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The Atmospheric Boundary Layer

e Turbulence (9.1)

e The Surface Energy Balance (9.2)
e Vertical Structure (9.3)

e Evolution (9.4)

e Special Effects (9.5)

e The Boundary Layer in Context (9.6)



Diurnal Mountain Winds

C. David Whiteman

Meteorology 3000
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The mountain wind system

¢ Four interacting wind systems are found over mountain
terrain:
— Slope wind system (upslope and downslope winds)
— Along-valley wind system (up-valley and down-valley winds)
— Cross-valley wind system (from the cold to warm slope)
— Mountain-plain wind system (plain-mtn and mtn-plain winds)

¢ Because diurnal mountain winds are driven by horizontal
temperature differences, the regular evolution of the winds in
a given valley is closely tied to the thermal structure of the
atmospheric boundary layer within the valley, which is
characterized by a diurnal cycle of buildup and breakdown of
a temperature inversion.
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Wind regimes
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Wind regimes

Free atmosphere

Mountain atmosphere
— Slope atmosphere

Valley Atmosphere

Zardi and Whiteman (2012)




Wind Terminology
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Wind system terminology

¢ valley wind = up-valley flow (daytime)

¢ mountain wind = down-valley flow (nighttime)
¢ anabatic flow = up-slope wind (daytime)

¢ katabatic flow = down-slope wind (nighttime)
¢ mountain-plain circulation

¢ drainage flows = down-slope and down-valley
¢ cross-valley flow = toward heated hillside

¢ anti-winds
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Slope winds

¢ Gravity or buoyancy currents following the dip of the
underlying slope

¢ Caused by differences in temperature between air heated or
cooled over the mountain slopes and air at the same altitude
over the valley center

¢ Best-developed in clear, undisturbed weather

¢ Difficult to find in a pure form. Affected by along-valley wind
system, weather (radiation budget, ambient flows), changing
topography or surface cover
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Thermal belt

Night Cooling in a Valley  Corresponding Distribution
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Valley Winds

¢ Air currents trying to equalize horizontal pressure gradients
built up hydrostatically between valley and plain

¢ Caused by the stronger heating and cooling of the valley
atmosphere as compared to the adjacent plain

¢ Best-developed in clear undisturbed weather
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Valley wind regimes
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Figure 3: Idealized flow over an isolated hill. Different stability conditions are defined by the values of
the Froude number Fr=U/(NL), where U is the wind speed, N the Brunt-Vaisala frequency and L 1s the
length scale of the hill (from Stull, 1988, p. 602, fig. 14.4). [Reprinted with kind permission from Klu-
wer Academic Publishers]
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Turbulent rotor cloud downwind (left-hand side of the photo) of the
Sierra Nevada mountain range in the Owens Valley near Bishop, California.
Downslope winds gather dust on the valley floor and serve as a tracer of the
air rising suddenly into the cloud. Over the mountains themselves (upper right)
a portion of a Fohn wall cloud is seen.

(Photo taken by pilot Robert Symons, while flying a P-38 fighter.

Photo courtesy of Morton G. Wurtele.)
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Figure 12.14 Isentropes for the airflow in a two-layer atmosphere when the interface is fixed at 3000 m, and the
mountain height is (a) 200, (b) 300, (c) 500, and (d) 800 m. (From Durran [1986b].)



Figure 12.15 Isentropes for the airflow in a two-layer atmosphere when the mountain height is fixed at 500 m, and the
interface is at (a) 1000 m, (b) 2500 m, (c) 3500 m, and (d) 4000 m. (From Durran [1986b].)
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Terrain Effects
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Terrain Effects
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Forest Canopy Effects
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Urban Effects

* More drag

* Drier surface

* |ess vegetation
* Different albedo

* Albedo depends strongly on sun
position

* Different heat capacity

* Greater emissions of pollutants

A and anthropogenic heat
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Figure 2: Sketch of the urban boundary layer and urban plume for a windy day (a), and night (b) (from
Stull, 1988, p. 611, fig. 14.22). [Reprinted with kind permission from Kluwer Academic Publishers]
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Urban Effects
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Urban Effects
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Urban Effects

