ′

v/Tv (it can be shown that |p′/p| $
|T ′

v/Tv| when u2/c2 $ |T ′
v/Tv|, where c =

√
cpRdTv/cv is

the speed of sound). Furthermore, it is often customary
to regard the reference state virtual temperature as that
of the ambient environment, and the virtual temperature
perturbation as the temperature difference between an air
parcel and its surrounding environment, so that

B ≈
Tvp − Tvenv

Tvenv

g, (2.78)

where Tvp is the virtual temperature of an air parcel and
Tvenv is the virtual temperature of the environment. When
an air parcel is warmer than the environment, a positive
buoyancy force exists, resulting in upward acceleration.

When hydrometeors are present and assumed to be
falling at their terminal velocity, the downward acceleration
due to drag from the hydrometeors is equal to grh, where
rh is the mass of hydrometeors per kg of air (maximum
values of rh within a strong thunderstorm updraft typically
are 8–18 g kg−1). The effect of this hydrometeor loading on
an air parcel can be incorporated into the buoyancy; for
example, we can rewrite (2.77) as
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where θ ′
ρ = θρ − θρ (θρ = θ v if the environment contains

no hydrometeors).8 Examination of (2.79) reveals that the
positive buoyancy produced by a 3 K virtual temperature
excess (i.e., how warm a parcel is compared to its envi-
ronment) is offset entirely (assuming θv ∼ 300 K) by a
hydrometeor mixing ratio of 10 g kg−1. In many applica-
tions throughout this book, we can understand the essential

8 Sometimes the pressure gradient force is expressed in terms of a
nondimensional pressure, π = (p/p0)R/cp , often referred to as the Exner

function. In that case, the rhs of (2.75) can be written as−cpθρ
∂π ′
∂z + g

θ ′
ρ

θρ
,

where π ′ is the perturbation Exner function and θρ = θ v if the base
state is unsaturated, as is typically the case. Notice that the buoyancy
term gθ ′

ρ/θρ has the base state density potential temperature in its
denominator, in contrast to the buoyancy term −gρ′/ρ in (2.75).
When the Exner function is used in the pressure gradient force and
buoyancy is written as gθ ′

ρ/θρ , part of the pressure perturbation that
contributes to ρ′ is absorbed by θ ′

ρ , and the remainder of the pressure
perturbation is absorbed by π ′. On the other hand, if the vertical

pressure gradient and buoyancy are written as − 1
ρ

∂p′
∂z and −gρ′/ρ,

respectively, as on the rhs of (2.75), and if the buoyancy is approximated
as −gρ′/ρ ≈ −gρ′/ρ ≈ gθ ′

ρ/θρ , then only part of the contribution of

p′ to ρ′ is included. In summary, replacing −gρ′/ρ with gθ ′
ρ/θρ is an

approximation if the pressure gradient force is expressed in terms of ρ

and p′, and is exact if the pressure gradient force is expressed in terms of
θρ and π ′.
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On the synoptic scale, the Coriolis force tends to domi-
nate (2.128) and, neglecting the β effect, we obtain

α0∇2p′ = f ζ. (2.129)

The Laplacian of a wavelike variable away from boundaries
tends to be positive (negative) where the perturbations of
the variable itself are negative (positive). Thus, ∇2p′ ∝ −p′

and
p′ ∝ −f ζ , (2.130)

which is the familiar synoptic-scale relationship between
pressure perturbations and flow curvature: anticyclonic
flow is associated with high pressure and cyclonic flow is
associated with low pressure.

Hereafter, we shall neglect the terms in (2.128) associated
with the Coriolis force and β effect. Also, it will be helpful to
rewrite (2.128) in terms of vorticity (ω) and the deformation
tensor (also known as the rate-of-strain tensor), eij, such
that

α0∇2p′ = −e2
ij + 1

2
|ω|2 + ∂B

∂z
, (2.131)

where

e2
ij = 1

4

3∑

i=1

3∑

j=1

(
∂ui

∂xj
+

∂uj

∂xi

)2

(2.132)

and u1 = u, u2 = v, u3 = w, x1 = x, x2 = y, and x3 = z.
Deformation describes the degree to which a fluid element
changes shape as a result of spatial variations in the velocity
field (e.g., fluid elements can be stretched or sheared by
velocity gradients).

For well-behaved fields (i.e., ∇2p′ ∝ −p′),

p′ ∝ e2
ij︸︷︷︸

splat

−1

2
|ω|2

︸ ︷︷ ︸
spin

︸ ︷︷ ︸
dynamic pressure perturbation

−∂B

∂z︸ ︷︷ ︸
buoyancy pressure perturbation

.

(2.133)
We see that deformation is always associated with high
perturbation pressure via the e2

ij term, sometimes known
as the splat term.11 Rotation (of any sense) is always
associated with low pressure by way of the |ω|2 term,
sometimes referred to as the spin term. We know that,
hydrostatically, warming in a column leads to pressure falls
in the region below the warming. The ∂B/∂z or buoyancy
pressure term partly accounts for such hydrostatic effects.

11 The informal, and perhaps a bit humorous, name of the splat term
originates from the field of fluid dynamics, presumably because the term
is large when fluid elements are deformed by velocity gradients in a way
that is similar to how a fluid element would flatten if impacted against
an obstacle.

