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A wave with wavelength =  traveling at speed c in the x-direction2π
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Figure 6.3 Series of visible satellite images from 14 March 1997 (1515, 1610, 1702, and 1815 UTC), showing a soliton
(a train of amplitude-ordered solitary waves) and the subsequent initiation of a thunderstorm in southern Texas. The storm
went on to produce 4.5 inch diameter hail. (Courtesy of the Storm Prediction Center.)

frequency, ω, using the definitions k = 2π/λx and ω = ck
for a one-dimensional wave. Then (6.1) becomes

f = A cos(kx − ωt). (6.2)

For a function having a wave structure in the x and z
directions (Figure 6.4), we modify (6.2) to include the
second direction such that it becomes

f = A cos (kx + mz − ωt) (6.3)

where m = 2π/λz and λz is the vertical wavelength. For
notational convenience and to allow for cosine as well as
sine solutions, we shall often express our assumed wave
solutions in the form

f = ℜ
{

Aei(kx+mz−ωt)
}

(6.4)

where A is now a complex amplitude (i.e., A = Ar +
iAi), ei(kx+mz−ωt) expands to cos(kx + mz − ωt) + i sin(kx
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Figure 6.4 Basic wave properties. Lines indicate con-
stant phase for a plane wave; λx (k) and λz (m) are the
wavelengths (wavenumbers) in the x and z directions,
respectively, φ is the angle between the phase lines and
the vertical, and κ is the wave vector.
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+mz − ωt), and the ℜ operator indicates that we retain
only the real part of the quantity in brackets.

At any particular time, the quantity kx + mz − ωt is
described as the phase of the wave, and lines of constant
phase are called wavefronts, which are perpendicular to the
wave vector (also sometimes called the wavenumber vector)
κ = ki + mk. We can write (6.3) using the wave vector and
a position vector, r = xi + zk, to obtain

f = A cos (κ · r − ωt) . (6.5)

The wave propagates along the direction of κ with a phase
speed c. This speed corresponds to the d|r|/dt one must
have in order to keep the phase constant in time. In other
words, we can find c by setting d (κ · r − ωt) /dt = 0 and
solving for |dr/dt|. Thus, we find, following a line of
constant phase,

d (κ · r − ωt)

dt
= κ · dr

dt
− ω = 0, (6.6)

and the magnitude of the phase speed is given by

c = d|r|
dt

= ω

|κ |
= ω√

k2 + m2
. (6.7)

At times, we shall be interested in the speed of the wave-
fronts along a particular direction, such as the horizontal
or the vertical. We find these speeds using an identi-
cal procedure to that used in finding (6.7), but we hold
one of the directions (e.g., z) constant in order to find
the phase speed along the other direction (e.g., x). Fol-
lowing a line of constant phase and holding z constant
yields

d (kx + mz − ωt)
dt

= k
dx

dt
− ω = 0, (6.8)

from which we obtain the phase speed in the x direction,
given by

cx = dx

dt
= ω

k
. (6.9)

The equivalent procedure for the z direction yields

cz = ω

m
. (6.10)

It is important to note that the phase velocity has a mag-
nitude given by c and a direction given by a unit vector
along the direction of κ . It does not behave like a vector in
the sense that c ̸=

√
c2

x + c2
z . Rather, from Figure 6.4, the

phase speed along either the x or the z directions is greater
than that along κ , because wavefronts take a shorter time

to traverse a given distance along these directions than they
do along κ .

When waves occur within a fluid having an ambient
wind, the frequency will experience a Doppler shift along
the wind direction with a magnitude given by the wind
speed multiplied by the wavenumber for that direction
(i.e., uk for an environmental wind u along the x direction).
We define the intrinsic frequency, ", as that which the wave
would experience in the absence of an ambient wind. Thus,

ω = " + uk (6.11)

in the case of an ambient wind in the x direction. From
(6.9), we can use (6.11) to determine the phase speed in the
x direction as

cx = "

k
+ u (6.12)

The quantity "/k is the intrinsic phase speed, and it
represents the phase speed measured by an observer moving
with the ambient wind. Equation (6.12) indicates that the
ground-relative phase speed along a particular direction is
shifted from its intrinsic value by an amount equal to the
component of the ambient wind along that direction.

In the atmosphere, waves do not extend indefinitely in
space as would be implied by (6.3), but instead occur in
the form of wave packets (Figure 6.5), which are limited
regions within which waves have appreciable amplitude.
These packets are the result of superpositioning multiple
waves of the form given by (6.3) with slightly different
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Figure 6.5 Relationship between wavefronts, phase
velocity, and group velocity for an internal gravity wave.
(Adapted from Hooke [1986].)

k = 2⇡/�x: horizontal wavenumber
m = 2⇡/�z: vertical wavenumber

<latexit sha1_base64="u13QAN58BCA8UATV+iDLcnYWWoY=">AAACSnicbVBNjxJBEO1hcRdndWX16KUjmHjCGaJxs4kJ0YtHTITdhCGkpqeADv0x6e5BgfD79uLJmz9iL3vQGC82HweEraSTl1evXlW/NBfcuij6GZSOyg+OTyoPw9NHj8+eVM+fdq0uDMMO00Kb6xQsCq6w47gTeJ0bBJkKvEonH1f9qykay7X64mY59iWMFB9yBs5TgyokSnOVoXJhfULf02aS89eJ8AYZDL7VL+lYGz7XyoGgX2GKqpApmiQJ63JfPfdqv8p5713toFqLGtG66CGIt6BGttUeVH8kmWaF9DcxAdb24ih3/QWsnAUuw6SwmAObwAh7HiqQaPuLdRRL+tIzGR1q459ydM3uTixAWjuTqVdKcGO731uR9/V6hRte9Bdc5YVDxTaLhoWgTtNVrjTjBpkTMw+AGe5vpWwMBpjz6Yc+hHj/y4eg22zEbxpvPzdrrQ/bOCrkOXlBXpGYvCMt8om0SYcwckNuyS/yO/ge3AV/gr8baSnYzjwj/1Wp/A/+JrHL</latexit>



dw

dt
= g

T � T̄

T̄
.

Let z = 0 denote the parcel’s equilibrium location. Then at z = 0,
T = T̄ , and dw/dt = 0.

Assume that the temperature in the environment varies linearly with
height. Then the temperature at any height z in the environment is

T̄ (z) = T̄ (0)� �z,

where � = �dT̄ /dz is the environmental lapse rate. Similarly, the
parcel temperature at any height z is

T (z) = T (0)� �dz = T̄ (0)� �z,

where �= � dT/dz is the parcel lapse rate
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Parcel Oscillations
(Thermo Notes, Section 7.2



dw

dt
= g

T � T̄

T̄
.

When these expressions are substituted in Eq. (41), we obtain

dw

dt
=

g

T̄ (0)� �z
(� � �)z ⇡ g

T̄ (0)
(� � �)z = bz. (42)

Eq. (42) describes how w changes with time. By definition,

dz

dt
= w. (43)

Eqs. (42) and (43) are coupled linear di↵erential equations which are
easy to solve analytically for z(t).

They can also be combined into a single second-order di↵erential
equation:

d
2
z

dt2
= bz.
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dw

dt
= g

T � T̄

T̄
.

When these expressions are substituted in Eq. (41), we obtain

dw

dt
=

g

T̄ (0)� �z
(� � �)z ⇡ g

T̄ (0)
(� � �)z = bz. (42)

Eq. (42) describes how w changes with time. By definition,

dz

dt
= w. (43)

Eqs. (42) and (43) are coupled linear di↵erential equations which are
easy to solve analytically for z(t).

