
Clouds associated with cold and warm fronts

Whiteman (2000)



Dalton’s law of partial pressures

! The total pressure exerted by a mixture of gases equals the 
sum of the partial pressure of the gases

! Partial pressure – pressure a gas would exert if it alone 
occupied the volume the entire mixture occupies

! Meteorologists differentiate between “dry” gas partial 
pressure and water vapor partial pressure (vapor pressure)



Mixing ratio

! Measure of the amount of water vapor in the air
! Ratio of mass of water vapor to the mass of dry air in a 

volume of air

! Units g/kg (use g/g or kg/kg in calculations)
! Typical values 

• Midlatitude winter = 1-5 g/kg
• Midlatitude summer = 5-15 g/kg
• Tropics = 15-20 g/kg

! Conserved following parcel motion if there is no net 
condensation/evaporation



Mixing ratio/vapor pressure relationship

! Relationship between mixing ratio and vapor pressure

! Assuming mean sea-level pressure (1013 mb)
• Midlatitude winter = 1-5 g/kg ~ 1.5-8 mb
• Midlatitude summer = 5-15 g/kg ~ 8-24 mb
• Tropics = 15-20 g/kg ~ 24-32 mb

! Thus, e<<p

w = 0.622
e

p− e
e =

w

w + 0.622
p



Evaporation

! Water molecules moving from liquid to vapor phase
! Accompanied by latent cooling
! Always occurring

Bohren (1987)



Condensation

! Water molecules moving from vapor to liquid phase
! Accompanied by latent heating
! Always occurring

Bohren (1987)



Net evaporation

! What we commonly refer to as evaporation is when the rate 
of evaporation exceeds the rate of condensation

Bohren (1987)



Net condensation

! What we commonly refer to as condensation is when the 
rate of condensation exceeds the rate of evaporation

Bohren (1987)



! Equilibrium vapor pressure – evaporation and condensation are 
occurring, but are in equilibrium

! Saturation vapor pressure – equilibrium vapor pressure for a plane 
surface of pure water

! For solutions and cloud droplets, equilibrium vapor pressure does not 
necessarily equal the saturation vapor pressure

Equilibrium and saturation vapor pressure

Bohren (1987)



! Varies with temperature

! L=latent heat of 
condensation            
(2.5 x 106 J/kg)

! Rv = gas constant for 
water vapor           
(461.5 J/kg/K)
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Saturation mixing ratio 

! The ratio of the mass (mvs) of water vapor in a given volume 
that is saturated with respect to a plane surface of pure 
water to the mass (md) of dry air in the same volume

! Relationship to saturation vapor pressure



Relative humidity, dewpoint, and supersaturation

! Relative humidity (with respect to water) - the ratio of the 
actual vapor pressure to the saturation vapor pressure at the 
same temperature

! Dewpoint - the temperature to which air must be cooled at 
constant pressure for it to become saturated with respect to 
a plane surface of pure water

! Supersaturation = r - 1

r =
e

es(T )
≈ w

ws(T, p)



Evaporation of ice (sublimation)

! Sublimation occurs when water molecules move directly from ice to 
vapor phase (no liquid phase)

! Accompanied by latent cooling
! Always occurring

Bohren (1987)



Vapor deposition

! Water molecules move directly from vapor to ice phase
! Accompanied by latent heating
! Always occurring
! Also called deposition or vapor deposition

Bohren (1987)

Ice



! Equilibrium vapor pressure for ice – sublimation and deposition are 
occurring, but are in equilibrium

! Saturation vapor pressure for ice – Equilibrium vapor pressure for a plane 
surface of pure ice

! For solutions and ice particles, equilibrium vapor pressure for ice does 
not necessarily equal the saturation vapor pressure for ice

Equilibrium and saturation vapor pressure for ice

Bohren (1987)

Ice



! The saturation vapor 
pressure for ice is ! that 
for water
– esi=es at 0°C

– Otherwise esi<es

– es-esi is largest at –10°C to 
–15°C

Saturation vapor pressure for ice
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Saturation mixing ratio with respect to ice 

! The ratio of the mass (mvs) of water vapor in a given volume 
that is saturated with respect to a plane surface of pure ice 
to the mass (md) of dry air in the same volume

! Always less than or equal to the saturation mixing ratio with 
respect to water

• wsi=ws at 0°C

• wsi " ws if T<0°C



! Relative humidity (with respect to ice) - the ratio of the 
actual vapor pressure to the saturation vapor pressure at the 
same temperature

• RH wrt ice > RH wtr water (equal at 0°C)

! Frost point - the temperature to which air must be cooled at 
constant pressure for it to become saturated with respect to 
a plane surface of pure ice

• Frost point > dewpoint (equal at 0°C

Relative humidity with respect to ice

r =
e

esi(T )
≈ w

wsi(T, p)



Growth of Cloud Droplets in Warm Clouds

224 Cloud Microphysics

1 liter!1) in a cloud has to grow by this amount for
the cloud to rain. The mechanism responsible for the
selective growth of a few droplets into raindrops in
warm clouds is discussed in the next section.

6.4.2 Growth by Collection

In warm clouds the growth of some droplets from the
relatively small sizes achieved by condensation to the
sizes of raindrops is achieved by the collision and
coalescence of droplets.20 Because the steady settling
velocity of a droplet as it falls under the influence of
gravity through still air (called the terminal fall speed
of the droplet) increases with the size of the droplet
(see Box 6.2), those droplets in a cloud that are
somewhat larger than average will have a higher
than average terminal fall speed and will collide with
smaller droplets lying in their paths.

Typical raindrop
r = 1000   n = 1   v = 650

Large cloud
droplet

r = 50  n = 103
v = 27

Conventional
borderline
between cloud
droplets and
raindrops
r = 100
v = 70

Typical cloud droplet
r = 10  n = 106  v = 1

CCN
r = 0.1  n = 106  
v = 0.0001

Fig. 6.18 Relative sizes of cloud droplets and raindrops; r is
the radius in micrometers, n is the number per liter of air, and
v is the terminal fall speed in centimeters per second. The cir-
cumferences of the circles are drawn approximately to scale,
but the black dot representing a typical CCN is 25 times
larger than it should be relative to the other circles. [Adapted
from J. E. MacDonald, “The physics of cloud modification,”
Adv. Geophys. 5, 244 (1958). Copyright 1958, with permission
from Elsevier.]

20 As early as the 10th century a secret society of Basra (“The Brethren of Purity”) suggested that rain is produced by the collision of
cloud drops. In 1715 Barlow21 also suggested that raindrops form due to larger cloud drops overtaking and colliding with smaller droplets.
These ideas, however, were not investigated seriously until the first half of the 20th century.

21 Edward Barlow (1639–1719) English priest. Author of Meteorological Essays Concerning the Origin of Springs, Generation of Rain,
and Production of Wind, with an Account of the Tide, John Hooke and Thomas Caldecott, London, 1715.

22 Galileo Galilei (1564–1642) Renowned Italian scientist. Carried out fundamental investigations into the motion of falling bodies and
projectiles, and the oscillation of pendulums. The thermometer had its origins in Galileo’s thermoscope. Invented the microscope. Built a
telescope with which he discovered the satellites of Jupiter and observed sunspots. Following the publication of his “Dialogue on the Two
Chief Systems of the World,” a tribunal of the Catholic Church (the Inquisition) compelled Galileo to renounce his view that the Earth
revolved around the sun (he is reputed to have muttered “It’s true nevertheless”) and committed him to lifelong house arrest. He died the
year of Newton’s birth. On 31 October 1992, 350 years after Galileo’s death, Pope John Paul II admitted that errors had been made by the
Church in the case of Galileo and declared the case closed.