Low- (high-) pressure perturbations occur below (above)
regions of maximum buoyancy (e.g., below and above a
region of maximum latent heat release). Although it is
tempting to regard the terms on the rhs of (2.133) as
forcings for p′, (2.133) is a diagnostic equation rather than
a prognostic equation. In other words, the terms on the rhs
of (2.133) are associated with pressure fluctuations, rather
than being the cause of the pressure fluctuations.

Pressure fluctuations associated with the first two terms
on the rhs of (2.133) are sometimes referred to as dynamic
pressure perturbations, p′

d, whereas pressure perturbations
associated with the third term on the rhs of (2.133) some-
times are referred to as buoyancy pressure perturbations, p′

b,
where

p′ = p′
d + p′

b, (2.134)

and
α0∇2p′

d = −e2
ij +

1

2
|ω|2 (2.135)

α0∇2p′
b = ∂B

∂z
. (2.136)

Comparison of the partitioning of pressure perturbations
in this section with that performed in the previous section
[compare (2.122) with (2.134)] reveals that the nonhydro-
static pressure perturbation, p′

nh, comprises the dynamic
pressure perturbation, p′

d, and a portion of the buoyancy
pressure perturbation, p′

b. The hydrostatic pressure pertur-
bation, p′

h, comprises the remainder of p′
b. It can be shown

that − 1
ρ

∂p′
b

∂z + B is independent of the specification of the
somewhat arbitrary base state ρ(z) profile, unlike B and

− 1
ρ

∂p′
b

∂z , which individually depend on the base state. For

this reason, diagnostic studies often evaluate − 1
ρ

∂p′
b

∂z + B
collectively and refer to it as the buoyancy forcing. In
such instances, B is sometimes referred to as the thermal
buoyancy.12

Examples of the pressure perturbation fields associated
with a density current (Section 5.3.2) and a buoyant, moist
updraft are presented in Figures 2.6 and 2.7. In the case of
the density current (Figure 2.6), positive p′

h and p′
b are found

within the cold anomaly, with the maxima at the ground. A
discrete excess in total pressure is present at the leading edge
of the density current. This high pressure is a consequence
of p′

nh > 0 and p′
d > 0 and the fact that

(
∂u
∂x

)2
is large there.

There is also a prominent area of p′ < 0 (and p′
d < 0)

centered behind the leading edge of the density current,
near the top of the density current, associated with the
horizontal vorticity that has been generated baroclinically.
In the case of the moist, buoyant updraft (Figure 2.7),

12 Additional discussion is provided by Doswell and Markowski (2004).
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changes shape as a result of spatial variations in the velocity
field (e.g., fluid elements can be stretched or sheared by
velocity gradients).

For well-behaved fields (i.e., ∇2p′ ∝ −p′),

p′ ∝ e2
ij︸︷︷︸

splat

−1

2
|ω|2

︸ ︷︷ ︸
spin

︸ ︷︷ ︸
dynamic pressure perturbation

−∂B

∂z︸ ︷︷ ︸
buoyancy pressure perturbation

.

(2.133)
We see that deformation is always associated with high
perturbation pressure via the e2

ij term, sometimes known
as the splat term.11 Rotation (of any sense) is always
associated with low pressure by way of the |ω|2 term,
sometimes referred to as the spin term. We know that,
hydrostatically, warming in a column leads to pressure falls
in the region below the warming. The ∂B/∂z or buoyancy
pressure term partly accounts for such hydrostatic effects.

11 The informal, and perhaps a bit humorous, name of the splat term
originates from the field of fluid dynamics, presumably because the term
is large when fluid elements are deformed by velocity gradients in a way
that is similar to how a fluid element would flatten if impacted against
an obstacle.

Low- (high-) pressure perturbations occur below (above)
regions of maximum buoyancy (e.g., below and above a
region of maximum latent heat release). Although it is
tempting to regard the terms on the rhs of (2.133) as
forcings for p′, (2.133) is a diagnostic equation rather than
a prognostic equation. In other words, the terms on the rhs
of (2.133) are associated with pressure fluctuations, rather
than being the cause of the pressure fluctuations.

Pressure fluctuations associated with the first two terms
on the rhs of (2.133) are sometimes referred to as dynamic
pressure perturbations, p′

d, whereas pressure perturbations
associated with the third term on the rhs of (2.133) some-
times are referred to as buoyancy pressure perturbations, p′

b,
where

p′ = p′
d + p′

b, (2.134)

and
α0∇2p′

d = −e2
ij +

1

2
|ω|2 (2.135)

α0∇2p′
b = ∂B

∂z
. (2.136)

Comparison of the partitioning of pressure perturbations
in this section with that performed in the previous section
[compare (2.122) with (2.134)] reveals that the nonhydro-
static pressure perturbation, p′

nh, comprises the dynamic
pressure perturbation, p′

d, and a portion of the buoyancy
pressure perturbation, p′

b. The hydrostatic pressure pertur-
bation, p′

h, comprises the remainder of p′
b. It can be shown

that − 1
ρ

∂p′
b

∂z + B is independent of the specification of the
somewhat arbitrary base state ρ(z) profile, unlike B and

− 1
ρ

∂p′
b

∂z , which individually depend on the base state. For

this reason, diagnostic studies often evaluate − 1
ρ

∂p′
b

∂z + B
collectively and refer to it as the buoyancy forcing. In
such instances, B is sometimes referred to as the thermal
buoyancy.12

Examples of the pressure perturbation fields associated
with a density current (Section 5.3.2) and a buoyant, moist
updraft are presented in Figures 2.6 and 2.7. In the case of
the density current (Figure 2.6), positive p′

h and p′
b are found

within the cold anomaly, with the maxima at the ground. A
discrete excess in total pressure is present at the leading edge
of the density current. This high pressure is a consequence
of p′

nh > 0 and p′
d > 0 and the fact that

(
∂u
∂x

)2
is large there.