They can also be combined into a single second-order di↵erential
equation:

d
2
z

dt2
= bz.
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b =
g

T̄(0)
(dT̄/dz − Γ) = −

g
T̄(0)

dθ̄
dz

≡ − N2 N2 ≡
g
θ0

dθ
dz



Parcel Oscillations
Parcel is displaced a distance �s along line tilted at angle ↵.

Vertical displacement is �z = �s cos↵.

Vertical buoyancy force is �N2�z, where N2 ⌘ g
✓
d✓
dz .

Component of buoyancy force parallel to tilted path is

�N2�z cos↵ = N2(�s cos↵) cos↵ = �(N cos↵)2�s

Momentum equation for parcel is

d2(�s)

dt2
= �(N cos↵)2�s
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buoyancy as gθ ′/θ , where θ = θ(z) is the base state poten-
tial temperature and θ = θ + θ ′. The equations of motion
are then

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρ

∂p′

∂x
(6.18)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= − 1

ρ

∂p′

∂z
+ g

θ ′

θ
(6.19)

∂u

∂x
+ ∂w

∂z
= 0 (6.20)

∂θ

∂t
+ u

∂θ

∂x
+ w

∂θ

∂z
= 0 (6.21)

where p′ is the departure of pressure from a hydrostatic
base state defined by ∂p/∂z = − ρg.

As mentioned previously, the easiest way to demonstrate
wave solutions will be to linearize the above equations. We
shall assume that w = w′, θ = θ(z) + θ ′, and the base
state zonal wind profile (u) is a function of z, such that
u = u(z) + u′. We ignore any terms containing multiplica-
tions of perturbation (primed) quantities. All of the above
assumptions lead to a simpler system of equations:

∂u′

∂t
+ u

∂u′

∂x
+ w′ ∂u

∂z
= − 1

ρ

∂p′

∂x
(6.22)

∂w′

∂t
+ u

∂w′

∂x
= − 1

ρ

∂p′

∂z
+ g

θ ′

θ
(6.23)

∂u′

∂x
+ ∂w′

∂z
= 0 (6.24)

∂θ ′

∂t
+ u

∂θ ′

∂x
+ w′ ∂θ

∂z
= 0. (6.25)

We seek one equation in one unknown2, w′. We first
multiply all equations by ρ and eliminate p′ by taking ∂

∂x
(6.23) - ∂

∂z (6.22) and eliminating like terms to obtain

ρ

(
∂

∂t
+ u

∂

∂x

) (
∂w′

∂x
− ∂u′

∂z
− 1

ρ

dρ

dz
u′

)

− w′ dρ

dz

du

dz
− w′ρ

d2u

dz2
− ρ

g

θ

∂θ ′

∂x
= 0. (6.26)

where we have replaced partial derivatives with respect to
z with ordinary derivatives for those variables that depend
only on z. We now take ∂(6.26)/∂x and use (6.24) to
eliminate all ∂u′/∂x terms. This yields

2 It would be equally valid to solve this system of equations by assuming
a waveform for all perturbation variables, substituting these assumed
solutions into the equations, performing all differentiations, and then
solving the resulting set of equations using the methods of linear algebra.

ρ

(
∂

∂t
+ u

∂

∂x

)(
∂2w′

∂x2
+ ∂2w′

∂z2
+ 1

ρ

dρ

dz

∂w′

∂z

)

− dρ

dz

du

dz

∂w′

∂x
− ρ

d2u

dz2

∂w′

∂x
− ρ

g

θ

∂2θ ′

∂x2
= 0. (6.27)

Next, we divide (6.27) by ρ and eliminate θ ′ by applying(
∂
∂t + u ∂

∂x

)
to (6.27) and combining with (6.25), which

gives

(
∂

∂t
+ u

∂

∂x

)2 (
∂2w′

∂x2
+ ∂2w′

∂z2
+ 1

ρ

dρ

dz

∂w′

∂z

)

−
(

∂

∂t
+ u

∂

∂x

)(
1

ρ

dρ

dz

du

dz
+ d2u

dz2

)
∂w′

∂x

+ g

θ

dθ

dz

∂2w′

∂x2
= 0 (6.28)

We assume a solution for w′ given by

w′ = ℜ
{

∑

k

w′
k

}

= ℜ
{

∑

k

w̃k ei(kx− ωkt)

}

, (6.29)

where w̃k is a complex amplitude (i.e., w̃k = w̃kr + iw̃ki)
that is a function of height, the ℜ operator indicates that we
keep only the real part of the quantity in brackets, and ωk is
the frequency corresponding to the kth mode. Note that the
complex amplitude is necessary in order to fit any arbitrary
initial and boundary conditions (e.g., our boundary condi-
tions can be accommodated whether they are sine functions
or cosine functions because the real part of (6.29) expands
to w′

k = w̃kr cos(kx − ωkt) − w̃ki sin(kx − ωkt). From this
point forward, it will be assumed that only the real part
of the final expanded solution for a variable is of physical
interest without explicitly writing the ℜ operator.

We now substitute (6.29) into (6.28), noting that
∂w′

k/∂x = ikw′
k and ∂w′

k/∂t = − iωkw
′
k for each k. This

yields the following expression:

∑

k

[
(− iωk + uik)2

(
i2k2w̃k + d2w̃k

dz2
+ 1

ρ

dρ

dz

dw̃k

dz

)

− (− iωk + uik)

(
ik

d2u

dz2
+ 1

ρ

du

dz

dρ

dz
ik

)
w̃k

+N2i2k2w̃k

]
ei(kx− ωkt) = 0, (6.30)

where N2 = g
θ

dθ
dz . At this point, it is helpful to recall that

the intrinsic frequency, that which the wave would have if
observed in a reference frame moving with the mean wind,
is given by % = ω − uk, which we substitute into (6.30)

For two-dimensional motion:

Linearize:

u = ū+ u0

w = w0

p = p̄(z) + p0

✓ = ✓̄ + ✓0
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Linearized Equations



Linearized Equations

Combine to form a single equation for w′�

 is assumed to be constant.N2

This has harmonic wave solutions 



Solution and Dispersion Relationship

stopped here 4-12-22



Group Velocity



cos↵ =
Lx

(L2
x + L2

z)
1/2

=
k

(k2 +m2)1/2

<latexit sha1_base64="0w9jaXEuNVWuSaXzSyI1oC6exNg="></latexit>



INTERNAL GRAVITY WAVE DYNAMICS 169

and

cgz = − Nkm
(
k2 + m2

)3/2 (6.47)

which indicate the direction of energy transfer in the x
and z directions, respectively. We note that cz and cgz

have opposite signs, indicating upward (downward) trans-
port of energy for downward (upward) phase propagation
(Figure 6.5). This is true whether we choose the positive or
negative branch of (6.42).

The above result can seem somewhat counterintuitive.
How can energy go in a different direction than that in
which the wave is going? The difficulty in understanding
this perhaps stems from thinking in terms of a single wave
mode for which the amplitude is constant spatially and the
magnitude of the function at any point is a function only
of phase, with troughs and ridges denoting the locations
of maximum absolute value. Once we add in additional
wave modes with wavelengths slightly different from the
original one, however, this picture is no longer valid. Now
the amplitude is tied to the sum of the values of all of the
waves rather than the particular phase of any one wave. In
essence, the presence of multiple wavelengths breaks the
link between the magnitude of the function and the phase
of any one mode. Thus, it should not be surprising that the
phase speed and the group velocity, which is determined by
the movement of the energy-containing amplitude enve-
lope, can be in completely different directions. This implies
that individual crests and troughs move through the ampli-
fication envelope with their amplitudes changing according
to their location within the packet.