Flow Pattern: Top View Flow Pattern: Top View
Wind Against Face Wind Against Edge



Urban Effects

Urban Wind Flow Patterns With Various Simple Building Shapes and Spacings




Wind Engineering

DESIGN OF

Buildings Bridges
FOR WIND

' & .
A Practical Guide for ASCE-7 Standard
Users and Designers of Special Structures

. Emil Simiu
s34 Toshio Miyata
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Alan G. Davenport and the Art of Wind Engineering

SIOBHAN ROBERTS

Alan G. Davenport, with a model of New York City in 1980.



DUSFSTORMS IN THE
EASTERN GREAIRBASIN
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Dust on Snw
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® Reduces albedo of snow

® Increases snow melt rate
causing

* Snow free day to be 18-35
days earlier (Painter et al 2007)

| ®© Dusty snow causes

Wavelength (um) * Peak runoff 3 weeks earlier at
_ee’s Ferry

* Reduces runoff by 5% (Painter
et al. 2010)

‘ @ Leads to ohenological

changes in plants (Steltzer
et al. 2009)
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Health Impacts ot dust

® Increases in mortality: Spain | 22 August 2010 1530 MST
(Perez et al. 2008)

® Increases in hospitalization
for respiratory ailments:
Texas (Grineski et al. 2011)

® Coarse particles:

* Deposited in bronchial passages|
eading to respiratory conditions

® Fine particles:

* Reach alveoli leading to
cardiovascular events

22 August 2010 1550 MST
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Utah dust storms sometimes:

®QOccur in March and Aprl
® Occur during clear sky conditions

®Dense enough to totally obscure the sun and
reduce visibility

® Accompanied by strong damaging winds
® Formed by winds from the south and southwest

®Followed by a wind shift to the northwest ending
fhe dust storm

@ Followed by muddy rain or snow washing out the
dust

®Negaftively mpact human health and welfare
©® Cause damage to crops and property




What wind speeds and directions are
associated with the Dust Stormse

Delta 1973-2010

® Southwest winds

® Occasionally with
northerly winds

® Usually speeds
from 10-20 m/s
(22-45 mph)




When do we get South windse




The "Hatu” Winds

®"Hatu" is “Utah” spelled backward Mark Eubank’s
UTAH

® *Warm winds coming from the south
that occur ahead of an
approaching storm.”

=
Z

® Pre-frontal dry winds

®These types of winds are a known
producer of regional dust fransport in

arid regions.
(Goudie 197/8; Rivera Rivera et al. 2009; Strong et al. 2010)




When do Dust Storms occur
|n the Eastern Great Basine

% Delta 1973-2010
In The affernoon.
l l Il I I I —r— Delta 1973-2010

n.Feb.Mar.Apr. MayJ JIA g.Sep.Oct.NovDec.
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Cyclo and Frontogenesis In
the Great Basin
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Summary of Meteorology

® Strengthening cyclonic systems over the northern Great
Basin are the main driver of dust events in this region

* With the dust event occurring in the pre frontal southerly wind
environment

® Dust events occur mostly In spring and sometimes in fall

* Matches the climatology of strong fronts and cyclogenesis in this
region

® Dust events have a diurnal pattern peaking in the
afternoon
* Which is coincident with the maximum boundary layer depth

® Dust events have a clear impact on air quality in the SLC
region

* Elevated particulate levels during most dust events and many days
exceeding NAAQ)S for PM10

(Hahnenberger and Nicoll, 2012, Atmospheric Environment)



Summary of Source Areas

®Most dust plumes originate from:

* Dry Lake Beds (Playas)
* Disturbed areas

® Anthropogenic influence on most sources
®Drought helps drive dust production

®Human activities can directly alter dust

oroduction...
* Must take landscape, soils, and climate info account

(Hahnenberger and Nicoll, submitted, Geomorphology)