There is also a prominent area of p′ < 0 (and p′
d < 0)

centered behind the leading edge of the density current,
near the top of the density current, associated with the
horizontal vorticity that has been generated baroclinically.
In the case of the moist, buoyant updraft (Figure 2.7),

12 Additional discussion is provided by Doswell and Markowski (2004).
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Figure 2.6 The pressure perturbations associated with a numerically simulated density current. The horizontal and vertical
grid spacing of the simulation is 100 m. The ambient environment is unstratified. The domain shown is much smaller
than the actual model domain used in the simulation. Potential temperature perturbations (θ ′) are shown in each panel
(refer to the color scale). Wind velocity (v) vectors in the x-z plane are shown in the top left panel (a reference vector
is shown in the corner of this panel). Pressure perturbations are presented in the other panels. Units are Pa; the contour
interval is 25 Pa = 0.25 mb (dashed contours are used for negative values). Note that p′ = p′

h + p′
nh = p′

d + p′
b. The p′

b

field was obtained by solving ∇2p′
b = ∂(ρB)

∂z , where ρ is the base state density, using periodic lateral boundary conditions

and assuming
∂p′

b
∂z = 0 at the top and bottom boundaries. (Regarding the boundary conditions, all that is known is that

∂p′
∂z = ρB at the top and bottom boundaries, owing to the fact that dw/dt = 0 at these boundaries, but it is somewhat

arbitrary how one specifies the boundary conditions for
∂p′

b
∂z and

∂p′
d

∂z individually.) Because of the boundary conditions
used, the retrieved p′

b field is not unique. A constant was added to the retrieved p′
b field so that the domain-averaged p′

b
field is zero. The p′

d field was then obtained by subtracting p′
b from the total p′ field.

a region of p′
h < 0 (and p′

nh > 0) is located beneath the
buoyant updraft. A region of p′

d > 0 exists above (below)
the maximum updraft where horizontal divergence (con-
vergence) is strongest;

(
∂u
∂x

)2
is large in both regions. On

the flanks of the updraft, p′
d < 0 as a result of the horizon-

tal vorticity that has been generated baroclinically by the
horizontal buoyancy gradients. The total p′ field opposes

the upward-directed buoyancy force, in large part as a
result of the p′

b field (i.e., the p′ and p′
b fields are well-

correlated).
It is often useful to partition the wind field into a mean

flow with vertical wind shear representing the environment
(denoted with overbars) and departures from the mean
(denoted with primes); i.e., let u = u + u′, v = v + v′, and
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compensating subsidence, where adiabatic warming low-
ers the density in the column (e.g., the wake depressions
and inflow lows of mesoscale convective systems), and the
increase of surface pressure in regions where evaporative
cooling increases density (e.g., mesohighs within mesoscale
convective systems).

2.5.2 Hydrostatic and nonhydrostatic
pressure perturbations

There are many mesoscale phenomena for which the hydro-
static approximation is not a good one (i.e., dw/dt is
significant). In such instances, pressure perturbations can-
not be deduced accurately using an integrated form of the
hydrostatic equation like that used above. Moreover, it is
often more intuitive to partition variables into base state
values and perturbations from the base state. In principle,
any base state can be specified, but we typically choose a
base state that is representative of some average state of the
atmosphere in order to facilitate interpretation of what the
deviations from the base state imply. For example, a hor-
izontally homogeneous, hydrostatic base state is the most
common choice.

Let us describe the total pressure p and density ρ as the
sum of a horizontally homogeneous base state pressure and
density, and a deviation from this base state, that is,

p(x, y, z, t) = p(z) + p′(x, y, z, t) (2.120)

ρ(x, y, z, t) = ρ(z) + ρ ′(x, y, z, t), (2.121)

where the base state is denoted with overbars, the deviation
from the base state is denoted with primes, and the base state
is defined such that it is in hydrostatic balance ( ∂p

∂z = −ρg).
The perturbation pressure, p′, can be represented as

the sum of a hydrostatic pressure perturbation p′
h and a

nonhydrostatic pressure perturbation p′
nh, that is,

p′ = p′
h + p′

nh. (2.122)

The former arises from density perturbations by way of the
relation

∂p′
h

∂z
= −ρ ′g, (2.123)

which allows us to rewrite the inviscid form of (2.56) as

dw

dt
= − 1

ρ

∂p′
nh

∂z
. (2.124)

Hydrostatic pressure perturbations occur beneath buoyant
updrafts (where p′

h < 0) and within the latently cooled
precipitation regions of convective storms (where
p′

h > 0) (e.g., Figure 5.23). The nonhydrostatic pressure

perturbation is simply the difference between the total
pressure perturbation and hydrostatic pressure pertur-
bation and is responsible for vertical accelerations. An
alternate breakdown of pressure perturbations is provided
below.