We also note that, for u0 = 0, the slope of the group
velocity vector with respect to the horizontal is cgz/cgx =
−k/m such that the group velocity is perpendicular to the
phase velocity, which lies along the wave vector having a
slope with the horizontal given by m/k. To understand
why the two are perpendicular, recall that ω is constant for
parcel oscillations at a given angle from the vertical and that
parcel oscillations are along the wavefronts, perpendicular
to the phase velocity. Thus, the phase velocity vector (along
κ) defines a line of parcels having equal ω. We can rotate
our coordinates such that, rather than having a k compo-
nent along x and an m component along z, we have a k′

component along κ and an m′ component perpendicular
to κ . If we express the group velocity in terms of these two
components, we see that the component along the phase
velocity will be zero since ω is constant (i.e., not a function
of wavenumber) along that line. Thus, the only surviving
component of group velocity is perpendicular to the phase
velocity, along the phase lines and parallel to the parcel
oscillations. The fact that cg = 0 along the line of constant

parcel ω does not imply there is not interference between
waves of different wavelengths along that direction. In
fact, a constant value for ω implies varying phase speeds
for varying wavelengths, creating an amplitude envelope.
However, given the constant value for ω along this direc-
tion, the amplitude envelope remains stationary along c as
the individual waves move through it.

We can use (6.22)–(6.25) to derive expressions for u′,
θ ′, and p′ in relation to w′, by assuming solutions for each
of them that are of the same form as (6.29) (replacing the ˜( )
variables with ˆ( ) variables given our previous assumptions)
and substituting these into (6.22)–(6.25) to obtain the
polarization equations:

−iωû + iku0û = −ik
p̂

ρ
(6.48)

−iωŵ + iku0ŵ = − 1

ρ

∂ p̂

∂z
+ g

θ̂

θ
(6.49)

ikû + dw

dz
= 0 (6.50)

−iωθ̂ + iku0θ̂ + ŵ
dθ

dz
= 0. (6.51)

Solving for each variable in terms of ŵ using (6.37) with
B = 0, yields

û = −m

k
ŵ (6.52)

p̂ = −ρm(ω − u0k)

k2
ŵ = −ρm%

k2
ŵ (6.53)

θ̂ = − i

(ω − u0k)

dθ

dz
ŵ = − i

%

dθ

dz
ŵ. (6.54)

For the special case in which u0 = 0 (Figure 6.6), from
(6.52), we see that the slope of the parcel motions (w′/u′) is
equal to −k/m, which indicates that the parcel motions are
in the same direction as the group velocity, along the phase
lines and perpendicular to the phase velocity. From (6.53),
we see that pressure is in phase with w′ when m is negative
and 180◦ out of phase with w′ when m is positive (note that
both k and m are negative in Figure 6.6). Perturbation pres-
sure also is constant along a phase line, consistent with our
assumption when using physical arguments to determine
the oscillation frequency. Finally, the i on the rhs of (6.54)
indicates that θ ′ is 90◦ out of phase with w′ (i.e., if w′ con-
tains cos(kx + mz − ωt), θ ′ contains sin(kx + mz − ωt).
These relationships can be used to distinguish features due
to gravity waves from those due to buoyant convection, for
which w′ and θ ′ are in phase. In Figure 6.6, the wavefronts
move downward and to the left. We can see why this is the

Solutions for each variable
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Figure 6.6 Relationship between potential temperature,
velocity, and pressure perturbations for an internal gravity
wave with u = 0. (Adapted from Durran [1990].)

case by considering, for example, the perturbation potential
temperature. The location between the most buoyant fluid
(largest positive θ ′) and the least buoyant fluid (largest neg-
ative θ ′) is collocated with negative vertical velocity, which
leads to increasing buoyancy following a parcel in a stable
atmosphere. Thus, the region of most buoyant fluid moves
toward this direction. It is in this manner that the phase
lines propagate in the direction shown, exactly as predicted
by (6.43) and (6.44).

6.3 Wave reflection
When the static stability and/or winds vary with height in
such a way that they are relatively constant within particular
layers, waves may experience refraction and/or reflection
at the interface between these layers, in a similar manner
to optical rays passing through layers of varying density. In
the case of reflection, for each upward-propagating wave
a downward-propagating wave is produced. This can have
an interesting effect on the waveforms, as the upward- and
downward-propagating waves interact. This interaction
can be either constructive, leading to an increase in wave
amplitude, or destructive, leading to decreased amplitude.
Constructive interference leads to the trapping of wave
energy within the lower layer, which is then referred to as a
wave duct.

We first consider the simple case of reflection at the
interface between two layers in the absence of any ambient

wind (i.e., u0 = 0).5 To begin with, we must know what
is required to happen at the interface (i.e., we must know
the boundary conditions to apply). The atmosphere does
not support infinite accelerations caused by discontinuous
pressures; thus, one of our boundary conditions is that
pressure be continuous across the interface. This is known
as the dynamic boundary condition.6 Next, we prevent a
solution in which the layers separate from one another.
This is the kinematic boundary condition, and if density is
continuous across the interface, this boundary condition
becomes a simple matching of the vertical velocity on each
side of the boundary. We can combine the kinematic and
dynamic boundary conditions into one, and at the same
time eliminate the wave amplitude from the boundary
condition, by taking the ratio of the pressure and the mass
flux. This new quantity, known as the impedance, is given by

Z = p

ρw
. (6.55)

Thus, Z for each fluid is required to match at the height of
the interface (zr), such that Z1 = Z2, where the subscripts
1 and 2 indicate a lower and upper layer, respectively. We
consider the case in which the value of ω is greater than N
in the upper layer (N2), but is smaller than N in the lower
layer (N1). In this case, the wave would be transmitted in
the lower layer but evanescent in the upper layer, such that

w′
2 = A2e− µ2(z− zr)ei(kx− ωt) (6.56)

and, from an equation similar to (6.53) derived for
m = iµ2,

p′
2 = − i

ρµ2ω

k2
A2e− µ2(z− zr)ei(kx− ωt), (6.57)

leading to

Z2 = − i
ωµ2

k2
. (6.58)

In the lower layer, the incident waves are propagating
upward with an amplitude A1 while the reflected waves are
propagating downward with an amplitude B1. Defining
the reflection coefficient, R = B1/A1, the full w1 field can be
expressed as

w′
1 = A1

[
eim1(z− zr) + R e− im1(z− zr)

]
ei(kx− ωt). (6.59)

5 The derivation in this section closely follows that of Nappo (2002).
6 This boundary condition applies to the total pressure, but is automat-
ically satisfied for the base state part of the pressure. Thus, we need only
enforce it for the perturbation pressure.

k<0 , m>0: phase lines tilt 
westward with height
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The form for A can be determined from the lower-
boundary condition to ensure that w′(z = 0) = u0∂ht/∂x.
For example, if our terrain profile is given by

ht(x) = hm sin kx, (12.6)

where hm is the amplitude of the terrain profile, then we
must have

w′(z = 0) = u0khm cos kx. (12.7)

Thus, referring to (12.3), A = u0khm, and our final solution
when m is real is given by

w′ = u0khm cos(kx + mz). (12.8)

