
The Atmospheric Boundary Layer

• Turbulence (9.1)

• The Surface Energy Balance (9.2)

• Vertical Structure (9.3)

• Evolution (9.4)

• Special Effects (9.5)

• The Boundary Layer in Context (9.6)



• Advances will continue to be made in boundary 
layer meteorology due to

• advances in measurement capabilities, 
both in situ and remote

• increased computational capabilities of 
research numerical models

• increases in resolution of NWP models

• needs of wind power generation, urban 
meteorology, wildfire science, etc
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414 The Atmospheric Boundary Layer

(hh) Other conditions being the same, alpine
glaciers and snow-fields lose more mass on
a humid summer day than on a dry summer
day.

(ii) On a clear, calm day, the surface sensible
heat flux into the air does not usually
become positive until 30 to 60 min after
sunrise.

(jj) In fair weather, the heat and momentum
fluxes at the top of the mixed layer due to
entrainment are usually downward, but the
moisture flux is positive.

(kk) You can estimate the static stability of
the boundary layer by looking at the
shape of the smoke plume from a smoke
stack.

(ll) In Fig. 9.40, why do the surface wind speed
and the cloudiness increase as the air flows
northward across the sharp front in the
sea-surface temperature field that lies
along 1 °N?

9.8 Estimate the temperature variance for the
velocity trace at the bottom of Fig. 9.6.
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Fig. 9.40 Sea surface temperature (colored shading) surface winds (arrows) and clouds (gray shading) over the equatorial
Pacific at a time when the equatorial front in the sea surface temperature field is well defined along 1 °N. The scalloped appear-
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imagery. Courtesy of Robert Wood.]
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Boundary Layer Winds

Holton 4th Edition in Holton.] Fig 5.1 shows convective eddies have positively correlated vertical velocity
and potential temperature fluctuations and hence provide a source of turbulent kinetic energy and positive
heat flux. This source of TKE is positive (negative) in a convectively unstable (statically stable) atmosphere
and tends to generate (reduce or eliminate) turbulence.

The mechanical production term MP represents a conversion of energy between mean flow and turbulent
fluctuations. This term is proportional to the shear in the mean flow and is defined by

MP ≡ −u�w� ∂u

∂z
− v�w� ∂v

∂z
. (5.15)

For both statically stable and unstable boundary layers, turbulence can be generated mechanically by dy-
namical instability due to wind shear. MP is positive when the momentum flux is directed down the gradient
of the mean momentum. This means that if the mean vertical shear in a layer is westerly (∂u/∂z > 0) then
u�w� < 0 for MP > 0.

In a statically stable layer, turbulence can exist only if mechanical production is large enough to overcome
the damping effects of stability and viscous dissipation. This is measured by the flux Richardson number
which is defined by

Rf ≡ −
BPL

MP
.

If the boundary layer is statically unstable, then Rf < 0 and turbulence is sustained by convection. If
the boundary layer is statically stable, Rf will be positive. Observations suggest that only when Rf is
less than 0.25 (i.e., MP exceeds BPL or buoyancy damping by a factor of 4) is the mechanical production
intense enough to sustain turbulence in a stable layer. Since MP depends on shear, it always becomes large
close enough to the surface. However, as static stability increases, the depth of the layer in which there is
a net production of turbulence shrinks. When there is a strong temperature inversion, such as produced
by nocturnal radiative cooling at the surface, the boundary layer depth may be on a few decameters and
vertical mixing is strongly suppressed. Because Rf involves turbulent correlations, we can use it to determine
whether turbulent flow will become laminar, not whether laminar flow will become turbulent.

The TR term represent the sum of the vertical turbulent flux of TKE and of pressure, and is written

TR ≡ −∂(w� TKE)
∂z

− ρ0
∂(w� p)

∂z
.

TR acts on a local scale as either a production or loss depending on whether there is a flux convergence or
divergence. When integrated over the depth of the mixed layer (ML below), this terms become identically
zero, assuming as bottom and top boundary conditions that the atmosphere is not turbulent at the surface
or above the top of the ML.