2.5.3 Dynamic and buoyancy pressure
perturbations

Another common approach used to partition the pertur-
bation pressure is to form a diagnostic pressure equation
by taking the divergence (∇·) of the three-dimensional
momentum equation. We shall use the Boussinesq momen-
tum equation for simplicity, which can be written as
[cf. (2.43)]

∂v
∂t

+ v · ∇v = −α0∇p′ + Bk − f k × v (2.125)

where α0 ≡ 1/ρ0 is a constant specific volume and the
Coriolis force has been approximated as −f k × v. The use
of the fully compressible momentum equations results in
a few additional terms upon taking the divergence, but
the omission of these terms does not severely hamper a
qualitative assessment of the relationship between pressure
perturbations and the wind and buoyancy fields derived
from the Boussinesq momentum equations.

The divergence of (2.125) is

∂(∇ · v)

∂t
+ ∇ · (v · ∇v) = −α0∇2p′ + ∂B

∂z
−∇ · (f k × v). (2.126)

Using ∇ · v = 0, we obtain

α0∇2p′ = −∇ · (v · ∇v) + ∂B

∂z
− ∇ · (f k × v). (2.127)

After evaluating ∇ · (v · ∇v) and ∇ · (f k × v), we obtain

α0∇2p′ = −
[(

∂u

∂x

)2

+
(

∂v

∂y

)2

+
(

∂w

∂z

)2
]

−2
(

∂v

∂x

∂u

∂y
+ ∂w

∂x

∂u

∂z
+ ∂w

∂y

∂v

∂z

)

+∂B

∂z
+ f ζ − βu, (2.128)

where ζ = ∂v
∂x − ∂u

∂y and β = df /dy. The last term on the
rhs of (2.128) is associated with the so-called β effect and is
small, even on the synoptic scale. The second-to-last term
on the rhs of (2.128) is associated with the Coriolis force.
The remaining terms will be discussed shortly.
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After evaluating ∇ · (v · ∇v) and ∇ · (f k × v), we obtain

α0∇2p′ = −
[(

∂u

∂x

)2

+
(

∂v

∂y

)2

+
(

∂w

∂z

)2
]

−2
(

∂v

∂x

∂u

∂y
+ ∂w

∂x

∂u

∂z
+ ∂w

∂y

∂v

∂z

)

+∂B

∂z
+ f ζ − βu, (2.128)

where ζ = ∂v
∂x − ∂u

∂y and β = df /dy. The last term on the
rhs of (2.128) is associated with the so-called β effect and is
small, even on the synoptic scale. The second-to-last term
on the rhs of (2.128) is associated with the Coriolis force.
The remaining terms will be discussed shortly.
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Figure 2.6 The pressure perturbations associated with a numerically simulated density current. The horizontal and vertical
grid spacing of the simulation is 100 m. The ambient environment is unstratified. The domain shown is much smaller
than the actual model domain used in the simulation. Potential temperature perturbations (θ ′) are shown in each panel
(refer to the color scale). Wind velocity (v) vectors in the x-z plane are shown in the top left panel (a reference vector
is shown in the corner of this panel). Pressure perturbations are presented in the other panels. Units are Pa; the contour
interval is 25 Pa = 0.25 mb (dashed contours are used for negative values). Note that p′ = p′

h + p′
nh = p′

d + p′
b. The p′

b

field was obtained by solving ∇2p′
b = ∂(ρB)

∂z , where ρ is the base state density, using periodic lateral boundary conditions

and assuming
∂p′

b
∂z = 0 at the top and bottom boundaries. (Regarding the boundary conditions, all that is known is that

∂p′
∂z = ρB at the top and bottom boundaries, owing to the fact that dw/dt = 0 at these boundaries, but it is somewhat

arbitrary how one specifies the boundary conditions for
∂p′

b
∂z and

∂p′
d

∂z individually.) Because of the boundary conditions
used, the retrieved p′

b field is not unique. A constant was added to the retrieved p′
b field so that the domain-averaged p′

b
field is zero. The p′

d field was then obtained by subtracting p′
b from the total p′ field.

a region of p′
h < 0 (and p′

nh > 0) is located beneath the
buoyant updraft. A region of p′

d > 0 exists above (below)
the maximum updraft where horizontal divergence (con-
vergence) is strongest;

(
∂u
∂x

)2
is large in both regions. On

the flanks of the updraft, p′
d < 0 as a result of the horizon-

tal vorticity that has been generated baroclinically by the
horizontal buoyancy gradients. The total p′ field opposes

the upward-directed buoyancy force, in large part as a
result of the p′

b field (i.e., the p′ and p′
b fields are well-

correlated).
It is often useful to partition the wind field into a mean

flow with vertical wind shear representing the environment
(denoted with overbars) and departures from the mean
(denoted with primes); i.e., let u = u + u′, v = v + v′, and
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Figure 2.7 As in Figure 2.6, but for the case of a warm bubble released in a conditionally unstable environment. The
bubble had an initial potential temperature perturbation of 2 K, a horizontal radius of 5 km, and a vertical radius of 1.5 km.
The bubble was released 1.5 km above the ground. The fields shown above are from 600 s after the release of the bubble.
The environment has approximately 2200 J kg−1 of CAPE and is the environment used in the simulations of Weisman and
Klemp (1982). The horizontal and vertical grid spacing is 200m (the domain shown above is much smaller than the actual
model domain). The contour interval is 25 Pa (0.25 mb) for p′, p′

b, and p′
d. The contour interval is 50 Pa (0.50 mb) for p′

h
and p′

nh.