By dropping objects of different masses from the
leaning tower of Pisa (so the story goes), Galileo
showed that freely falling bodies with different
masses fall through a given distance in the same
time (i.e., they experience the same accelera-
tion). However, this is true only if the force act-
ing on the body due to gravity is much greater
than the frictional drag on the body due to the
air and if the density of the body is much greater
than the density of air. (Both of these require-
ments were met by the heavy, dense objects used
by Galileo.)

Consider, however, the more general case of a
body of density "# and volume V# falling through
still air of density ". The downward force acting
on the body due to gravity is "#V#!, and the
(Archimedes’) upward force acting on the body
due to the mass of air displaced by the body is
"V#. In addition, the air exerts a drag force Fdrag
on the body, which acts upward. The body will
attain a steady terminal fall speed when these
three forces are in balance, that is

"#V#! $ "V#! % Fdrag

6.2 Was Galileo22 Correct? Terminal Fall Speeds of Water Droplets in Air

Continued on next page
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Formation of cloud droplets

! Clouds can form when the air becomes supersaturated with 
respect to water (or ice)

! Usually occurs due to adiabatic cooling produced by ascent

! Can also occur due to
– Radiational cooling (e.g., radiation fogs)
– Sensible cooling (e.g., advection fogs)
– Mixing (e.g., contrails)
– Other processes that cool or moisten parcels

! The formation of a cloud droplet is called nucleation



Homogeneous nucleation

! Homogeneous nucleation: Formation of a pure water droplet 
by condensation without the aid of a particle suspended in 
the air 

! Growth of a cloud droplet represents a battle between:
– Work required to create more droplet surface area (called the 

interfacial energy or surface energy)
• Proportional to R2, where R is the droplet radius 

– Energy provided to the system by condensation (change in Gibbs free 
energy)

• Proportional to R3 

! This battle means that the saturation vapor pressure is a 
function of droplet radius (known as the Kelvin effect)



Homogeneous nucleation (WH 6.1.1)

! Growth of a cloud droplet involves a net change in the 
energy of the system due to the formation of the droplet:

∆E = Aσ − nV (µv − µl)

where ∆E is the net increase in the energy of the
system, A is the droplet surface area, V is the droplet
volume, σ is the work required to to create a unit area
of vapor-liquid interface, n is the number of water
molecules per unit volume of liquid, and µv and µl

are the Gibbs free energies per molecule in the vapor
and liquid phases.



Homogeneous nucleation

It can be shown that

µv − µl = kT log
e

es

where e and T are the vapor pressure and tempera-
ture of the system, es is the saturation vapor pressure
over a plane surface of water at temperature T , and
k is Boltzmann’s constant.

Therefore,

∆E = Aσ − nV kT log
e

es



Homogeneous nucleation

For a droplet of radius R,

∆E = 4πR2σ − 4
3
πR3nkT log

e

es

If subsaturated, e < es so ∆E is always > 0, and
the formation of droplets is not favored.

If saturated, e > es so ∆E may be > 0 or < 0
depending on R.



Homogeneous nucleation

! In subsaturated air, the energy needed to increase droplet surface area is 
too big for energy released by condensation to overcome

! Droplets form through molecular collisions, but quickly evaporate
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Homogeneous nucleation

! In supersaturated air, the energy required to increase the surface area 
(#R2) exceeds that released by condensation (#R3) for small droplets

! Beyond a critical radius, r, the energy released by condensation exceeds 
that needed to increase surface area and droplets spontaneously grow
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Homogeneous nucleation

– At the critical radius
• The droplet is at its equilibrium vapor pressure (evaporation = 

condensation)
• It will either shrink or grow spontaneously if R < r or R > r.
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Homogeneous nucleation

! Why? It’s easier for water molecules to “escape” if the radius 
is small (more surface area/molecule)

! Evaporation rate for small droplets is greater than for large 
droplets or a plane surface of pure water

! Equilibrium vapor pressure is larger for small droplets
! Need large supersaturation for a pure cloud droplet to grow 

Plane of pure water
Saturation vapor pressure = es

Small water droplet
Easier for molecules to escape
es > es for plane of pure water



Homogeneous nucleation

For a droplet of radius R,

∆E = 4πR2σ − 4
3
πR3nkT log

e

es

To get equilibrium radius r, set d(∆E)/dR = 0:

r =
2σ

nkT log e
es

Invert to obtain equilibrium saturation vapor pressure:

e

es
= exp

2σ

nkTr



Homogeneous nucleation

! For a given temperature, 
equilibrium vapor pressure 
(and RH) increases with 
decreasing droplet radius

! If r=.01 µm, equilibrium RH 
is 112.5% (for T=5 C) 

! RH>103% is rarely observed

! It’s very difficult for 
homogeneous nucleation to 
occur in the atmosphere

(µm)

For T=5°C



Heterogeneous nucleation (WH 6.1.1)

! How do clouds form?
– They get help: Heterogeneous nucleation

! Heterogeneous nucleation: Formation of a cloud droplet on 
an atmospheric aerosol

! Atmospheric aerosols that are soluble in water dissolve 
when water begins to condense on them

! The solution lowers the equilibrium vapor pressure & thus 
creates more favorable conditions for droplet growth



Heterogeneous nucleation

! In a solution, there are fewer water molecules on the water 
surface available for evaporation

! Evaporation rate is lower than for pure water

! Equil. saturation vapor pressure is lower than for pure water



Heterogeneous nucleation

Small pure water droplet:
• Surface is all water molecules.
• Largest possible evaporation rate.
• Maximum equilibrium vapor pressure.

Small solution droplet:
• Surface has fewer water molecules.
• Less evaporation.
• Smaller equilibrium vapor pressure.



Heterogeneous nucleation

The reduction in saturation vapor pressure adja-
cent to a solution droplet is given by Raoult’s law:

e�

e
= f

where e� is the saturation vapor pressure adjacent to
a solution droplet that contains a mole fraction f of
pure water, and e is the saturation vapor pressure
adjacent to a pure water droplet of the same size
and temperature.



Heterogeneous nucleation

The mole fraction of pure water is the number of moles of pure
water in the solution divided by the total number of moles (pure water
plus solute):

f =
Nw

Nw + Ns

If the solution droplet of radius r contains a mass m of solute of
molecular weight Ms that dissociates into i ions per molecule, then

Ns = im/Ms

If the solution density is ρ�, molecular weight of water is Mw, then

Nw = (
4
3
πr3ρ� −m)/Mw



Heterogeneous nucleation

The mole fraction of pure water is the number
of moles of pure water in the solution divided by the
total number of moles (pure water plus solute):

f =
( 4
3πr3ρ� −m)/Mw

( 4
3πr3ρ� −m)/Mw + im/Ms

=
�
1 +

imMw

Ms( 4
3πr3ρ� −m)

�−1



Heterogeneous nucleation

The reduction of saturation vapor pressure e�

adjacent to a solution droplet of radius r relative to
that over a plane surface of pure water es is

e�

es
=

�
exp

2σ�

n�kTr

� �
1 +

imMw

Ms( 4
3πr3ρ� −m)

�−1

where σ� and n� indicate the surface energy and
number concentration of water molecules for the
solution.



Heterogeneous nucleation (RY Chapter 6)

For a weak solution droplet (m � 4
3πr3ρ�), and

for r not too small,

e

es
≈ 1 +

a

r
− b

r3

where

a =
2σ�

n�kT

b =
imMw
4
3Msπρ�



start here Nov 13



Heterogeneous nucleation

! Kohler curve: Combines solute and Kelvin effects
! Equilibrium RH lowered for small droplets by solute effect
! Kelvin effect does result in a critical RH for nucleation of > 100% 

(in this case 100.6%)

Rogers and Yau (1989)
Kohler curve for droplet

formed on 10-16 g 
ammonium sulfate particle
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Heterogeneous nucleation

! Very small solution droplets 
are in equilibrium at S < 1.