Waves of this form are shown in Figure 12.3a.
On the other hand, if m is imaginary (i.e., N2 < u2

0k2),
we substitute m = iµ, where µ is a real number, and (12.3)
then becomes

w′ = Aeikxe− µz + Beikxeµz. (12.9)

In this case, our upper boundary condition prohibits solu-
tions that are unbounded with height, so the B solution

(a)

(b)

Figure 12.3 Streamlines in steady flow over an infi-
nite series of sinusoidal ridges (a) for the case where
N2 > u2

0k2 and (b) for the case where N2 < u2
0k2. The

dashed line in (a) shows the phase of maximum upward
displacement, which tilts westward with height. (Adapted
from Durran [1990].)

is not viable. The lower-boundary condition leads to
A = u0khm such that the full solution is

w′ = u0khme− µz cos kx. (12.10)

Evanescent waves of this type are shown in Figure 12.3b.
The physical reasoning behind these two solutions is

exactly as described in Section 6.2.1. With buoyancy as the
restoring force, the atmosphere can support oscillations
with frequencies less than or equal to N for angles with
respect to the vertical varying between 90◦ (purely horizon-
tal) and 0◦ (purely vertical). Oscillations with a frequency
greater than N cannot be supported. To relate this to the
mountain wave problem, we must realize that the flow over
the terrain is driving an oscillation at a frequency with a
magnitude equal to u0k. As long as this frequency is less than
N, we can find a slanted path along which the oscillation
can be supported. Once the frequency exceeds N, no such
path is possible and the waves simply decay with height.

12.1.2 Isolated ridge with constant zonal
wind and static stability

The theory presented in the previous section leads to an easy
interpretation of gravity wave behavior based on a single
forced frequency of oscillation due to flow over a series of
equally spaced ridges. However, an endless series of ridges is
not a common form of topography (except perhaps in cen-
tral Pennsylvania!). More often, the topography consists of
an isolated mountain or a single mountain chain, approxi-
mated as a single two-dimensional ridge. In this section, we
extend the results of the previous section to such an isolated
ridge. The flow remains two-dimensional but is somewhat
more complicated, as many different wavelengths are now
associated with the topography.

Because the topography is no longer represented by a
single wave mode, we must perform a Fourier transform of
the topographic profile to reveal the relevant wavenumbers.
We then solve for the vertical velocity corresponding to
each mode in wavenumber space and perform an inverse
Fourier transform to obtain w′(x, z), with the weights for
each wavenumber determined by the Fourier transform of
the topography.2 One commonly assumed profile is the
‘Witch of Agnesi’3 profile given by

ht(x) = hma2

x2 + a2
, (12.11)

2 See Durran (2003a).
3 The name for this function was originally the curve of Agnesi, named
after Maria Agnesi, in Italian. A misreading of the name resulted in the
conversion of curve to witch in English.
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lenticular clouds

roll clouds

lee wave region

cap cloud

rotor

Figure 12.1 Trapped waves and associated clouds in the lee of a mountain ridge. (Adapted from an image provided by
the Cooperative Program for Operational Meteorology, Education, and Training [COMET].)

The solution for ŵ for each mode is determined
by the Taylor-Goldstein equation (6.36), which can be
written as

d2ŵ

dz2
+

(
N2

u2 − 1

u

d2u

dz2
− k2

)
ŵ = d2ŵ

dz2
+

(
ℓ2 − k2) ŵ = 0,

(12.2)

where ℓ =
√

N2

u2 − 1
u

d2u
dz2 is the Scorer parameter. As in

Chapter 6, we obtain fundamentally different solutions
depending on whether the term in parentheses is positive
or negative (i.e., depending on whether ℓ2 > k2). We shall
look at solutions for several simplified environments.

12.1.1 Series of ridges with constant
zonal wind and static stability

In our first simplified scenario, we consider a series of
ridges separated by a distance Lx that defines a particular
wavenumber k = 2π/Lx of the terrain. We assume that the
environmental wind is zonal with a constant speed, u0,
and the static stability is constant such that N is constant.
Under these conditions, ℓ2 − k2 reduces to N2/u2

0 − k2 and
is constant, so the solution to (12.1), using (12.2), can be
expressed

w′ = Aei(kx+mz) + Bei(kx−mz), (12.3)
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Figure 12.4 Streamlines in steady airflow over an isolated ridge when (a) u0a−1 ≫ N and (b) u0a−1 ≪ N. (Adapted
from Durran [1986a].)

which has the desirable properties of asymptotically
approaching zero as x → ∞ and having a width that
is easily tuned by varying a, the shape parameter. The
horizontal wavelengths associated with the terrain will be
determined by the value of a, with longer wavelengths (i.e.,
wider mountains) for larger values of a. Thus, for the same
environmental conditions, we can anticipate that the larger
(smaller) we make a, the more (less) likely the solution will
contain wavenumbers that satisfy u2

0k2 < N2, such that
waves propagate vertically (Figure 12.4). In the hydrostatic
limit, k2 ≪ m2 and the horizontal group velocity
becomes

cgx = u0 − Nm2

(
k2 + m2

)3/2 → u0 − N

m
. (12.12)

However, (12.4) implies that for steady waves (i.e., ω = 0)
in the hydrostatic limit, u0 → N/m, such that cgx → 0,
and very little energy will be transferred horizontally
away from the mountain; thus, we expect to observe
hydrostatic waves near the mountain only (Figure 12.4b).
Waves appearing downstream from the mountain are
nonhydrostatic, but even these generally transport their
energy to the upper levels before traveling very far down-
stream, unless special conditions prevail to confine the
energy to low levels, leading to trapped lee waves. We
now investigate the conditions leading to these interest-
ing waves.

12.1.3 Variations in zonal wind
and stability with height:
trapped waves

In the previous section, we used linearized, steady
equations, with a constant horizontal flow containing no
vertical wind shear. We also assumed that N2 was constant
with height and that the flow was two-dimensional (i.e.,
an infinitely long ridge in the y direction). Our first
modification to this idealization is to consider the case in
which either the zonal wind or the stability varies with
height such that we have two layers of fluid with different
Scorer parameter values ℓU and ℓL for the upper and
lower layers, respectively. Assuming ℓU < ℓL, this creates a
situation in which waves whose wavenumbers fall between
the two ℓ values will propagate vertically in the lower layer
but decay with height in the upper layer. For these waves,
the interface (at z = zr) between the two fluids acts as a
perfect reflector of wave energy, that is, R = 1, and, as
shown in Section 6.3, if the flow satisfies

µ tan m1zr = −m1, (12.13)

the waves satisfy w0 = 0 at the surface but have a large
response for a finite forcing due to constructive interference
between the upward- and downward-moving waves. This
interference also causes the waves to exhibit no tilt in
the vertical. When both sides of (12.13) are plotted as a
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function of m1zr, the number of intersection points, n, is
governed by

[
(2n − 1)π

2zr

]2

< ℓL
2 − ℓU

2 <

[
(2n + 1)π

2zr

]2

. (12.14)

Thus, at least one solution exists if ℓ2
L − ℓ2

U > π2/4zr
2 and

ℓL > k > ℓU.4 Note that the variation in ℓ could be due to a
variable vertical profile of N, curvature in the wind profile
with height, or both. The resonant wavelength depends on
the atmospheric properties downstream of the mountain
rather than depending on the width of the mountain.