w = w′. Then (2.133) becomes

p′ ∝ e′2
ij − 1

2
|ω′|2

︸ ︷︷ ︸
nonlinear dynamic pressure perturbation

+2
(

∂w′

∂x

∂u

∂z
+ ∂w′

∂y

∂v

∂z

)

︸ ︷︷ ︸
linear dynamic pressure perturbation

−∂B

∂z︸ ︷︷ ︸
buoyancy pressure perturbation

.(2.137)

where e′
ij and ω′ are the deformation and vorticity

perturbations, respectively. The dynamic pressure terms

involving spin and splat are referred to as nonlinear dynamic
pressure terms, whereas the remaining dynamic pressure
terms are referred to as linear dynamic pressure terms
because they include only one perturbation quantity per
term.

The linear dynamic pressure terms can be written as

2
(

∂w′

∂x

∂u

∂z
+ ∂w′

∂y

∂v

∂z

)
= 2S · ∇hw

′ (2.138)

where S = (∂u/∂z, ∂v/∂z) is the mean vertical wind shear
and ∇hw

′ is the horizontal gradient of the vertical velocity
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displaced parcel as a function of the environmental lapse
rate; gravity waves are discussed in much greater detail in
Chapter 6.

For γ >"p, i
[

g
T0

("p − γ )
]1/2

is real, and as t becomes
large, (3.7) becomes

#z(t) = C1e
[

g
T0

(γ−"p)
]1/2

t
. (3.10)

The displacement of the parcel increases exponentially with
time, implying instability, although (3.10) fails to tell us
how far a parcel will rise. The assumed linear profile of
environmental temperature does not extend to infinity;
(3.10) is only valid for relatively small #z.

An environmental lapse rate for which γ >"d is said
to be absolutely unstable, and when γ < "m the environ-
mental lapse rate is said to be absolutely stable. When
"m < γ < "d, the environmental lapse rate is condition-
ally unstable (stable with respect to unsaturated vertical
displacements, unstable with respect to saturated vertical
displacements). When γ = "d (γ = "m) the environmen-
tal lapse rate is said to be neutral with respect to dry
(saturated) vertical displacements. Lastly, when γm >"m,
where γ = γm when the atmosphere is saturated, the envi-
ronmental lapse rate is regarded as moist absolutely unstable.
In terms of the environmental potential temperature and
equivalent potential temperature, absolute instability is
present when ∂θ/∂z < 0, conditional instability is present
when ∂θ

∗
e/∂z < 0, and absolute stability is present when

∂θ
∗
e /∂z > 0, where θ

∗
e is the equivalent potential tempera-

ture that the environment would have if it were saturated
at its current temperature and pressure. Dry (moist) neu-
tral conditions are present when ∂θ/∂z = 0 (∂θ

∗
e /∂z = 0).

Moist absolute instability is present when ∂θ e/∂z < 0 in a
saturated atmosphere.

There is often confusion between the aforementioned
lapse rate definition of stability, which involves infinites-
imal displacements and depends on the local lapse rate
compared with the dry and moist adiabatic lapse rates, and
what sometimes is referred to as the available-energy defini-
tion of stability, which depends on whether a parcel, if given
a sufficiently large finite displacement, acquires positive
buoyant energy (i.e., an acceleration due to buoyancy act-
ing in the direction of the displacement).3 Finite-amplitude
displacements are often of greater interest in the release
of mesoscale instabilities. For example, a sounding with
convective inhibition (CIN) requires a finite upward dis-
placement of a surface parcel to its level of free convection
(LFC), after which convective available potential energy

3 Sherwood (2000) and Schultz et al. (2000) discuss at length the potential
confusion surrounding these definitions.

(CAPE) is released and the parcel freely accelerates away
from its initial location. The parcel keeps accelerating
upward as long as B > 0, regardless of the environmen-
tal lapse rate at any particular level where B > 0. Another
example is the release of symmetric instability, wherein
frontogenesis drives circulations believed to provide finite-
amplitude slantwise displacements that enable air parcels
to reach a point where they are accelerated in the same
direction as their initial displacements.

3.1.1 Vertical velocity of an updraft
If we multiply both sides of (3.1) by w ≡ dz/dt, we
obtain

w
dw

dt
= B

dz

dt
(3.11)

d

dt

(
w2

2

)
= B

dz

dt
(3.12)

Next, we integrate (3.12) over the time required to travel
from the LFC to the equilibrium level (EL). We assume
w = 0 at the LFC, since the only force considered here is
the buoyancy force, which, by definition, does not become
positive until the LFC is reached. Also, we assume that
the maximum vertical velocity, wmax, occurs at the EL,
which is consistent with the assumption that dw/dt = B
(neglecting the weight of hydrometeors in B). Integration
of (3.12) yields ∫ EL

LFC
dw2 = 2

∫ EL

LFC
B dz (3.13)

w2
EL − w2

LFC = 2
∫ EL

LFC
B dz (3.14)

w2
max = 2

∫ EL

LFC
B dz (3.15)

wmax =
√

2 CAPE. (3.16)

For CAPE = 2000 J kg−1, which corresponds to an average
temperature (or virtual temperature) excess of ≈5 K over
a depth of 12 km, parcel theory predicts wmax = 63 m s−1.
The prediction of wmax in a convective updraft by (3.16)
typically is too large, for several reasons discussed in the
next section. Therefore, the value of wmax predicted by
(3.16) can be interpreted as an upper limit for vertical
velocity when buoyancy is the only force; wmax sometimes
is called the thermodynamic speed limit.4