! If S increases, droplet grows 
to a new equilibrium radius.

! This process can continue until 
the critical S, S*, and critical 
radius, r*, are reached.

! If S > S* so that r > r*, then 
the equilibrium S < S*, and 
the droplet will continue to 
grow without any change in S.
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Critical radius and S

! For r < r* or r=r*, droplet is in stable equilibrium:
r adjusts to its equilibrium size for a given S.

! For r > r*, droplet is in unstable equilibrium:
r increases as long as S > Seq



Heterogeneous nucleation

For a weak solution droplet (m � 4
3πr3ρ�), and

for r not too small, the peak in the Köhler curve
occurs at

r =
�

3b

a

�1/2

e�

es
= 1 +

�
4a3

27b

�1/2



Heterogeneous nucleation

! Kohler curves, critical RH, and critical radius vary with type and 
concentration of solution

! A droplet that has passed over its Kohler curve peak is called activated
! Not all droplets are activated – there are winners and losers!

Wallace and Hobbs (1977)

(1) pure water
(2) 10−19 kg of NaCl
(3) 10−18 kg of NaCl
(4) 10−17 kg of NaCl
(5) 10−19 kg of (NH4)2SO4

(6) 10−18 kg of (NH4)2SO4



Heterogeneous nucleation

! Droplet 2 is activated in a supersaturation of 0.4 %.
! Droplet 5 will grow only up to A in a supersaturation of 0.4 %, 

and is unactivated.       

Wallace and Hobbs (2006)

6.1 Nucleation of Water Vapor Condensation 213

weight Ms. If each molecule of the material dissociates
into i ions in water, the effective number of moles of
the material in the droplet is i(1000 m)!Ms. If the den-
sity of the solution is !" and the molecular weight of
water Mw, the number of moles of pure water in the
droplet is 1000 . Therefore, the mole
fraction of water in the droplet is

(6.7)

Combining (6.5)–(6.7) (but replacing # and n by #"
and n" to indicate the surface energy and number
concentration of water molecules, respectively, for
the solution) we obtain the following expression for
the saturation vapor pressure e" adjacent to a solu-
tion droplet of radius r

(6.8)

Equation (6.8) may be used to calculate the satura-
tion vapor pressure e" [or relative humidity 100e"!es,

or supersaturation adjacent to a solu-

tion droplet with a specified radius r. If we plot the
variation of the relative humidity (or supersatura-
tion) adjacent to a solution droplet as a function of
its radius, we obtain what is referred to as a Köhler15

curve. Several such curves, derived from (6.8), are
shown in Fig. 6.3. Below a certain droplet radius, the
relative humidity adjacent to a solution droplet is
less than that which is in equilibrium with a plane
surface of pure water at the same temperature (i.e.,
100%). As the droplet increases in size, the solution
becomes weaker, the Kelvin curvature effect
becomes the dominant influence, and eventually the
relative humidity of the air adjacent to the droplet
becomes essentially the same as that adjacent to a
pure water droplet of the same size.

To illustrate further the interpretation of the Köhler
curves, we reproduce in Fig. 6.4 the Köhler curves for
solution droplets containing 10$19 kg of NaCl (the red
curve from Fig. 6.3) and 10$19 kg of (NH4)2SO4 (the

"e"

es
$ 1# 100]

e"

es
% $exp 

2#"

n"kTr% $1 &
imMw

Ms(
4
3'r3!" $ m)%

$1

 % $1 &
imMw

Ms(
4
3'r3!" $ m)%

$1

 f %
(4

3'r3!" $ m)!Mw

[(4
3'r3 !" $ m)!Mw] & im!Ms

(4
3'r3!" $ m)!Mw

green curve from Fig. 6.3). Suppose that a particle of
NaCl with mass 10$19 kg were placed in air with a
water supersaturation of 0.4% (indicated by the
dashed line in Fig. 6.4). Condensation would occur on
this particle to form a solution droplet, and the droplet
would grow along the red curve in Fig. 6.4. As it does
so, the supersaturation adjacent to the surface of this
solution droplet will initially increase, but even at the
peak in its Köhler curve the supersaturation adjacent
to the droplet is less than the ambient supersaturation.
Consequently, the droplet will grow over the peak in

15 Hilding Köhler (1888–1982) Swedish meteorologist. Former Chair of the Meteorology Department and Director of the Meteorological
Observatory, University of Uppsala.
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Fig. 6.3 Variations of the relative humidity and supersatura-
tion adjacent to droplets of (1) pure water (blue) and adja-
cent to solution droplets containing the following fixed masses
of salt: (2) 10$19 kg of NaCl, (3) 10$18 kg of NaCl, (4) 10$17

kg of NaCl, (5) 10$19 kg of (NH4)2SO4, and (6) 10$18 kg of
(NH4)2SO4. Note the discontinuity in the ordinate at 100%
relative humidity. [Adapted from H. R. Pruppacher, “The role
of natural and anthropogenic pollutants in cloud and pre-
cipitation formation,” in S. I. Rasool, ed., Chemistry of the
Lower Atmosphere, Plenum Press, New York, 1973, Fig. 5, p. 16,
copyright 1973, with kind permission of Springer Science and
Business Media.]
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Fig. 6.4 Köhler curves 2 and 5 from Fig. 6.3. Curve 2 is for a
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for a solution droplet containing 10$19 kg of (NH4)2SO4. The
dashed line is an assumed ambient supersaturation discussed
in the text.
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(2) 10−19 kg of NaCl
(5) 10−19 kg of (NH4)2SO4



Condensation6.4 Growth of Cloud Droplets in Warm Clouds 223

eventually reaches saturation with respect to liquid
water. Further uplift produces supersaturations that
initially increase at a rate proportional to the updraft
velocity. As the supersaturation rises, CCN are acti-
vated, starting with the most efficient. When the rate at
which water vapor in excess of saturation, made avail-
able by the adiabatic cooling, is equal to the rate at
which water vapor condenses onto the CCN and
droplets, the supersaturation in the cloud reaches a
maximum value. The concentration of cloud droplets is
determined at this stage (which generally occurs within
100 m or so of cloud base) and is equal to the concen-
tration of CCN activated by the peak supersaturation
that has been attained. Subsequently, the growing
droplets consume water vapor faster than it is made
available by the cooling of the air so the supersatura-
tion begins to decrease. The haze droplets then begin
to evaporate while the activated droplets continue to
grow by condensation. Because the rate of growth of a
droplet by condensation is inversely proportional to its
radius [see (6.21)], the smaller activated droplets grow
faster than the larger droplets. Consequently, in this
simplified model, the sizes of the droplets in the cloud
become increasingly uniform with time (i.e., the
droplets approach a monodispersed distribution). This
sequence of events is illustrated by the results of theo-
retical calculations shown in Fig. 6.16.