Linear theory is expected to produce accurate results
when the nondimensional mountain height (=Nhm/u, a
measure of the nonlinearity produced in the flow) is much
less than one. Even when the nondimensional mountain
height is not small, in cases with constant u and N the
difference between the linear prediction and the fully non-
linear solution is small unless waves break. However, the
difference between linear and nonlinear solutions is some-
times dramatic for environments with variable u and N that
produce trapped lee waves (Figure 12.5). Indeed, numerical
simulations of lee waves show that linear theory can usefully
predict wave amplitude only when the ratio of lee wave-
length to mountain width is greater than one.5 In linear
theory, the forcing at a particular wavelength is obtained by

4 See Scorer (1949).
5 See Vosper (2004).

the Fourier transform of the mountain and, therefore, very
little forcing is produced at the resonant wavelength if the
mountain is very wide in comparison with that wavelength.
Thus, the nonlinear wave amplitude when resonant wave-
lengths are short compared with the mountain width is due
to the enhancement of shorter wavelengths through non-
linear wave interactions rather than through direct forcing
by the terrain, and this interaction is excluded from linear
theory.

Vertical parcel displacements within the waves may be
sufficient for transporting parcels to their lifting conden-
sation level (LCL), resulting in stunning bands of clouds
parallel to the mountain (Figure 12.6). Lee waves also trans-
port energy downstream from downslope windstorms (see
Section 12.3).

12.2 Gravity waves forced
by isolated peaks

Flow over isolated peaks also can produce gravity waves,
but parcel and wave motions are not confined to only the
x and z directions, as they were in Section 12.1. It can be
shown that the analogous form of (6.41) for the case of an
isolated peak with zero phase speed is

k2 +
(

k2

k2 + l2

)
m2 = N2

u2 , (12.15)
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Figure 12.5 Streamlines in air flow over a mountain for (a) steady flow subject to the linear approximation and (b) the
fully nonlinear and unsteady solution. (Adapted from Durran [2003a].)
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Figure 12.7 Simulation of gravity waves triggered by westerly flow over an isolated peak, as viewed from the southeast.
Contours of vertical velocity are shown at an altitude of 6 km at 1 m s−1 intervals. Blue (red) shading indicates negative
(positive) vertical velocities.
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Figure 12.8 Maximum wind gusts observed during a
downslope windstorm in the lee of the Colorado Rockies
on the night of 28–29 January 1987. Smoothed elevation
contours (m) also are shown. (Adapted from Neiman et
al. [1988].)

12.3.1 Amplified leeside winds
in shallow-water theory

Atmospheric fields (e.g., isentropes) during downslope
wind events bear a striking resemblance to those predicted

in hydraulic jumps, features that are understood most
easily in the context of shallow-water theory. Although
not directly applicable to the stratified atmosphere
associated with downslope windstorms, using shallow-
water theory will allow us to develop some intuition
regarding the possible flow regimes for air traversing a
barrier.

Let us assume that we have a layer of fluid with density ρ.
The top of the layer is a free surface (i.e., a boundary between
two homogeneous fluids; the real atmosphere does not have
free surfaces). The terrain height is ht and the perturbation
fluid depth is D, such that the height of the free surface is
D + ht (Figure 12.11). Also note that the vertical velocity at
the lower boundary is w(x, ht) = u ∂ht/∂x, and at the free
surface it is w(x, D + ht) ≈ u ∂(D + ht)/∂x.

The nonlinear, steady-state equations for momentum
in the x direction and for mass continuity applicable to
an inviscid, hydrostatic fluid in a nonrotating reference
frame are

u
∂u

∂x
+ 1

ρ

∂p

∂x
= 0 (12.16)

∂u

∂x
+ ∂w

∂z
= 0. (12.17)

It is helpful to eliminate p and w from equations (12.16)
and (12.17) in favor of D and ht, so that the flow accel-
erations following a parcel can be related to changes in
the depth of the fluid and to the slope of the terrain. The
pressure gradient force, − 1

ρ
∂p
∂x , in (12.16) can be written as

−g ∂(D+ht)
∂x , assuming hydrostatic balance. The continuity
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ht

Figure 12.11 Relationship between free surface height,
depth (D), and terrain height (ht).

equation can be integrated with respect to z over the fluid
depth to obtain

∫ D+ht

ht

∂u

∂x
dz +

∫ D+ht

ht

∂w

∂z
dz = 0 (12.18)

∂u

∂x
(D + ht − ht) + w(D + ht) − w(ht) = 0 (12.19)

∂u

∂x
D + u

∂(D + ht)

∂x
− u

∂ht

∂x
= 0. (12.20)

We were able to pull the ∂u/∂x term out of the integral
because u is independent of z for all time if it starts so
initially, owing to its dependence on the pressure gradient
force in (12.16), which depends only on the fluid depth
and, therefore, is independent of z. Thus, the nonlinear
x momentum and continuity equations from (12.16) and
(12.17) can be written

u
∂u

∂x
+ g

∂D

∂x
= −g

∂ht

∂x
(12.21)

∂

∂x
(uD) = 0. (12.22)

According to equation (12.21), the steady-state condition
is achieved through a balance between horizontal advec-
tion and the horizontal pressure gradient force. Mass is
conserved, according to (12.22), by requiring a constant
mass flux in the x direction. (If the mass flux varied, the
divergence of the mass flux would not allow a steady-
state solution.) This implies that thickening of the fluid
is associated with deceleration following a parcel, whereas
thinning of the fluid is associated with acceleration, a sim-
ple relationship that is not possible in the absence of a free
surface.

To combine (12.21) and (12.22) into one equation
relating all of the relevant flow variables, we use (12.22) to
substitute for ∂u/∂x in (12.21). This yields

−u2

D

∂D

∂x
+ g

∂D

∂x
= −g

∂ht

∂x
. (12.23)

We now divide by g to obtain

(
1 − u2

gD

)
∂D

∂x
= −∂ht

∂x
. (12.24)

The intrinsic shallow-water gravity wave speed is defined
as c2 ≡ gD, therefore we can write (12.24) as

(
1 − u2

c2

)
∂D

∂x
= −∂ht

∂x
(12.25)

or

(1 − Fr2)
∂D

∂x
= −∂ht

∂x
, (12.26)

where Fr2 = u2/c2, and Fr is the Froude number for shallow-
water theory. The Froude number is the ratio of the mean
flow to the gravity wave phase speed. When Fr > 1, gravity
waves are unable to propagate upstream relative to the
mean flow, and the fluid is unable to produce perturba-
tion pressure gradients of sufficient magnitude to balance
nonlinear advection.

The Froude number can be used to identify three distinct
flow regimes. Based on inspection of (12.26), if Fr > 1 and
∂ht/∂x > 0, then ∂D/∂x > 0 such that the fluid thickens
going in the uphill direction, achieving its maximum thick-
ness at the peak of the mountain (Figure 12.12a). On the lee
slope, where ∂ht/∂x < 0, the fluid thins. As the thickness
of the fluid changes, the zonal velocity also changes in
accordance with the constant zonal mass flux prescribed
by the continuity equation. Thus, when Fr > 1, we find a
minimum in the wind speed at the top of the mountain
where the fluid is thickest. Considering a parcel embedded
in a westerly wind, the parcel will decelerate as it passes over
the mountain and return to its original speed at the leeward
base of the mountain (ignoring any frictional effects). This
flow behavior represents a transfer of energy from kinetic
to potential and back to kinetic, and is the behavior most
in line with our natural intuition for the behavior of, for
example, a ball rolling up a hill. This type of flow, for which
Fr > 1, is termed supercritical flow.