5.3 PLANETARY BOUNDARY LAYER MOMENTUM EQUATIONS

For the special case of horizontallly homogeneous turbulence above the viscous sublayer (?), molecular viscos-
ity and horizontal turbulent momentum flux divergence terms can be neglected. The mean flow momentum
equations (5.9) and (5.10) become

Du

Dt
= − 1

ρ0

∂p

∂x
+ fv − ∂u�w�

∂z
(5.16)

and
Dv

Dt
= − 1

ρ0

∂p

∂y
− fu−−∂v�w�

∂z
. (5.17)

These equations can only be solved for u and v if the vertical distribution of the turbulent momentum flux is
known. Because this depends on the structure of the turbulence, no general solution is possible. A number
of semi–empirical methods are used.

For midlatitude synoptic-scale motions, Section 2.4 in Holton 4th Edition showed that to a first approxi-
mation the inertial acceleration terms (terms on the left of 5.16 and 5.17) can be neglected compared to other

6

terms in these expressions. Outside the boundary layer the resulting approximation was simply geostrophic
balance. In the boundary layer the turbulent terms must be included, and the resulting approximation is

f(v − vg)−
∂u�w�

∂z
= 0, (5.18)

−f(u− ug)−
∂v�w�

∂z
= 0 (5.19)

a three-way balance between the Coriolis force, the pressure gradient force, and the turbulent momentum
flux divergence. Here

Vg ≡ k× 1
ρ f
∇p (2.23)

is used to express the pressure gradient force in terms of geostrophic velocity.

5.3.1 Well–Mixed Boundary Layer

If a convective boundary layer is topped by a stable layer, turbulent mixing can lead to the formation of a
well–mixed (ML) layer. Such boundary layers are common over land during the day when surface heating is
strong and over oceans when the air near the sea surface is colder than the surface water temperature.

Observations show that in a well–mixed layer, the wind speed and potential temperature are nearly
independent of height (Fig 5.2, Holton 4th Edition; adapted from Stull’s text 1988). To a first approximation
it is possible to treat the layer as a slab in which the velocity and potential temperature profiles are constant
with height and turbulent fluxes vary linearly with height. For simplicity we assume that turbulence vanishes
at the top of the boundary layer. Observations also indicate that the surface momentum flux can be
represented by a bulk aerodynamic formula where

(u�w�)s = −Cd |V | u

and
(v�w�)s = −Cd |V | v.

Cd is a nondimensional drag coefficient, |V | = (u2 +v2)1/2, and the subscript s denotes surface values (taken
at standard anemometer height). Observations show that Cd ∼ 1.5× 10−5 over oceans, and is several times
as large over land.

Using this representation for surface momentum flux, (5.18) and (5.19) can be integrated from the
surface to the top of the boundary layer where z = h to give

f(v − vg) = − (u�w�)s

h
=

Cd |V | u
h

, (5.20)

−f(u− ug) = − (v�w�)s

h
=

Cd |V | v
h

. (5.21)

By choosing the axes such that vg = 0, (5.20) and (5.21) are written

v = κs|V|u, u = ug − κs|V|v (5.22)

where κs ≡ Cd/(fh). You have already seen this wind behavior in your Synoptic Meteorology class; near
the surface winds tend to spiral into lower pressure centres, out of high pressure centres. In the mixed layer
wind speed is less than geostrophic speed, and there is a component of motion directed toward lower pressure
(that is, to the left of the geostrophic wind in the Northern Hemisphere and to the right of the geostrophic
wind in the Southern Hemisphere) whose magnitude depends on κs. If we plug in typical values for ug and
κs into (5.22), |V| will be less than the magnitude of the geostrophic wind.

So now instead of geostrophic balance, there is a three–way balance between the pressure gradient force,
the Coriolis force, and turbulent drag:

fk ×V = − 1
ρ0
∇p− Cd

h
|V|V. (5.23)
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Meteorology 5210

Exercise 5: Boundary Layer Momentum Equations

Due Oct 2, 2008

1. Use the mixed layer expressions for ū and v̄ to calculate ū, v̄, |V̄|, and the cross-isobar
angle of V̄ for ūg = 10 m/s and κs = 0, 0.015, 0.05, 0.1, 0.2, and 0.4 s/m. Hint: See
the next page for solutions of ū and v̄ in terms of k ≡ |V̄|2 = ū2 + v̄2, and a solution
for k in terms of κs and ūg.