Comparisons of cloud droplet size distributions
measured a few hundred meters above the bases of
nonprecipitating warm cumulus clouds with droplet
size distributions computed assuming growth by con-
densation for about 5 min show good agreement
(Fig. 6.17). Note that the droplets produced by con-
densation during this time period extend up to only
about 10 !m in radius. Moreover, as mentioned ear-
lier the rate of increase in the radius of a droplet
growing by condensation decreases with time. It is
clear, therefore, as first noted by Reynolds19 in 1877,
that growth by condensation alone in warm clouds is
much too slow to produce raindrops with radii of sev-
eral millimeters. Yet rain does form in warm clouds.
The enormous increase in size required to transform
cloud droplets into raindrops is illustrated by the
scaled diagram shown in Fig. 6.18. For a cloud droplet
10 !m in radius to grow to a raindrop 1 mm in radius
requires an increases in volume of one millionfold!
However, only about one droplet in a million (about
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Fig. 6.16 Theoretical computations of the growth of cloud
condensation nuclei by condensation in a parcel of air rising
with a speed of 60 cm s"1. A total of 500 CCN cm"1 was
assumed with im!Ms values [see Eq. (6.8)] as indicated. Note
how the droplets that have been activated (brown, blue, and
purple curves) approach a monodispersed size distribution
after just 100 s. The variation with time of the supersatura-
tion of the air parcel is also shown (dashed red line). [Based
on data from J. Meteor. 6, 143 (1949).]
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Fig. 6.17 Comparison of the cloud droplet size distribution
measured 244 m above the base of a warm cumulus cloud
(red line) and the corresponding computed droplet size distri-
bution assuming growth by condensation only (blue line).
[Adapted from Tech. Note No. 44, Cloud Physics Lab., Univ.
of Chicago.]

19 Osborne Reynolds (1842–1912) Probably the outstanding English theoretical mechanical engineer of the 19th century. Carried out
important work on hydrodynamics and the theory of lubrication. Studied atmospheric refraction of sound. The Reynolds number, which he
introduced, is named after him.
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! Calculation of 
the growth of 
CCN (500/cm3) 
by condensation 
in an updraft of 
60 cm/s.

! Activated 
droplets are 
monodisperse 
by 100 s.



Cloud condensation nuclei

! Cloud condensation nuclei (CCN) – Aerosol particles that 
serve as nuclei for water vapor condensation

! The larger and more soluble the aerosol, the lower the 
supersaturation needed for activation

! There are an order of magnitude more CCN in continental 
air than maritime air

Wallace and Hobbs (1977)



Cloud condensation nuclei

! Continental clouds feature
– Large cloud droplet number concentrations
– Smaller cloud droplets

! Maritime clouds feature
– Smaller cloud droplet number concentrations
– Larger cloud droplets

Maritime

Continental

Wallace and Hobbs (1977)
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224 Cloud Microphysics

1 liter!1) in a cloud has to grow by this amount for
the cloud to rain. The mechanism responsible for the
selective growth of a few droplets into raindrops in
warm clouds is discussed in the next section.

6.4.2 Growth by Collection

In warm clouds the growth of some droplets from the
relatively small sizes achieved by condensation to the
sizes of raindrops is achieved by the collision and
coalescence of droplets.20 Because the steady settling
velocity of a droplet as it falls under the influence of
gravity through still air (called the terminal fall speed
of the droplet) increases with the size of the droplet
(see Box 6.2), those droplets in a cloud that are
somewhat larger than average will have a higher
than average terminal fall speed and will collide with
smaller droplets lying in their paths.

Typical raindrop
r = 1000   n = 1   v = 650

Large cloud
droplet

r = 50  n = 103
v = 27

Conventional
borderline
between cloud
droplets and
raindrops
r = 100
v = 70

Typical cloud droplet
r = 10  n = 106  v = 1

CCN
r = 0.1  n = 106  
v = 0.0001

Fig. 6.18 Relative sizes of cloud droplets and raindrops; r is
the radius in micrometers, n is the number per liter of air, and
v is the terminal fall speed in centimeters per second. The cir-
cumferences of the circles are drawn approximately to scale,
but the black dot representing a typical CCN is 25 times
larger than it should be relative to the other circles. [Adapted
from J. E. MacDonald, “The physics of cloud modification,”
Adv. Geophys. 5, 244 (1958). Copyright 1958, with permission
from Elsevier.]

20 As early as the 10th century a secret society of Basra (“The Brethren of Purity”) suggested that rain is produced by the collision of
cloud drops. In 1715 Barlow21 also suggested that raindrops form due to larger cloud drops overtaking and colliding with smaller droplets.
These ideas, however, were not investigated seriously until the first half of the 20th century.

21 Edward Barlow (1639–1719) English priest. Author of Meteorological Essays Concerning the Origin of Springs, Generation of Rain,
and Production of Wind, with an Account of the Tide, John Hooke and Thomas Caldecott, London, 1715.

22 Galileo Galilei (1564–1642) Renowned Italian scientist. Carried out fundamental investigations into the motion of falling bodies and
projectiles, and the oscillation of pendulums. The thermometer had its origins in Galileo’s thermoscope. Invented the microscope. Built a
telescope with which he discovered the satellites of Jupiter and observed sunspots. Following the publication of his “Dialogue on the Two
Chief Systems of the World,” a tribunal of the Catholic Church (the Inquisition) compelled Galileo to renounce his view that the Earth
revolved around the sun (he is reputed to have muttered “It’s true nevertheless”) and committed him to lifelong house arrest. He died the
year of Newton’s birth. On 31 October 1992, 350 years after Galileo’s death, Pope John Paul II admitted that errors had been made by the
Church in the case of Galileo and declared the case closed.

By dropping objects of different masses from the
leaning tower of Pisa (so the story goes), Galileo
showed that freely falling bodies with different
masses fall through a given distance in the same
time (i.e., they experience the same accelera-
tion). However, this is true only if the force act-
ing on the body due to gravity is much greater
than the frictional drag on the body due to the
air and if the density of the body is much greater
than the density of air. (Both of these require-
ments were met by the heavy, dense objects used
by Galileo.)

Consider, however, the more general case of a
body of density "# and volume V# falling through
still air of density ". The downward force acting
on the body due to gravity is "#V#!, and the
(Archimedes’) upward force acting on the body
due to the mass of air displaced by the body is
"V#. In addition, the air exerts a drag force Fdrag
on the body, which acts upward. The body will
attain a steady terminal fall speed when these
three forces are in balance, that is

"#V#! $ "V#! % Fdrag

6.2 Was Galileo22 Correct? Terminal Fall Speeds of Water Droplets in Air

Continued on next page
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The warm cloud rain process

! Cloud droplet growth initially dominated by condensation
! Growth into raindrops dominated by collision-coalescence 
! Most effective in maritime clouds 

– small concentrations of large cloud droplets (due to fewer CCN)
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Condensation

! Increase of droplet radius by condensation is initially rapid, 
but diminishes as droplet grows.

! Condensational growth by itself cannot produce raindrops. 
(Why not?) 



Condensation

Consider an isolated droplet of radius r in a supersaturated environment.

ρv(r) ρv(∞)ρv(x)

Total flux of water vapor across a
sphere of radius x is

4πx2Ddρv/dx.

Diffusive flux of water vapor
is Ddρv/dx, where D is the
diffusion coefficient of water
vapor in air.

In steady state, total flux at any
radius x is the same as at r, so

dM

dt
= 4πx2D

dρv

dx
.

r

M

M =
4
3
πr3ρl



Condensation

Write
dM

dt
= 4πx2D

dρv

dx
as

dM

dt

dx

x2
= 4πDdρv

then integrate from x = r to x =∞:

dM

dt

� x=∞

x=r

dx

x2
= 4πD

� ρv(∞)

ρv(r)
dρv

to get

dM

dt
= 4πrD[ρv(∞)− ρv(r)].



Condensation

Use

ρv =
e

RvT
(EOS)

M =
4
3
πr3ρl (droplet mass)

in
dM

dt
= 4πrD[ρv(∞)− ρv(r)]

to get

r
dr

dt
=

Des(T )
ρlRvT

e(∞)− e(r)
es(T )

.



Condensation

r
dr

dt
=

Des(T )
ρlRvT

e(∞)− e(r)
es(T )

can be written as

r
dr

dt
=

Des(T )
ρlRvT

S,

where

S ≡ e(∞)− es

es
≈ e(∞)− e(r)

es(T )
,

and es(T ) is the saturation vapor pressure over a
plane surface of water.



