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A wave with wavelength = 27 traveling at speed c in the x-direction

Fig. 7.2 A sinusoidal wave traveling in the positive x direction at speed ¢. (Wave number is
assumed to be unity.)



Wave Parameters

For a function having a wave structure in the x and z
directions (Figure 6.4), we modify (6.2) to include the
second direction such that it becomes

f = Acos (kx + mz — wt) (6.3)

where m = 2w /A, and A, is the vertical wavelength. For
notational convenience and to allow for cosine as well as
sine solutions, we shall often express our assumed wave
solutions in the form

f=n { Aei(kx—i—mz—a)t)} (6.4)

where A is now a complex amplitude (i.e., A =A; +
iA;), ellkxtmz—ot) expands to cos(kx + mz — wt) + isin(kx
+mz — wt), and the N operator indicates that we retain
only the real part of the quantity in brackets.

At any particular time, the quantity kx + mz — wt is
described as the phase of the wave, and lines of constant
phase are called wavefronts, which are perpendicular to the
wave vector (also sometimes called the wavenumber vector)
Kk = ki 4+ mk. We can write (6.3) using the wave vector and
a position vector, r = xi + zKk, to obtain

f=Acos(k-r— wt). (6.5)

k = 27 /A, horizontal wavenumber
m = 27w/ )\, vertical wavenumber

Figure 6.4 Basic wave properties. Lines indicate con-
stant phase for a plane wave; A, (k) and A, (m) are the
wavelengths (wavenumbers) in the x and z directions,
respectively, ¢ is the angle between the phase lines and
the vertical, and k 1s the wave vector.



Parcel Oscillations
(Thermo Notes, Section 7.2

dw_ T —T
a T

Let z = 0 denote the parcel’s equilibrium location. Then at z = 0,
T =T, and dw/dt = 0.

Assume that the temperature in the environment varies linearly with
height. Then the temperature at any height z in the environment is

T(z) = T(0) — 72,

where v = —dT /dz is the environmental lapse rate. Similarly, the
parcel temperature at any height z is

T(z)=T(0) —Tyz=T(0) —I'z,

where I'_ — dT'/dz is the parcel lapse rate



dw_ T —T
@ T

When these expressions are substituted in Eq. (41), we obtain

dw g 9 B
e T(0) — 2 (v —T1)z =~ m(*y — M)z =bz. (42)




dw_ T —T
a T

When these expressions are substituted in Eq. (41), we obtain

dw qg q

i T00) — (v -1z~ m(v — ')z = bz. (42)

Eq. (42) describes how w changes with time. By definition,

dz
— = w. 43
it (43)

Eqgs. (42) and (43) are coupled linear differential equations which are
easy to solve analytically for z(t).

They can also be combined into a single second-order differential
equation:

d?z
3 do
b=—5 @Fidz-T) =52 _ N=2

7(0) 7(0) dz 90 dZ



Parcel Oscillations

Parcel is displaced a distance ds along line tilted at angle «.

Vertical displacement is 0z = ds cos a.

— gdb
— 0 dz-

Vertical buoyancy force is —N?§z, where N?
Component of buoyancy force parallel to tilted path is
—N?6zcosa = N*(6s cosa) cosa = —(IN cosa)?6s

Momentum equation for parcel is

d?(ds)
dt?

= — (N cosa)?ds

Zo

Fig. 7.8 Parcel oscillation path (heavy arrow) for pure gravity waves with phase lines tilted
at an angle a to the vertical.



Linearized Equations

For two-dimensional motion:
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Linearized Equations
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Linearized Equations

Combine to form a single equation for w’

d _ o\ (3w &w W'
——— Vi N*—==0(
d1 0X 0X 0z 0X

N? is assumed to be constant.

This has harmonic wave solutions
w'=Re[w exp(i¢)] = w, cos ¢ — w, sin ¢ (7.43)

where w = w,+ iw; is a complex amplitude with real part w, and imaginary
part w;, and ¢ = kx+ mz— vt is the phase, which is assumed to depend
linearly on z as well as on x and t. Here the horizontal wave number k 1is
real since the solution is always sinusoidal in x. The vertical wave number
m=m,+m; may, however, be complex, in which case m, describes



Solution and Dispersion Relationship

sinusoidal variation in z and m; describes exponential decay or growth i
z depending on whether m; is positive or negative. When m 1s real the toty)
wave number may be regarded as a vector k= (k, m), directed perpendicular
to lines of constant phase, and in the direction of phase increase, whose
components, k =27/L, and m=2x/L,, are inversely proportional to the
horizontal and vertical wavelengths, respectively. Substitution of the
assumed solution into (7.42) yields the dispersion relationship

(v—ak)*(k*+m?®) - N°k*=0
so that

1')5V—ﬁk=:l:Nk/(k2+m2)1/2=:l:Nk/ll(, (7.44)

stopped here 4-12-22



Group Velocity
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Solutions for each variable

A

it + ikugts = —ik2 (6.48)
0
1 0% 0
—10W + tkug = _:_p +g= (6.49)
0 0z 0
d
ikil + — = 0 (6.50)
dz
. A . A N dé
—iw0 + tkugd + wd— = 0. (6.51)
z

Solving for each variable in terms of W using (6.37) with
B = 0, yields

i = —%w (6.52)
. pm(w — upk) pmsL

p=- % W= ——7—w (6.53)
A 1 do i do

0 = D = —— —W. (6.54)

Tlo—wh dz T Qdz



k<0, m>0: phase lines tilt
westward with height

Figure 6.6 Relationship between potential temperature,
velocity, and pressure perturbations for an internal gravity
wave with w = 0. (Adapted from Durran [1990].)