(a) Use the Matlab plot command QUIVER(X,Y,U,V,S) to plot V̄ for all cases on a
single plot with X=Y=S=0. QUIVER(0,0,U,V,0) plots velocity vectors as arrows with
components (u,v).
(b) What happens to the wind speed and the cross-isobar angle as the drag coefficient
κs increases?

Answer:

(a)
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Difficulties: There were some coding errors. Almost no one correctly calculated the
velocity vector for κs = 0. For this case, the correct answer can be obtained by setting
κs to a very small but non-zero value, such as 10−6.
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7.2 Dynamics of Horizontal Flow 281

In (7.13a) the horizontal wind field is defined on sur-
faces of constant geopotential so that !" # 0, whereas
in (7.14) it is defined on constant pressure surfaces so
that !p # 0. However, pressure surfaces are suffi-
ciently flat that the V fields on a geopotential surface
and a nearby pressure surface are very similar.

7.2.4 The Geostrophic Wind

In large-scale wind systems such as baroclinic waves
and extratropical cyclones, typical horizontal velocities
are on the order of 10 m s$1 and the timescale over
which individual air parcels experience significant
changes in velocity is on the order of a day or so
(!105 s). Thus a typical parcel acceleration dV"dt is
!10 m s$1 per 105 s or 10$4 m s$2. In middle latitudes,
where f !10$4 s$1, an air parcel moving at a speed of
10 m s$1 experiences a Coriolis force per unit mass C
!10$3 m s$2, about an order of magnitude larger than
the typical horizontal accelerations of air parcels.

In the free atmosphere, where the frictional force
is usually very small, the only term that is capable of
balancing the Coriolis force C is the pressure gradi-
ent force P. Thus, to within about 10%, in middle
and high latitudes, the horizontal equation of motion
(7.14) is closely approximated by

Making use of the vector identity

it follows that

For any given horizontal distribution of pressure on
geopotential surfaces (or geopotential height on pres-
sure surfaces) it is possible to define a geostrophic5

wind field Vg for which this relationship is exactly
satisfied:

(7.15a)

or, in component form,

V! # 
1
f
 (k % !")

V $
1
f
 (k % !")

k % (k % V) # $V

f k % V $ $!"

(7.15b)

or, in natural coordinates,

(7.15c)

where V! is the scalar geostrophic wind speed and n
is the direction normal to the isobars (or geopoten-
tial height contours), pointing toward higher values.

The balance of horizontal forces implicit in the
definition of the geostrophic wind (for a location in
the northern hemisphere) is illustrated in Fig. 7.9. In
order for the Coriolis force and the pressure gradient
force to balance, the geostrophic wind must blow
parallel to the isobars, leaving low pressure to the
left. In either hemisphere, the geostrophic wind field
circulates cyclonically around a center of low pres-
sure and vice versa, as in Fig. 1.14, justifying the iden-
tification of local pressure minima with cyclones and
local pressure maxima with anticyclones. The tighter
the spacing of the isobars or geopotential height con-
tours, the stronger the Coriolis force required to bal-
ance the pressure gradient force and hence, the
higher the speed of the geostrophic wind.

7.2.5 The Effect of Friction

The three-way balance of forces required for flow in
which dV"dt # 0 in the northern hemisphere in the
presence of friction at the Earth’s surface is illus-
trated in Fig. 7.10. As in Fig. 7.9, P is directed normal

V! # $
1
f
 
&'

&n

u! # $
1
f
 
&"

&y
,  v! #

1
f
 
&"

&x

5 From the Greek: geo (Earth) and strophen (to turn)

Fig. 7.9 The geostrophic wind V! and its relationship to the
horizontal pressure gradient force P and the Coriolis force C
in the northern hemisphere.
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