Condensation

Our equation for droplet growth

r
dr

dt
=

Des(T )
ρlRvT

S

neglects the solute and Kelvin curvature effects.

These are not important for droplets with r > 1µm.

It also neglects the diffusion of heat away from the

droplet as the droplet is warmed by condensation.



Condensation6.4 Growth of Cloud Droplets in Warm Clouds 223

eventually reaches saturation with respect to liquid
water. Further uplift produces supersaturations that
initially increase at a rate proportional to the updraft
velocity. As the supersaturation rises, CCN are acti-
vated, starting with the most efficient. When the rate at
which water vapor in excess of saturation, made avail-
able by the adiabatic cooling, is equal to the rate at
which water vapor condenses onto the CCN and
droplets, the supersaturation in the cloud reaches a
maximum value. The concentration of cloud droplets is
determined at this stage (which generally occurs within
100 m or so of cloud base) and is equal to the concen-
tration of CCN activated by the peak supersaturation
that has been attained. Subsequently, the growing
droplets consume water vapor faster than it is made
available by the cooling of the air so the supersatura-
tion begins to decrease. The haze droplets then begin
to evaporate while the activated droplets continue to
grow by condensation. Because the rate of growth of a
droplet by condensation is inversely proportional to its
radius [see (6.21)], the smaller activated droplets grow
faster than the larger droplets. Consequently, in this
simplified model, the sizes of the droplets in the cloud
become increasingly uniform with time (i.e., the
droplets approach a monodispersed distribution). This
sequence of events is illustrated by the results of theo-
retical calculations shown in Fig. 6.16.

Comparisons of cloud droplet size distributions
measured a few hundred meters above the bases of
nonprecipitating warm cumulus clouds with droplet
size distributions computed assuming growth by con-
densation for about 5 min show good agreement
(Fig. 6.17). Note that the droplets produced by con-
densation during this time period extend up to only
about 10 !m in radius. Moreover, as mentioned ear-
lier the rate of increase in the radius of a droplet
growing by condensation decreases with time. It is
clear, therefore, as first noted by Reynolds19 in 1877,
that growth by condensation alone in warm clouds is
much too slow to produce raindrops with radii of sev-
eral millimeters. Yet rain does form in warm clouds.
The enormous increase in size required to transform
cloud droplets into raindrops is illustrated by the
scaled diagram shown in Fig. 6.18. For a cloud droplet
10 !m in radius to grow to a raindrop 1 mm in radius
requires an increases in volume of one millionfold!
However, only about one droplet in a million (about
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Fig. 6.16 Theoretical computations of the growth of cloud
condensation nuclei by condensation in a parcel of air rising
with a speed of 60 cm s"1. A total of 500 CCN cm"1 was
assumed with im!Ms values [see Eq. (6.8)] as indicated. Note
how the droplets that have been activated (brown, blue, and
purple curves) approach a monodispersed size distribution
after just 100 s. The variation with time of the supersatura-
tion of the air parcel is also shown (dashed red line). [Based
on data from J. Meteor. 6, 143 (1949).]
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Fig. 6.17 Comparison of the cloud droplet size distribution
measured 244 m above the base of a warm cumulus cloud
(red line) and the corresponding computed droplet size distri-
bution assuming growth by condensation only (blue line).
[Adapted from Tech. Note No. 44, Cloud Physics Lab., Univ.
of Chicago.]

19 Osborne Reynolds (1842–1912) Probably the outstanding English theoretical mechanical engineer of the 19th century. Carried out
important work on hydrodynamics and the theory of lubrication. Studied atmospheric refraction of sound. The Reynolds number, which he
introduced, is named after him.
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! Calculation of 
the growth of 
CCN (500/cm3) 
by condensation 
in an updraft of 
60 cm/s.

! Activated 
droplets are 
monodisperse 
by 100 s.



Condensation

! Cloud droplet 
size distribution 
measured 244 m 
above cloud 
base (red), and 
corresponding 
DSD calculated 
with only 
condensation 
(blue).
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eventually reaches saturation with respect to liquid
water. Further uplift produces supersaturations that
initially increase at a rate proportional to the updraft
velocity. As the supersaturation rises, CCN are acti-
vated, starting with the most efficient. When the rate at
which water vapor in excess of saturation, made avail-
able by the adiabatic cooling, is equal to the rate at
which water vapor condenses onto the CCN and
droplets, the supersaturation in the cloud reaches a
maximum value. The concentration of cloud droplets is
determined at this stage (which generally occurs within
100 m or so of cloud base) and is equal to the concen-
tration of CCN activated by the peak supersaturation
that has been attained. Subsequently, the growing
droplets consume water vapor faster than it is made
available by the cooling of the air so the supersatura-
tion begins to decrease. The haze droplets then begin
to evaporate while the activated droplets continue to
grow by condensation. Because the rate of growth of a
droplet by condensation is inversely proportional to its
radius [see (6.21)], the smaller activated droplets grow
faster than the larger droplets. Consequently, in this
simplified model, the sizes of the droplets in the cloud
become increasingly uniform with time (i.e., the
droplets approach a monodispersed distribution). This
sequence of events is illustrated by the results of theo-
retical calculations shown in Fig. 6.16.

Comparisons of cloud droplet size distributions
measured a few hundred meters above the bases of
nonprecipitating warm cumulus clouds with droplet
size distributions computed assuming growth by con-
densation for about 5 min show good agreement
(Fig. 6.17). Note that the droplets produced by con-
densation during this time period extend up to only
about 10 !m in radius. Moreover, as mentioned ear-
lier the rate of increase in the radius of a droplet
growing by condensation decreases with time. It is
clear, therefore, as first noted by Reynolds19 in 1877,
that growth by condensation alone in warm clouds is
much too slow to produce raindrops with radii of sev-
eral millimeters. Yet rain does form in warm clouds.
The enormous increase in size required to transform
cloud droplets into raindrops is illustrated by the
scaled diagram shown in Fig. 6.18. For a cloud droplet
10 !m in radius to grow to a raindrop 1 mm in radius
requires an increases in volume of one millionfold!
However, only about one droplet in a million (about
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Fig. 6.16 Theoretical computations of the growth of cloud
condensation nuclei by condensation in a parcel of air rising
with a speed of 60 cm s"1. A total of 500 CCN cm"1 was
assumed with im!Ms values [see Eq. (6.8)] as indicated. Note
how the droplets that have been activated (brown, blue, and
purple curves) approach a monodispersed size distribution
after just 100 s. The variation with time of the supersatura-
tion of the air parcel is also shown (dashed red line). [Based
on data from J. Meteor. 6, 143 (1949).]
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Fig. 6.17 Comparison of the cloud droplet size distribution
measured 244 m above the base of a warm cumulus cloud
(red line) and the corresponding computed droplet size distri-
bution assuming growth by condensation only (blue line).
[Adapted from Tech. Note No. 44, Cloud Physics Lab., Univ.
of Chicago.]

19 Osborne Reynolds (1842–1912) Probably the outstanding English theoretical mechanical engineer of the 19th century. Carried out
important work on hydrodynamics and the theory of lubrication. Studied atmospheric refraction of sound. The Reynolds number, which he
introduced, is named after him.
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Collision-coalescence

! Growth of droplets into raindrops is achieved by collision-
coalescence.