In contrast, when Fr < 1, termed subcritical flow,
(12.26) predicts that the fluid will thin (∂ht/∂x < 0) as
the terrain height increases (∂ht/∂x > 0) (Figure 12.12b).
Accompanying this thinning is an increase in the zonal
wind speed, reaching a maximum value at the top of
the mountain where the fluid is thinnest. The behavior
associated with subcritical flow as a parcel traverses a
mountain is not in line with our usual arguments regarding
the simple transfer of energy from kinetic to potential, and
we must break with our conceptual model of an isolated
ball rolling up a hill. An individual air parcel is not isolated
from the surrounding parcels; it feels their presence

Shallow Water Model



336 MOUNTAIN WAVES AND DOWNSLOPE WINDSTORMS

D

ht

Figure 12.11 Relationship between free surface height,
depth (D), and terrain height (ht).

equation can be integrated with respect to z over the fluid
depth to obtain

∫ D+ht
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dz +

∫ D+ht

ht
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We were able to pull the ∂u/∂x term out of the integral
because u is independent of z for all time if it starts so
initially, owing to its dependence on the pressure gradient
force in (12.16), which depends only on the fluid depth
and, therefore, is independent of z. Thus, the nonlinear
x momentum and continuity equations from (12.16) and
(12.17) can be written
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According to equation (12.21), the steady-state condition
is achieved through a balance between horizontal advec-
tion and the horizontal pressure gradient force. Mass is
conserved, according to (12.22), by requiring a constant
mass flux in the x direction. (If the mass flux varied, the
divergence of the mass flux would not allow a steady-
state solution.) This implies that thickening of the fluid
is associated with deceleration following a parcel, whereas
thinning of the fluid is associated with acceleration, a sim-
ple relationship that is not possible in the absence of a free
surface.

To combine (12.21) and (12.22) into one equation
relating all of the relevant flow variables, we use (12.22) to
substitute for ∂u/∂x in (12.21). This yields
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We now divide by g to obtain
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The intrinsic shallow-water gravity wave speed is defined
as c2 ≡ gD, therefore we can write (12.24) as
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(12.25)
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where Fr2 = u2/c2, and Fr is the Froude number for shallow-
water theory. The Froude number is the ratio of the mean
flow to the gravity wave phase speed. When Fr > 1, gravity
waves are unable to propagate upstream relative to the
mean flow, and the fluid is unable to produce perturba-
tion pressure gradients of sufficient magnitude to balance
nonlinear advection.

The Froude number can be used to identify three distinct
flow regimes. Based on inspection of (12.26), if Fr > 1 and
∂ht/∂x > 0, then ∂D/∂x > 0 such that the fluid thickens
going in the uphill direction, achieving its maximum thick-
ness at the peak of the mountain (Figure 12.12a). On the lee
slope, where ∂ht/∂x < 0, the fluid thins. As the thickness
of the fluid changes, the zonal velocity also changes in
accordance with the constant zonal mass flux prescribed
by the continuity equation. Thus, when Fr > 1, we find a
minimum in the wind speed at the top of the mountain
where the fluid is thickest. Considering a parcel embedded
in a westerly wind, the parcel will decelerate as it passes over
the mountain and return to its original speed at the leeward
base of the mountain (ignoring any frictional effects). This
flow behavior represents a transfer of energy from kinetic
to potential and back to kinetic, and is the behavior most
in line with our natural intuition for the behavior of, for
example, a ball rolling up a hill. This type of flow, for which
Fr > 1, is termed supercritical flow.

In contrast, when Fr < 1, termed subcritical flow,
(12.26) predicts that the fluid will thin (∂ht/∂x < 0) as
the terrain height increases (∂ht/∂x > 0) (Figure 12.12b).
Accompanying this thinning is an increase in the zonal
wind speed, reaching a maximum value at the top of
the mountain where the fluid is thinnest. The behavior
associated with subcritical flow as a parcel traverses a
mountain is not in line with our usual arguments regarding
the simple transfer of energy from kinetic to potential, and
we must break with our conceptual model of an isolated
ball rolling up a hill. An individual air parcel is not isolated
from the surrounding parcels; it feels their presence
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Figure 12.11 Relationship between free surface height,
depth (D), and terrain height (ht).

equation can be integrated with respect to z over the fluid
depth to obtain
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∂x
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dz = 0 (12.18)
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− u

∂ht

∂x
= 0. (12.20)

We were able to pull the ∂u/∂x term out of the integral
because u is independent of z for all time if it starts so
initially, owing to its dependence on the pressure gradient
force in (12.16), which depends only on the fluid depth
and, therefore, is independent of z. Thus, the nonlinear
x momentum and continuity equations from (12.16) and
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∂

∂x
(uD) = 0. (12.22)

According to equation (12.21), the steady-state condition
is achieved through a balance between horizontal advec-
tion and the horizontal pressure gradient force. Mass is
conserved, according to (12.22), by requiring a constant
mass flux in the x direction. (If the mass flux varied, the
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substitute for ∂u/∂x in (12.21). This yields

−u2

D

∂D

∂x
+ g

∂D

∂x
= −g

∂ht

∂x
. (12.23)

We now divide by g to obtain
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The intrinsic shallow-water gravity wave speed is defined
as c2 ≡ gD, therefore we can write (12.24) as
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where Fr2 = u2/c2, and Fr is the Froude number for shallow-
water theory. The Froude number is the ratio of the mean
flow to the gravity wave phase speed. When Fr > 1, gravity
waves are unable to propagate upstream relative to the
mean flow, and the fluid is unable to produce perturba-
tion pressure gradients of sufficient magnitude to balance
nonlinear advection.

The Froude number can be used to identify three distinct
flow regimes. Based on inspection of (12.26), if Fr > 1 and
∂ht/∂x > 0, then ∂D/∂x > 0 such that the fluid thickens
going in the uphill direction, achieving its maximum thick-
ness at the peak of the mountain (Figure 12.12a). On the lee
slope, where ∂ht/∂x < 0, the fluid thins. As the thickness
of the fluid changes, the zonal velocity also changes in
accordance with the constant zonal mass flux prescribed
by the continuity equation. Thus, when Fr > 1, we find a
minimum in the wind speed at the top of the mountain
where the fluid is thickest. Considering a parcel embedded
in a westerly wind, the parcel will decelerate as it passes over
the mountain and return to its original speed at the leeward
base of the mountain (ignoring any frictional effects). This
flow behavior represents a transfer of energy from kinetic
to potential and back to kinetic, and is the behavior most
in line with our natural intuition for the behavior of, for
example, a ball rolling up a hill. This type of flow, for which
Fr > 1, is termed supercritical flow.