4 We leave it as an exercise for the reader to show that (3.16) can also
be obtained by applying the Bernoulli equation given by (2.146) along a
trajectory from the LFC to EL, neglecting pressure perturbations.
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3.1.2 Limitations of parcel theory
Recall that we have neglected perturbation pressures in
the preceding analysis of instability and maximum updraft
velocity via (3.7) and (3.16), respectively (actually, we have
neglected pressure perturbations twice—once in the verti-
cal momentum equation, and once in the approximation
for buoyancy). In general, the vertical perturbation pres-
sure gradient is not negligible, and it tends to partially
offset the acceleration induced by the buoyancy force.5 As
shown in Section 2.5.3, relatively high (low) pressure tends
to be located above a warm (cold) bubble, and relatively
low (high) pressure tends to be located beneath a warm
(cold) bubble, causing a vertical gradient of the buoyancy
pressure perturbation, p′

b (recall Figure 2.7). An upward-
directed buoyancy force associated with a warm bubble
tends to be associated with a downward-directed pertur-
bation pressure gradient force, and a downward-directed
buoyancy force associated with a cold bubble tends to be
associated with an upward-directed perturbation pressure
gradient force as dictated by (2.134).

A physical explanation for such perturbation pressures
and their gradients is that a positive perturbation pressure
(relatively high pressure) must exist above a rising bubble
in order to push air laterally out of the way of the rising
bubble, and a negative perturbation pressure (relatively low
pressure) must exist beneath a rising bubble in order to
draw air into the wake of the rising bubble and preserve
mass continuity. Conversely, a cold bubble tends to have
relatively high (low) pressure beneath (above) it for the
same reasons. Furthermore, the presence of a temperature
anomaly alone, regardless of whether or not it is rising or
sinking, leads to pressure perturbations, owing to the fact
that temperature anomalies are associated with thickness
changes; that is, pressure surfaces are perturbed by temper-
ature anomalies (thereby giving rise to pressure anomalies)
in a hydrostatic atmosphere. In short, when considering the
effect of the perturbation pressure gradient, isolated warm
(cold) bubbles tend not to rise (sink) as fast as one would
expect based on the consideration of the buoyancy force
alone.

If the cold or warm anomaly is relatively narrow, then
the buoyancy force is larger in magnitude than the per-
turbation pressure gradient forces, and warm (cold) air
does in fact rise (sink). However, as a warm (cold) bubble
increases in width, more air must be pushed out of its way
in order for it to rise (sink), and more air must be drawn

5 An exception is for updrafts occurring in environments containing
large vertical wind shear, in which the perturbation pressure gradient
force may act in the same direction as buoyancy, especially at low levels,
thereby augmenting the vertical acceleration. This effect will be discussed
in greater detail in Chapter 8.

in below (above) to compensate for the wider region of
ascent (descent). Thus, the opposing perturbation pressure
gradient increases in magnitude with respect to the buoy-
ancy force as a warm or cold bubble increases in width
(Figure 3.1). When a warm or cold bubble becomes very
wide, the opposing vertical perturbation pressure gradient
becomes so large that it entirely offsets the buoyancy force,
and the net acceleration is zero. This is the hydrostatic
limit; in other words, the width scale of the temperature
anomaly is very large compared with the depth scale, and
the vertical pressure gradient and gravity are in balance.
This is equivalent to setting ∇2

hp′
b = 0 in (2.137), indicating

a parcel of infinite horizontal extent, in which a case (2.137)
reduces to

α0
∂2p′

b

∂z2
= − ∂

∂z

(
ρ ′g

ρ0

)
, (3.17)

which can be simplified and integrated to yield

∂p′
b

∂z
= −ρ ′g, (3.18)

in which case p′
b = p′

h, where p′
h is the hydrostatic pressure

perturbation (recall Section 2.5.2). In this case, one could
simply redefine the base state so that there are no density
and pressure perturbations.

Parcel theory also neglects the exchange of momentum,
moisture, and temperature between the parcel and its
environment. Mixing of environmental air into a rising air
parcel typically slows the parcel by reducing its buoyancy
and upward momentum. This process is called entrainment.
Entrainment can be viewed as a parcel dilution process,
because the θe of a rising parcel typically is reduced by
entrainment, leading to the realization of less CAPE and
smaller wmax than predicted by (3.16) (Figure 3.2).