! Fall velocity of a droplet increases with size.
! Larger drops collect smaller cloud droplets and grow.
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Collision-coalescence

6.4 Growth of Cloud Droplets in Warm Clouds 225

Consider a single drop23 of radius r1 (called the
collector drop) that is overtaking a smaller droplet of
radius r2 (Fig. 6.19). As the collector drop approaches
the droplet, the latter will tend to follow the stream-
lines around the collector drop and thereby might
avoid capture. We define an effective collision cross
section in terms of the parameter y shown in
Fig. 6.19, which represents the critical distance
between the center fall line of the collector drop and
the center of the droplet (measured at a large
distance from the collector drop) that just makes a
grazing collision with the collector drop. If the center

of a droplet of radius r2 is any closer than y to the
center fall line of a collector drop of radius r1, it will
collide with the collector drop; conversely, if the cen-
ter of a droplet of radius r2 is at a greater distance
than y from the center fall line, it will not collide with
the collector drop. The effective collision cross
section of the collector drop for droplets of radius r2
is then !y2, whereas the geometrical collision cross
section is !(r1 " r2)2. The collision efficiency E of a
droplet of radius r2 with a drop of radius r1 is there-
fore defined as

(6.25)

Determination of the values of the collision effi-
ciency is a difficult mathematical problem, particu-
larly when the drop and droplet are similar in size,
in which case they strongly affect each other’s
motion. Computed values for E are shown in
Fig. 6.20, from which it can be seen that the collision
efficiency increases markedly as the size of the col-
lector drop increases and that the collision efficien-
cies for collector drops less than about 20 #m in
radius are quite small. When the collector drop is
much larger than the droplet, the collision efficiency
is small because the droplet tends to follow closely

E $
y2

(r1 " r2)2

6.2 Continued

or, if the body is a sphere of radius r, when

(6.22)

For spheres with radius %20 #m

(6.23)

where v is the terminal fall speed of the body and
& is the viscosity of the air. The expression for
Fdrag given by (6.23) is called the Stokes’ drag
force. From (6.22) and (6.23)

v $
2
9

 
!('( ) ')r2

&

Fdrag $ 6!&rv

4
3

 !r3!('( ) ') $ Fdrag

or, if '( ** ' (which it is for liquid and solid objects),

(6.24)

The terminal fall speeds of 10- and 20-#m-radius
water droplets in air at 1013 hPa and 20 +C are 0.3
and 1.2 cm s)1, respectively. The terminal fall speed
of a water droplet with radius 40 #m is 4.7 cm s)1,
which is about 10% less than given by (6.24). Water
drops of radius 100 #m, 1 mm, and 4 mm have ter-
minal fall speeds of 25.6, 403, and 883 cm s)1,
respectively, which are very much less than given by
(6.24). This is because as a drop increases in size, it
becomes increasingly nonspherical and has an
increasing wake. This gives rise to a drag force that
is much greater than that given by (6.23).

v $
2
9

 
!'(r2

&

23 In this section, “drop” refers to the larger and “droplet” to the smaller body.

r1

Radius r2

y

Fig. 6.19 Relative motion of a small droplet with respect to
a collector drop. y is the maximum impact parameter for a
droplet of radius r2 with a collector drop of radius r1.
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Terminal fall speed of a droplet in
air is due to a balance between
gravity and drag:

4
3
πr3gρl = Fdrag = 6πηrv (r ≤ 30µm)

where v is the terminal velocity
and η is the dynamic viscosity.

Solve for v:

v =
2
9

gρl

η
r2 = k1r

2

with k1 = 1.19× 106 cm−1 s−1.
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Consider a single drop23 of radius r1 (called the
collector drop) that is overtaking a smaller droplet of
radius r2 (Fig. 6.19). As the collector drop approaches
the droplet, the latter will tend to follow the stream-
lines around the collector drop and thereby might
avoid capture. We define an effective collision cross
section in terms of the parameter y shown in
Fig. 6.19, which represents the critical distance
between the center fall line of the collector drop and
the center of the droplet (measured at a large
distance from the collector drop) that just makes a
grazing collision with the collector drop. If the center

of a droplet of radius r2 is any closer than y to the
center fall line of a collector drop of radius r1, it will
collide with the collector drop; conversely, if the cen-
ter of a droplet of radius r2 is at a greater distance
than y from the center fall line, it will not collide with
the collector drop. The effective collision cross
section of the collector drop for droplets of radius r2
is then !y2, whereas the geometrical collision cross
section is !(r1 " r2)2. The collision efficiency E of a
droplet of radius r2 with a drop of radius r1 is there-
fore defined as

(6.25)

Determination of the values of the collision effi-
ciency is a difficult mathematical problem, particu-
larly when the drop and droplet are similar in size,
in which case they strongly affect each other’s
motion. Computed values for E are shown in
Fig. 6.20, from which it can be seen that the collision
efficiency increases markedly as the size of the col-
lector drop increases and that the collision efficien-
cies for collector drops less than about 20 #m in
radius are quite small. When the collector drop is
much larger than the droplet, the collision efficiency
is small because the droplet tends to follow closely

E $
y2

(r1 " r2)2

6.2 Continued

or, if the body is a sphere of radius r, when

(6.22)

For spheres with radius %20 #m

(6.23)

where v is the terminal fall speed of the body and
& is the viscosity of the air. The expression for
Fdrag given by (6.23) is called the Stokes’ drag
force. From (6.22) and (6.23)

v $
2
9

 
!('( ) ')r2

&

Fdrag $ 6!&rv

4
3

 !r3!('( ) ') $ Fdrag

or, if '( ** ' (which it is for liquid and solid objects),

(6.24)

The terminal fall speeds of 10- and 20-#m-radius
water droplets in air at 1013 hPa and 20 +C are 0.3
and 1.2 cm s)1, respectively. The terminal fall speed
of a water droplet with radius 40 #m is 4.7 cm s)1,
which is about 10% less than given by (6.24). Water
drops of radius 100 #m, 1 mm, and 4 mm have ter-
minal fall speeds of 25.6, 403, and 883 cm s)1,
respectively, which are very much less than given by
(6.24). This is because as a drop increases in size, it
becomes increasingly nonspherical and has an
increasing wake. This gives rise to a drag force that
is much greater than that given by (6.23).

v $
2
9

 
!'(r2

&

23 In this section, “drop” refers to the larger and “droplet” to the smaller body.

r1

Radius r2

y

Fig. 6.19 Relative motion of a small droplet with respect to
a collector drop. y is the maximum impact parameter for a
droplet of radius r2 with a collector drop of radius r1.
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Relative motion of a droplet with
respect to a collector drop. At the
radius y the two make a grazing
collision.

The collision efficiency is

E =
effective collision cross section

geometrical collision cross section

therefore

E =
y2

(r1 + r2)2



Collision-coalescence

Relative motion of a droplet with
respect to a collector drop. At the
radius y the two make a grazing
collision.

The collision efficiency is

E =
effective collision cross section

geometrical collision cross section

therefore

E =
y2

(r1 + r2)2



Collision-coalescence

! Collection efficiency = 
collision efficiency X 
coalescence efficiency
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the collector drop, but as the droplet and drop
approach each other in size, E! increases sharply.
This behavior can be explained as follows. Whether
coalescence occurs depends on the relative magni-
tude of the impact energy to the surface energy of
water. This energy ratio provides a measure of the
deformation of the collector drop due to the impact,
which, in turn, determines how much air is trapped
between the drop and the droplet. The tendency for
bouncing is a maximum for intermediate values of
the size ratio of the droplet to the drop. At smaller
and larger values of the size ratio, the impact energy
is relatively smaller and less able to prevent contact
and coalescence.

The presence of an electric field enhances coales-
cence. For example, in the experiment illustrated in
Fig. 6.21a, droplets that bounce at a certain angle of
incidence can be made to coalesce by applying an
electric field of about 104 V m"1, which is within
the range of measured values in clouds. Similarly,
coalescence is aided if the impacting droplet carries
an electric charge in excess of about 0.03 pC. The
maximum electric charge that a water drop can
carry occurs when the surface electrostatic stress
equals the surface tension stress. For a droplet
5 #m in radius, the maximum charge is !0.3 pC;
for a drop 0.5 mm in radius, it is !300 pC.
Measured charges on cloud drops are generally
several orders of magnitude below the maximum
possible charge.