In contrast, when Fr < 1, termed subcritical flow,
(12.26) predicts that the fluid will thin (∂ht/∂x < 0) as
the terrain height increases (∂ht/∂x > 0) (Figure 12.12b).
Accompanying this thinning is an increase in the zonal
wind speed, reaching a maximum value at the top of
the mountain where the fluid is thinnest. The behavior
associated with subcritical flow as a parcel traverses a
mountain is not in line with our usual arguments regarding
the simple transfer of energy from kinetic to potential, and
we must break with our conceptual model of an isolated
ball rolling up a hill. An individual air parcel is not isolated
from the surrounding parcels; it feels their presence
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Figure 12.12 Flow over an obstacle for the simple case of a single layer of fluid having a free surface. (a) Supercritical
flow (Fr > 1) everywhere. (b) Subcritical flow (Fr < 1) everywhere. (c) Supercritical flow on the lee slope with adjustment
to subcritical flow at a hydraulic jump near the base of the obstacle. (From Durran [1990].)

through the influence of the pressure gradient force. Thus,
the acceleration a parcel attains depends on the difference
between the pressure gradient force arising from changes
in the fluid depth [the second term in (12.21)] versus
the amount of work (i.e., conversion of kinetic energy to
potential energy) associated with climbing the terrain. In
subcritical flow, the pressure gradient force dominates and
leads to a net positive acceleration following the parcel as it
ascends. On the lee side, the fluid thickens and returns to its
original depth as the parcel decelerates to its original speed.

So far we have explored two very different behaviors
depending on Fr, but the net result for both is a return to
the original zonal wind speeds when the parcel reaches the
lee side. How then do we get winds on the lee side that
greatly exceed their original value? In other words, how
can we accelerate along the entire path from windward side
to leeward side? To see how this acceleration pattern can
be achieved, we notice that accelerations on the windward
side occur for subcritical flow, whereas accelerations on

the leeward side occur for supercritical flow. Thus, to
achieve acceleration along the entire path, the flow must
undergo a transition from subcritical on the windward side
to supercritical as it crests the mountain. In other words,
the acceleration on the windward side must cause u to cross
the threshold from subcritical to supercritical flow, which is
likely to happen only if the flow has a Fr close to unity at the
start. The transition from subcritical to supercritical results
in leeward wind speeds that exceed their original value
on the windward side. In accordance with the increasing
speeds, the fluid thickness will decrease over the entire path,
causing the free surface to drop sharply on the leeward side,
analogous to the descending isentropes during downslope
wind events, and resulting in what is called a hydraulic jump.
Hydraulic jumps are very turbulent, and large amounts of
energy are dissipated within them.6

6 One of the best examples of a hydraulic jump is when water spills over
a dam. A hydraulic jump forms at the base of the dam.
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through the influence of the pressure gradient force. Thus,
the acceleration a parcel attains depends on the difference
between the pressure gradient force arising from changes
in the fluid depth [the second term in (12.21)] versus
the amount of work (i.e., conversion of kinetic energy to
potential energy) associated with climbing the terrain. In
subcritical flow, the pressure gradient force dominates and
leads to a net positive acceleration following the parcel as it
ascends. On the lee side, the fluid thickens and returns to its
original depth as the parcel decelerates to its original speed.

So far we have explored two very different behaviors
depending on Fr, but the net result for both is a return to
the original zonal wind speeds when the parcel reaches the
lee side. How then do we get winds on the lee side that
greatly exceed their original value? In other words, how
can we accelerate along the entire path from windward side
to leeward side? To see how this acceleration pattern can
be achieved, we notice that accelerations on the windward
side occur for subcritical flow, whereas accelerations on

the leeward side occur for supercritical flow. Thus, to
achieve acceleration along the entire path, the flow must
undergo a transition from subcritical on the windward side
to supercritical as it crests the mountain. In other words,
the acceleration on the windward side must cause u to cross
the threshold from subcritical to supercritical flow, which is
likely to happen only if the flow has a Fr close to unity at the
start. The transition from subcritical to supercritical results
in leeward wind speeds that exceed their original value
on the windward side. In accordance with the increasing
speeds, the fluid thickness will decrease over the entire path,
causing the free surface to drop sharply on the leeward side,
analogous to the descending isentropes during downslope
wind events, and resulting in what is called a hydraulic jump.
Hydraulic jumps are very turbulent, and large amounts of
energy are dissipated within them.6

6 One of the best examples of a hydraulic jump is when water spills over
a dam. A hydraulic jump forms at the base of the dam.
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12.3.2 More realistic treatment
of downslope windstorms

The preceding analysis gives an easily understood ana-
logue to downslope windstorms. However, free surfaces
do not exist in the real atmosphere, which is continuously
stratified, so the extension of shallow-water theory to the
atmosphere in a quantitative manner is not straightfor-
ward. In particular, calculating a value for Fr appropriate
to the atmosphere is especially challenging as there is no
obvious layer depth.

When low-level inversions are specified at a height
zi, authors have used Fr = u/

√
g′zi, to develop relation-

ships between Fr and simulated flow characteristics. In this
expression, g′ is the reduced gravity given by g′ = g!θ/θ0,
where !θ is the potential temperature difference across the
inversion. This expression has been widely used in applying
shallow-water theory to atmospheric flows, a practice that
dates back at least to Freeman (1948) and Long (1954).
However, both practical experience with observed downs-
lope windstorms and theoretical studies7 suggest that the
resulting Fr cannot always be used to obtain accurate
quantitative models of atmospheric flows below elevated
inversions. Although interesting results are obtained in
simulations by varying Fr, it is somewhat unclear how to
apply these results to observed cases for which u and zi may
not have obvious values.

It also is not clear that it is appropriate to expect the
low-level pressure to be determined by the height of the
inversion in the free atmosphere, as it was by the height of
the free surface in shallow-water theory. In addition to the
lack of a free surface, the atmosphere differs from shallow-
water theory in that internal waves play an important role in
the energy transfer within a stratified environment, but they
are absent from shallow-water theory. Thus, two lines of
thought emerge regarding downslope windstorms, one that
looks at them as an atmospheric form of a hydraulic jump,
and one that is based on the presence of waves, seeking
conditions that lead to their reflection and amplification.

There are three predominant situations in which downs-
lope windstorms are observed: (1) when standing waves in
a deep cross-mountain flow overturn and break, (2) when
standing waves break and dissipate at a critical level in
shallow cross-mountain flow, and (3) when a layer having
strong static stability exists near the mountaintop with a
layer of lesser stability above (Figure 12.9).8

When standing waves overturn and break, which occurs
only if they reach sufficient amplitude, a region of low
static stability and reversed flow with a critical level can

7 See Durran (2000).
8 This discussion is based upon the presentation of Durran (2003b).

develop. These features allow one to specify boundary
conditions along a dividing streamline, which descends
sharply as the flow traverses the mountain and is the
lower boundary of the well-mixed region. In particular,
Smith (1985), who developed the theory presented herein,
assumes that potential temperature is constant and pressure
perturbations are small in the well-mixed layer between the
split streamlines. The latter assumption requires a critical
level to prohibit wave propagation through the well-mixed
region. Below the dividing streamline, the flow is assumed
to be smooth, nondissipative, hydrostatic, Boussinesq, and
steady, whereas the upstream flow is assumed to have
constant speed u0 and stability N0. Under these conditions,
the governing equation developed by Long (1955) is

∂2δ

∂z2
+ l2δ = 0, (12.27)

where δ(x, z) = z − z0 is the displacement of an arbitrary
streamline, and z0 is the upstream altitude of the streamline
through the point (x, z) (Figure 12.13). Assuming that the
air between the split streamlines is hydrostatic with con-
stant potential temperature, a Bernoulli equation along the
lower branch of the split streamlines indicates that the zonal
velocity is constant and equal to its original value along that

ht

H1

θc

H0u0

δc

δ

Figure 12.13 Schematic of the idealized high-wind-
speed flow configuration, derived from aircraft obser-
vations and numerical simulations. A certain critical
streamline divides and encompasses a region of uni-
form potential temperature. H0 is the original height of
the dividing streamline, θc is the potential temperature
in the well-mixed region between the split streamlines,
δ is the displacement of an arbitrary streamline, δc is
the displacement of the dividing streamline, and H1 is
the nadir of the lower dividing streamline. (From Smith
[1985].)
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streamline. This provides an important boundary condition
for the solution of (12.27), allowing one to predict δc, the
displacement of the dividing streamline. The solutions are
given by a family of curves for δc versus ht, with a different
curve for each upstream height of the dividing stream-
line (normalized using the vertical wavelength). Behavior
analogous to hydraulics is possible when the undisturbed
height of the dividing streamline is between (1/4 + n)λz

and (3/4 + n)λz. For these optimal values of H0, and a
sufficiently high mountain, the dividing streamline will
descend on both the windward and leeward sides of the
mountain in a manner resembling that of shallow water
flow that transitions from supercritical to subcritical when
passing over the mountain. Accompanying this descent is
a significant increase in wind speed.