Updraft dilution increases with the tilt of an updraft,
which increases the surface area of the updraft exposed to
the hostile (subsaturated) environment. The entrainment
into the sides of an updraft also increases as the vertical
acceleration within the updraft increases, owing to mass
continuity. It is possible to estimate the entrainment rate
from in situ thermodynamic measurements within a cloud.
As updraft width increases, the core of the updraft can
become better shielded from the effects of entrainment.
For this reason, skinny updrafts are more susceptible to the
detrimental effects of entrainment than are wide updrafts.
In simple one-dimensional cloud models, the entrainment
rate is often parameterized in terms of updraft width.
Updrafts are often wider in the presence of strong mesoscale
ascent (e.g., ascent along an air mass boundary), which
might be one reason why regions of mesoscale ascent are the
most favorable locations for the initiation and maintenance
of deep moist convection.
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Figure 3.1 A comparison of the perturbation pressure (p′) fields and zonal (u) and vertical (w) velocity components for
the case of a wide warm bubble (left panels) and a narrow warm bubble (right panels) released in a conditionally unstable
atmosphere in a three-dimensional numerical simulation. The contour intervals for p′ and the wind components are 25 Pa
and 2 m s−1, respectively (dashed contours are used for negative values). Potential temperature perturbations (θ ′) are
shown in each panel (refer to the color scale). The horizontal and vertical grid spacing is 200 m (the domain shown above
is much smaller than the actual model domain). Both warm bubbles had an initial potential temperature perturbation of
2 K and a vertical radius of 1.5 km, and were released 1.5 km above the ground. The wide (narrow) bubble had a horizontal
radius of 10 km (3 km). In the simulation of the wide (narrow) bubble, the fields are shown 800 s (480 s) after its release.
The fields are shown at times when the maximum buoyancies are comparable. Despite the comparable buoyancies, the
narrow updraft is 20% stronger owing to the weaker adverse vertical pressure gradient.
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Figure 3.2 A possible parcel process curve (dashed) that might be followed by an updraft parcel on a skew T –log p
diagram as a result of the entrainment of environmental air. A parcel process curve (solid) followed by an updraft parcel
that ascends undiluted is also shown. Note the implied differences in cloud base (there has been some entrainment below
the cloud base, in addition to entrainment over the cloud depth), cloud top, and the realized CAPE.

Because of the aforementioned effects of the vertical
perturbation pressure gradient and entrainment, the devel-
opment and intensity of convection are sensitive to updraft
width. This sensitivity is not reflected in the stability anal-
ysis or estimate of maximum updraft speed provided by
(3.7) and (3.16), respectively. The magnitude of pressure
perturbations and the vertical perturbation pressure gradi-
ent increases as the width of the displaced parcel increases,
whereas the detrimental effects of entrainment decrease as
updraft width increases. Convection therefore favors up-
and downdrafts having an intermediate width scale that is

large enough to survive the dilution of buoyancy by mixing
yet narrow enough that the perturbation pressure gradient
force is not too suppressive. In the absence of entrainment,
infinitesimally narrow drafts are favored.

In addition to the effects of the vertical perturbation
pressure gradient and entrainment, the parcel theory pre-
diction of the vertical acceleration of an air parcel and
maximum updraft speed also neglects contributions to
buoyancy from the presence of hydrometeors. In deriving
(3.7), it was assumed that only temperature perturbations
contributed to buoyancy. In deriving (3.17), although it
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Figure 3.2 A possible parcel process curve (dashed) that might be followed by an updraft parcel on a skew T –log p
diagram as a result of the entrainment of environmental air. A parcel process curve (solid) followed by an updraft parcel
that ascends undiluted is also shown. Note the implied differences in cloud base (there has been some entrainment below
the cloud base, in addition to entrainment over the cloud depth), cloud top, and the realized CAPE.

Because of the aforementioned effects of the vertical
perturbation pressure gradient and entrainment, the devel-
opment and intensity of convection are sensitive to updraft
width. This sensitivity is not reflected in the stability anal-
ysis or estimate of maximum updraft speed provided by
(3.7) and (3.16), respectively. The magnitude of pressure
perturbations and the vertical perturbation pressure gradi-
ent increases as the width of the displaced parcel increases,
whereas the detrimental effects of entrainment decrease as
updraft width increases. Convection therefore favors up-
and downdrafts having an intermediate width scale that is

large enough to survive the dilution of buoyancy by mixing
yet narrow enough that the perturbation pressure gradient
force is not too suppressive. In the absence of entrainment,
infinitesimally narrow drafts are favored.

In addition to the effects of the vertical perturbation
pressure gradient and entrainment, the parcel theory pre-
diction of the vertical acceleration of an air parcel and
maximum updraft speed also neglects contributions to
buoyancy from the presence of hydrometeors. In deriving
(3.7), it was assumed that only temperature perturbations
contributed to buoyancy. In deriving (3.17), although it
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was not indicated whether or not buoyancy included the
effects of hydrometeor loading, buoyancy is virtually always
expressed as the temperature or virtual temperature excess
of an updraft parcel compared with its environment in
the calculation of CAPE [recall (2.148) in Section 2.6],
rather than by attempting to account for the condensate
acquired within a rising updraft parcel via an expression
for buoyancy like that given by (2.79) (large concentrations
of hydrometeors can easily contribute the equivalent of a
few degrees Celsius of negative buoyancy). In other words,
CAPE usually is computed by assuming pseudoadiabatic
ascent, such that hydrometeors are assumed to instantly fall
out of a rising, saturated parcel such that the condensate
mass does not affect the buoyancy. In contrast, in reversible
moist adiabatic ascent, all condensate remains within the
parcel (recall Figure 2.1). The condensate mass reduces
buoyancy, but the condensate also carries heat (these two
competing influences usually lead to a net reduction of
buoyancy in the lower troposphere and a net increase in
buoyancy by the time a lifted parcel reaches the upper
troposphere).