Isolated Ridge
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Figure 12.1 Trapped waves and associated clouds in the lee of a mountain ridge. (Adapted from an image provided by
the Cooperative Program for Operational Meteorology, Education, and Training [COMET].)
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Figure 12.7 Simulation of gravity waves triggered by westerly flow over an isolated peak, as viewed from the southeast.
Contours of vertical velocity are shown at an altitude of 6 km at 1m s~ ! intervals. Blue (red) shading indicates negative
(positive) vertical velocities.



Downslope Windstorms
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Figure 12.9 Analysis of potential temperatures (blue contours; K) from aircraft flight data (aircraft flight tracks are
indicated with dashed lines) and rawinsondes on 11 January 1972 during a downslope windstorm near Boulder, CO. The
heavy dashed line separates data taken by the Queen Air at lower levels before 2200 UTC from that taken by the Sabreliner
aircraft in the middle and upper troposphere after 0000 GMT (12 January). The aircraft flight tracks were made along an
approximate 130 -310  azimuth, but the distances shown are along the east-west projection of these tracks. (Adapted

from Lilly [1978].)
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Shallow Water Model




9D oh
(1 —Fr?)— = ——", (12.26)
dx dx

where Fr* = u?/c?, and Fr is the Froude number for shallow-
water theory. The Froude number is the ratio of the mean
flow to the gravity wave phase speed. When Fr > 1, gravity
waves are unable to propagate upstream relative to the
mean flow, and the fluid is unable to produce perturba-
tion pressure gradients of sufficient magnitude to balance
nonlinear advection.

The Froude number can be used to identify three distinct
flow regimes. Based on inspection of (12.26), if Fr > 1 and
0hi/dx >0, then dD/dx > 0 such that the fluid thickens
going in the uphill direction, achieving its maximum thick-
ness at the peak of the mountain (Figure 12.12a). On the lee
slope, where dh;/0x < 0, the fluid thins. As the thickness
of the fluid changes, the zonal velocity also changes in
accordance with the constant zonal mass flux prescribed



In contrast, when Fr < 1, termed subcritical flow,
(12.26) predicts that the fluid will thin (0h;/0x < 0) as
the terrain height increases (dh/dx > 0) (Figure 12.12b).
Accompanying this thinning is an increase in the zonal
wind speed, reaching a maximum value at the top of
the mountain where the fluid is thinnest. The behavior
associated with subcritical flow as a parcel traverses a
mountain is not in line with our usual arguments regarding
the simple transfer of energy from kinetic to potential, and
we must break with our conceptual model of an isolated
ball rolling up a hill. An individual air parcel is not isolated




the leeward side occur for supercritical flow. Thus, to
achieve acceleration along the entire path, the flow must
undergo a transition from subcritical on the windward side
to supercritical as it crests the mountain. In other words,
the acceleration on the windward side must cause u to cross
the threshold from subcritical to supercritical flow, which is
likely to happen only if the flow has a Fr close to unity at the
start. The transition from subcritical to supercritical results
in leeward wind speeds that exceed their original value
on the windward side. In accordance with the increasing
speeds, the fluid thickness will decrease over the entire path,
causing the free surface to drop sharply on the leeward side,
analogous to the descending isentropes during downslope
wind events, and resulting in what is called a hydraulic jump.
Hydraulic jumps are very turbulent, and large amounts of
energy are dissipated within them.°




\ everywhere
supercritical

KE

everywhere
PE —» KE — PE subcritical
(c)
subcritical subcritical




Figure 12.13 Schematic of the idealized high-wind-
speed flow configuration, derived from aircraft obser-
vations and numerical simulations. A certain critical
streamline divides and encompasses a region of uni-
form potential temperature. Hy is the original height of
the dividing streamline, 6. is the potential temperature
in the well-mixed region between the split streamlines,
§ 1s the displacement of an arbitrary streamline, 8. is
the displacement of the dividing streamline, and H; is
the nadir of the lower dividing streamline. (From Smith
[1985].)



Figure 12.14 Isentropes for the airflow in a two-layer atmosphere when the interface is fixed at 3000 m, and the
mountain height is (a) 200, (b) 300, (c) 500, and (d) 800 m. (From Durran [1986b].)
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Figure 12.15 Isentropes for the airflow in a two-layer atmosphere when the mountain height is fixed at 500 m, and the
interface is at (a) 1000 m, (b) 2500 m, (c) 3500 m, and (d) 4000 m. (From Durran [1986b].)



Putting all of this together, here are some of the condi-
tions that forecasters look for when predicting downslope
windstorms:

e an asymmetric mountain with a gentle windward slope
and a steep lee slope

e strong cross-mountain geostrophic winds (>15m s~ 1)
at and just above mountain-top level associated with
surface high pressure upstream and surface low pressure
downstream

e an angle between the cross-mountain flow and the ridge
that is greater than ~60°

e a stable layer near or just above the mountain top, and a
layer of lesser stability above

e a level that exhibits a wind direction reversal or where
the cross-barrier flow simply goes to zero (the mean state
critical level); the existence of weak, vertical wind shear
or reverse shear is more favorable than forward shear

e situations of cold advection and anticyclonic vorticity
advection, which promote downward synoptic motion
to generate and reinforce the vertical stability structure

e absence of a deep, cold, stable layer in the lee of
mountains, which may keep the downslope flow from
penetrating to the surface.