Let us now consider a collector drop of radius r1
that has a terminal fall speed v1. Let us suppose that

this drop is falling in still air through a cloud of equal
sized droplets of radius r2 with terminal fall speed v2.
We will assume that the droplets are uniformly dis-
tributed in space and that they are collected uni-
formly at the same rate by all collector drops of a
given size. This so-called continuous collection model
is illustrated in Fig. 6.23. The rate of increase in the
mass M of the collector drop due to collisions is
given by

(6.26)

where wl is the LWC (in kg m"3) of the cloud droplets
of radius r2. Substituting into (6.26), where
$l is the density of liquid water, we obtain

(6.27)

If v1 %% v2 and we assume that the coalescence effi-
ciency is unity, so that Ec & E, (6.27) becomes

(6.28)

Because v1 increases as r1 increases (see Box 6.2),
and E also increases with r1 (see Fig. 6.20), it follows
from (6.28) that dr1"dt increases with increasing r1;
that is, the growth of a drop by collection is an accel-
erating process. This behavior is illustrated by the
red curve in Fig. 6.15, which indicates negligible
growth by collection until the collector drop has
reached a radius of !20 #m (see Fig. 6.20). It can be
seen from Fig. 6.15 that for small cloud droplets,
growth by condensation is initially dominant but,

dr1

dt
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v1wl E
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Fig. 6.22 Coalescence efficiencies E! for droplets of radius
r2 with collector drops of radius r1 based on an empirical fit
to laboratory measurements. [Adapted from J. Atmos. Sci. 52,
3985 (1995).]

r1

v1

v2

Cloud droplets of
radius r2 uniformly
distributed in space

Collector drop of
radius r1 

Fig. 6.23 Schematic illustrating the continuous collection
model for the growth of a cloud drop by collisions and
coalescence.
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the streamlines around the collector drop. As the
size of the droplet increases, E increases because
the droplet tends to move more nearly in a straight
line rather than follow the streamlines around the
collector drop. However, as r2!r1 increases from
about 0.6 to 0.9, E falls off, particularly for smaller
collector drops because the terminal fall speeds of
the collector drop and the droplets approach one
another so the relative velocity between them is

very small. Finally, however, as r2!r1 approaches
unity, E tends to increase again because two nearly
equal sized drops interact strongly to produce a
closing velocity between them. Indeed, wake effects
behind the collector drop can produce values of E
greater than unity (Fig. 6.20).

The next issue to be considered is whether a
droplet is captured (i.e., does coalescence occur?)
when it collides with a larger drop. It is known from
laboratory experiments that droplets can bounce off
one another or off a plane surface of water, as
demonstrated in Fig. 6.21a. This occurs when air
becomes trapped between the colliding surfaces so
that they deform without actually touching.24 In
effect, the droplet rebounds on a cushion of air. If the
cushion of air is squeezed out before rebound occurs,
the droplet will make physical contact with the drop
and coalescence will occur (Fig. 6.21b).26 The coales-
cence efficiency E! of a droplet of radius r2 with a
drop of radius r1 is defined as the fraction of colli-
sions that result in a coalescence. The collection effi-
ciency Ec is equal to EE!.

The results of laboratory measurements on coales-
cence are shown in Fig. 6.22. The coalescence effi-
ciency E! is large for very small droplets colliding
with larger drops. E! initially decreases as the size
of the droplet being collected increases relative to
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Fig. 6.20 Calculated values of the collision efficiency, E, for
collector drops of radius r1 with droplets of radius r2. [Adapted
from H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and
Precipitation, Kluwer Academic Pub., 1997, Fig. 14-6, p. 584,
Copyright 1997, with kind permission of Springer Science and
Business Media. Based on J. Atmos. Sci. 30, 112 (1973).]

24 Lenard25 pointed out in 1904 that cloud droplets might not always coalesce when they collide, and he suggested that this could be
due to a layer of air between the droplets or to electrical charges.

25 Phillip Lenard (1862–1947) Austrian physicist. Studied under Helmholtz and Hertz. Professor of physics at Heidelberg and Kiel.
Won the Nobel prize in physics (1905) for work on cathode rays. One of the first to study the charging produced by the disruption of water
(e.g., in waterfalls).

26 Even after two droplets have coalesced, the motions set up in their combined mass may cause subsequent breakup into several
droplets (see Box 6.2).

(a) (b)

Fig. 6.21 (a) A stream of water droplets (entering from the right), about 100 "m in diameter, rebounding from a plane surface
of water. (b) When the angle between the stream of droplets and the surface of the water is increased beyond a critical value, the
droplets coalesce with the water. [Photograph courtesy of P. V. Hobbs.]
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the collector drop, but as the droplet and drop
approach each other in size, E! increases sharply.
This behavior can be explained as follows. Whether
coalescence occurs depends on the relative magni-
tude of the impact energy to the surface energy of
water. This energy ratio provides a measure of the
deformation of the collector drop due to the impact,
which, in turn, determines how much air is trapped
between the drop and the droplet. The tendency for
bouncing is a maximum for intermediate values of
the size ratio of the droplet to the drop. At smaller
and larger values of the size ratio, the impact energy
is relatively smaller and less able to prevent contact
and coalescence.

The presence of an electric field enhances coales-
cence. For example, in the experiment illustrated in
Fig. 6.21a, droplets that bounce at a certain angle of
incidence can be made to coalesce by applying an
electric field of about 104 V m"1, which is within
the range of measured values in clouds. Similarly,
coalescence is aided if the impacting droplet carries
an electric charge in excess of about 0.03 pC. The
maximum electric charge that a water drop can
carry occurs when the surface electrostatic stress
equals the surface tension stress. For a droplet
5 #m in radius, the maximum charge is !0.3 pC;
for a drop 0.5 mm in radius, it is !300 pC.
Measured charges on cloud drops are generally
several orders of magnitude below the maximum
possible charge.

Let us now consider a collector drop of radius r1
that has a terminal fall speed v1. Let us suppose that

this drop is falling in still air through a cloud of equal
sized droplets of radius r2 with terminal fall speed v2.
We will assume that the droplets are uniformly dis-
tributed in space and that they are collected uni-
formly at the same rate by all collector drops of a
given size. This so-called continuous collection model
is illustrated in Fig. 6.23. The rate of increase in the
mass M of the collector drop due to collisions is
given by

(6.26)

where wl is the LWC (in kg m"3) of the cloud droplets
of radius r2. Substituting into (6.26), where
$l is the density of liquid water, we obtain

(6.27)

If v1 %% v2 and we assume that the coalescence effi-
ciency is unity, so that Ec & E, (6.27) becomes

(6.28)

Because v1 increases as r1 increases (see Box 6.2),
and E also increases with r1 (see Fig. 6.20), it follows
from (6.28) that dr1"dt increases with increasing r1;
that is, the growth of a drop by collection is an accel-
erating process. This behavior is illustrated by the
red curve in Fig. 6.15, which indicates negligible
growth by collection until the collector drop has
reached a radius of !20 #m (see Fig. 6.20). It can be
seen from Fig. 6.15 that for small cloud droplets,
growth by condensation is initially dominant but,
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Fig. 6.22 Coalescence efficiencies E! for droplets of radius
r2 with collector drops of radius r1 based on an empirical fit
to laboratory measurements. [Adapted from J. Atmos. Sci. 52,
3985 (1995).]

r1

v1

v2

Cloud droplets of
radius r2 uniformly
distributed in space
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Fig. 6.23 Schematic illustrating the continuous collection
model for the growth of a cloud drop by collisions and
coalescence.
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the collector drop, but as the droplet and drop
approach each other in size, E! increases sharply.
This behavior can be explained as follows. Whether
coalescence occurs depends on the relative magni-
tude of the impact energy to the surface energy of
water. This energy ratio provides a measure of the
deformation of the collector drop due to the impact,
which, in turn, determines how much air is trapped
between the drop and the droplet. The tendency for
bouncing is a maximum for intermediate values of
the size ratio of the droplet to the drop. At smaller
and larger values of the size ratio, the impact energy
is relatively smaller and less able to prevent contact
and coalescence.