Pseudoadiabatic and reversible moist adiabatic ascent
are both idealized extremes; the influence of hydrometeors
on the buoyancy realized by a real updraft lies somewhere
in between. The buoyancy and the associated CAPE real-
ized in pseudoadiabatic ascent are easier to compute than
the buoyancy and CAPE assuming reversible moist adia-
batic ascent, and are far easier to compute than the actual
buoyancy and realized CAPE for a rising parcel. For this
reason, CAPE calculations are usually based on the inte-
grated temperature or virtual temperature excess based on
pseudoadiabatic ascent (as in Section 2.6).

The freezing of water droplets within updrafts is an
additional source of positive buoyancy above the melting
level, although it is a much smaller source of buoyancy than
condensational heating because the latent heat of fusion is
only a small fraction of the latent heat of vaporization. The
pseudoadiabatic lapse rate used to calculate CAPE does not
consider freezing; thus, the neglect of freezing represents
another limitation of parcel theory predictions of vertical
velocity, albeit a relatively minor one.

Finally, compensating subsidence within the surround-
ing air, which can affect the buoyancy and/or the pertur-
bation pressure field depending on how the base state is
defined, was ignored in parcel theory, wherein the environ-
ment is assumed to be unchanged by the parcel.

3.1.3 Potential instability
A layer in which equivalent potential temperature (or,
alternatively, wet-bulb potential temperature) decreases

   final 
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T profile

  initial 
T profile

600
mb

700

800

900

1000

Figure 3.3 Illustration of the concept of potential
instability. A potentially unstable layer initially span-
ning the pressure range of 910–810 mb has been lifted
to 850–750 mb. Although destabilization of the layer has
occurred, lifting would have cooled the layer (and there-
fore reduced CIN) regardless of whether or not lifting led
to saturation at the bottom of the layer.

with height (i.e., ∂θe/∂z < 0, or, alternatively, ∂θw/∂z < 0)
is said to be potentially unstable (such layers sometimes are
said to be convectively unstable). When such a layer is lifted,
the bottom of the layer, given sufficiently large relative
humidity, becomes saturated before the top of the layer.
Thus, the bottom of the layer, upon further lifting, cools
at the moist adiabatic lapse rate, while the top of the layer
cools at the larger dry adiabatic lapse rate. Since the top
of the ascending layer is cooling at a faster rate than the
bottom of the layer, destabilization occurs (Figure 3.3). If
the layer is lifted sufficiently, the lapse rate can become moist
absolutely unstable, regardless of the initial stratification.

The destabilization of layers via the potential instabil-
ity mechanism is probably important in the formation
of mesoscale rainbands within the broader precipitation
shields of extratropical cyclones on some occasions, espe-
cially when potentially unstable layers are lifted over a front.
Potential instability also is often cited as being important
in the development of deep moist convection. In the Great
Plains of the United States, widely recognized as one of the
world’s hot spots for severe convection, θe usually decreases
rapidly with height in convective environments owing to
dry midtropospheric air. Despite the common presence of
potential instability, however, it usually does not play a role
in the destabilization of the atmosphere that precedes the
initiation of convection. If the potential instability desta-
bilization mechanism were operating, we might expect to
see skies gradually become overcast with stratiform clouds
as the potentially unstable layer is bodily lifted, and, only
some significant time after this, cumulonimbus might erupt
from the stratiform clouds. This evolution is at odds with
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ment is assumed to be unchanged by the parcel.

3.1.3 Potential instability
A layer in which equivalent potential temperature (or,
alternatively, wet-bulb potential temperature) decreases
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Figure 3.3 Illustration of the concept of potential
instability. A potentially unstable layer initially span-
ning the pressure range of 910–810 mb has been lifted
to 850–750 mb. Although destabilization of the layer has
occurred, lifting would have cooled the layer (and there-
fore reduced CIN) regardless of whether or not lifting led
to saturation at the bottom of the layer.

with height (i.e., ∂θe/∂z < 0, or, alternatively, ∂θw/∂z < 0)
is said to be potentially unstable (such layers sometimes are
said to be convectively unstable). When such a layer is lifted,
the bottom of the layer, given sufficiently large relative
humidity, becomes saturated before the top of the layer.
Thus, the bottom of the layer, upon further lifting, cools
at the moist adiabatic lapse rate, while the top of the layer
cools at the larger dry adiabatic lapse rate. Since the top
of the ascending layer is cooling at a faster rate than the
bottom of the layer, destabilization occurs (Figure 3.3). If
the layer is lifted sufficiently, the lapse rate can become moist
absolutely unstable, regardless of the initial stratification.

The destabilization of layers via the potential instabil-
ity mechanism is probably important in the formation
of mesoscale rainbands within the broader precipitation
shields of extratropical cyclones on some occasions, espe-
cially when potentially unstable layers are lifted over a front.
Potential instability also is often cited as being important
in the development of deep moist convection. In the Great
Plains of the United States, widely recognized as one of the
world’s hot spots for severe convection, θe usually decreases
rapidly with height in convective environments owing to
dry midtropospheric air. Despite the common presence of
potential instability, however, it usually does not play a role
in the destabilization of the atmosphere that precedes the
initiation of convection. If the potential instability desta-
bilization mechanism were operating, we might expect to
see skies gradually become overcast with stratiform clouds
as the potentially unstable layer is bodily lifted, and, only
some significant time after this, cumulonimbus might erupt
from the stratiform clouds. This evolution is at odds with