The presence of an electric field enhances coales-
cence. For example, in the experiment illustrated in
Fig. 6.21a, droplets that bounce at a certain angle of
incidence can be made to coalesce by applying an
electric field of about 104 V m"1, which is within
the range of measured values in clouds. Similarly,
coalescence is aided if the impacting droplet carries
an electric charge in excess of about 0.03 pC. The
maximum electric charge that a water drop can
carry occurs when the surface electrostatic stress
equals the surface tension stress. For a droplet
5 #m in radius, the maximum charge is !0.3 pC;
for a drop 0.5 mm in radius, it is !300 pC.
Measured charges on cloud drops are generally
several orders of magnitude below the maximum
possible charge.

Let us now consider a collector drop of radius r1
that has a terminal fall speed v1. Let us suppose that

this drop is falling in still air through a cloud of equal
sized droplets of radius r2 with terminal fall speed v2.
We will assume that the droplets are uniformly dis-
tributed in space and that they are collected uni-
formly at the same rate by all collector drops of a
given size. This so-called continuous collection model
is illustrated in Fig. 6.23. The rate of increase in the
mass M of the collector drop due to collisions is
given by

(6.26)

where wl is the LWC (in kg m"3) of the cloud droplets
of radius r2. Substituting into (6.26), where
$l is the density of liquid water, we obtain

(6.27)

If v1 %% v2 and we assume that the coalescence effi-
ciency is unity, so that Ec & E, (6.27) becomes

(6.28)

Because v1 increases as r1 increases (see Box 6.2),
and E also increases with r1 (see Fig. 6.20), it follows
from (6.28) that dr1"dt increases with increasing r1;
that is, the growth of a drop by collection is an accel-
erating process. This behavior is illustrated by the
red curve in Fig. 6.15, which indicates negligible
growth by collection until the collector drop has
reached a radius of !20 #m (see Fig. 6.20). It can be
seen from Fig. 6.15 that for small cloud droplets,
growth by condensation is initially dominant but,
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Fig. 6.22 Coalescence efficiencies E! for droplets of radius
r2 with collector drops of radius r1 based on an empirical fit
to laboratory measurements. [Adapted from J. Atmos. Sci. 52,
3985 (1995).]
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Fig. 6.23 Schematic illustrating the continuous collection
model for the growth of a cloud drop by collisions and
coalescence.
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According to the continuous
collection model, the rate of
increase of the collector drop’s
mass M due to collisions is the
volume of the cylinder swept out
per unit time by the collector drop
moving at the relative velocity
v1 − v2 × LWC × collection
efficiency:

dM

dt
= πr2

1(v1 − v2)wlEc

where wl is the LWC of the cloud
droplets of radius r2.



Collision-coalescence

222 Cloud Microphysics

gradient in water vapor density, the rate of increase in
the mass of the droplet is given by

where !v is the water vapor density at distance
x("r) from the droplet. Because, under steady-
state conditions, dM!dt is independent of x,
the aforementioned equation can be integrated as
follows

or

(6.19)

Substituting , where !l is the density of
liquid water, into this last expression we obtain

Finally, using the ideal gas equation for the water
vapor, and with some algebraic manipulation,

(6.20)

where e(#) is the water vapor pressure in the ambi-
ent air well removed from the droplet and e(r) is the
vapor pressure adjacent to the droplet.18

Strictly speaking, e(r) in (6.20) should be
replaced by e$, where e$ is given by (6.8). However,
for droplets in excess of 1 %m or so in radius it can
be seen from Fig. 6.3 that the solute effect and the
Kelvin curvature effect are not very important so
the vapor pressure e(r) is approximately equal to
the saturation vapor pressure es over a plane
surface of pure water (which depends only on

dr
dt

&
1
r
 
D!v(#)
!l e(#)

 [e(#) ' e(r)]

dr
dt

&
D
r!l

 [!v(#) ' !v(r)]

M & 4
3(r3 !l

dM
dt

& 4(rD[!v(#) ' !v(r)]

dM
dt "x&#

x&r

dx
x2 & 4(D"!v(#)

!v(r) d!v

dM
dt

& 4(x2D 
d!v

dx

temperature). In this case, if e(#) is not too differ-
ent from es,

where S is the supersaturation of the ambient air
(expressed as a fraction rather than a percentage).
Hence (6.20) becomes

(6.21)

where

which has a constant value for a given environment.
It can be seen from (6.21) that, for fixed values of G!

and the supersaturation S, dr!dt is inversely propor-
tional to the radius r of the droplet. Consequently,
droplets growing by condensation initially increase in
radius very rapidly but their rate of growth dimin-
ishes with time, as shown schematically by curve (a)
in Fig. 6.15.

In a cloud we are concerned with the growth of a
large number of droplets in a rising parcel of air. As
the parcel rises it expands, cools adiabatically, and

G" &
D!v(#)

!l

r 
dr
dt

& G"S

e(#) ' e(r)
e(#)

#
e(#) ' es

es
& S

18 Several assumptions have been made in the derivation of (6.20). For example, we have assumed that all of the water molecules that
land on the droplet remain there and that the vapor adjacent to the droplet is at the same temperature as the environment. Due to the
release of latent heat of condensation, the temperature at the surface of the droplet will, in fact, be somewhat higher than the temperature
of the air well away from the droplet. We have also assumed that the droplet is at rest; droplets that are falling with appreciable speeds will
be ventilated, which will affect both the temperature of the droplet and the flow of vapor to the droplet.
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Fig. 6.15 Schematic curves of droplet growth (a) by con-
densation from the vapor phase (blue curve) and (b) by
collection of droplets (red curve).
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condensation

collection

Substitute M = 4/3πr3
1ρl into

dM

dt
= πr2

1(v1 − v2)wlEc

to get
dr1

dt
=

(v1 − v2)wlEc

4ρl

If v1 � v2 and Ec = E, then we get

dr1

dt
=

v1wlE

4ρl

Note that for collection,

dr

dt
∼ v(r) ∼ r2

while for condensation,

dr

dt
∼ 1

r

.
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If there is a steady updraft of speed w, the speed of
a collector drop with respect to the ground is
w − v1, so that its motion is

dh

dt
= w − v1

where h is the height of the drop. Combine this
with

dr1

dt
=

v1wlE

4ρl

to get
dr1

dh
=

v1wlE

4ρl(w − v1)
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Rearrange this

dr1

dh
=

v1wlE

4ρl(w − v1)

into

4ρl

(w − v1)
v1E

dr1 = wl dh

then integrate

4ρl

�
rH

r0

(w − v1)
v1E

dr1 =
�

H

0
wl dh = wlH



Collision-coalescence

H =
4ρl

wl

�
rH

r0

(w − v1)
v1E

dr1

A drop starts at cloud base with radius r0, goes up and
down in a cloud with constant E, then reaches the base
again with radius R. Relate R to r0 and the (constant)
updraft speed w. Set H = 0 and rH = R to get

0 =
�

R

r0

(w − v1)
v1

dr1 =
�

R

r0

w

v1
dr1 −

�
R

r0

dr1

or

R = r0 + w

�
R

r0

dr1

v1