The phenomenon of wave amplification due to wave
breaking was originally interpreted as a form of resonance

due to reflection of wave energy at the level of the overturned
layer.9 As stated previously, the layer in which breaking
occurs is presumed to have a low Richardson number and
often reversed flow such that a critical level is generated
by the breaking (this has been referred to in the literature
as a self-induced critical level; because the phase speed for
mountain waves is zero, the cross-mountain component of
the flow is zero in a critical level). As discussed in Section
6.4, linear waves encountering a critical level can experience
over-reflection when the Richardson number is less than
one-quarter. The over-reflected waves will interfere with
the incident waves, with resonance possible only for critical
level heights of 1

4 , 3
4 , 5

4 , . . . vertical wavelengths above the
ground. This is a valid mechanism for wave amplification,
but some simulations suggest that the critical level heights

9 See Clark and Peltier (1984) and Peltier and Clark (1983).
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leading to significant wave amplification are better matched
with those predicted by the hydraulic jump analog than
with those predicted by the wave-resonance theory.10 The
wave-resonance theory depends on the existence of high-
amplitude waves such that wave breaking occurs. At that
point, it may be that the nonlinear effects, which are
included in the hydraulic jump analog, are essential. Similar
zonal wind amplification will occur if the mean wind profile
contains a critical level.

In the final observed situation, that of a layer with
strong static stability below a layer with lesser stability,
the displacement of the interface will influence the pres-
sure gradient, although not as directly as this displacement
does when the interface represents a true density, rather
than stability, discontinuity. An analytic expression can be

10 See Durran and Klemp (1987).

developed for the contribution to the total perturbation
pressure owing to the displacement of the interface, and
simulations suggest that as the flow becomes more non-
linear [for example, as the mountain height is increased
(Figure 12.14)] this contribution to the pressure gradient
on the lee side becomes dominant, suggesting the flow is
then governed by the hydraulic analog.11

When the flow is in a regime analogous to shallow-water
theory, we expect the depth of the stable layer, analogous
to the depth of the shallow water fluid, to play a large role
in determining the flow properties. Indeed, simulations
suggest that varying the depth of the stable layer has an
influence similar to varying the fluid depth in the two-
layer model for shallow-water theory (Figure 12.15). As the
stable layer depth increases, the isentropes transition from

11 See Durran (1986b).
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a regime with thickening of the stable layer as the flow
traverses the mountain to a regime with a clear hydraulic
jump. We see that strong lee waves form downstream of the
jump and radiate energy away from the mountain. Finally,
as the depth is increased further, the isentrope behavior is
similar to the shallow water free surface in the subcritical
regime, with a decrease in the stable layer depth as the
flow crosses the mountain but a gentle return of the stable
layer to its original depth on the lee side, rather than the
development of a hydraulic jump. Thus, even without a
pre-existing layer across which the density changes rapidly
(i.e., an inversion), phenomena that are qualitatively very
similar to those in shallow-water theory can be produced in
two-layer fluids with high static stability in the lower layer.
As testament to the importance of the low-level stable layer,
when this layer was artificially removed in the simulation
of an observed case, strong winds did not develop on the
lee side.12

When multiple layers of varying stability exist, partial
wave reflection is possible at the interfaces of the layers,
and, when the stability structures of these layers is tuned
to maximize the positive interference of the reflected and
incident waves, wave amplification may be anticipated to
be important. The theory for the partial reflection of long,
hydrostatic waves shows that maximum amplification of

12 See Durran (1986b).

the surface velocity in a three-layer model having strong,
weak, and strong stability in the three layers, respectively,
occurs when the lower two layers each have a thickness
equal to one-fourth of the vertical wavelength valid for
that layer. This implies a relatively thin, low-level inver-
sion with a thicker, less stable troposphere aloft.13 When
compared with observations, the predicted structure is
often validated. The partial wave reflection theory, which is
based on linear theory, rapidly breaks down as the moun-
tain height becomes noninfinitesimal in cases with high
static stability in the lower level. It is possible that this
mechanism promotes the initial growth of wave amplitude,
leading eventually to wave breaking and the associated
effects discussed above for that phenomenon.

Putting all of this together, here are some of the condi-
tions that forecasters look for when predicting downslope
windstorms:

• an asymmetric mountain with a gentle windward slope
and a steep lee slope

• strong cross-mountain geostrophic winds (>15 m s−1)
at and just above mountain-top level associated with
surface high pressure upstream and surface low pressure
downstream

13 See Klemp and Lilly (1975).

rotor cloud

Figure 12.16 Photograph of a rotor cloud taken during the Terrain-Induced Rotor Experiment (T-REX). Courtesy of Vanda
Grubisic, Boro Grubisic, Brian Billings, and Ivana Stiperski.
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• an angle between the cross-mountain flow and the ridge
that is greater than ∼60◦

• a stable layer near or just above the mountain top, and a
layer of lesser stability above

• a level that exhibits a wind direction reversal or where
the cross-barrier flow simply goes to zero (the mean state
critical level); the existence of weak, vertical wind shear
or reverse shear is more favorable than forward shear

• situations of cold advection and anticyclonic vorticity
advection, which promote downward synoptic motion
to generate and reinforce the vertical stability structure

• absence of a deep, cold, stable layer in the lee of
mountains, which may keep the downslope flow from
penetrating to the surface.

12.4 Rotors
Intense horizontal vortices called rotors (Figures 12.1
and 12.16) can form in the lee of mountains under a wide
range of conditions, with the most intense rotors forming
near hydraulic jumps; that is, in conditions similar to
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Figure 12.17 Streamlines and horizontal vorticity (col-
ored, s− 1) in a numerical simulation using a no-slip
lower-boundary condition. Horizontal wind speeds less
than or equal to zero are shown using blue isotachs
(every 2 m s− 1). (From Doyle and Durran [2002].)

those that favor downslope windstorms (e.g., supercritical
flow on the lee side). Rotors can be dangerous to aircraft
because of the large wind shears and turbulence associated
with them.

Rotors form owing to flow separation in the wake of
ridge-tops (Figure 12.17). Strong horizontal vorticity is
created by surface friction as flow descends the mountain
toward a region of trapped lee waves. The adverse pressure
gradient associated with the first lee wave aids in the
separation of this high-vorticity region from the surface.
The vortex sheet is then advected into the lee wave train
and transported downstream, with a portion captured
below the wave crest leading to the formation of a rotor
(Figure 12.17; note that the blue contours indicate the
reversed flow associated with rotors beneath the first two
lee waves).14 Thus, lee waves and surface friction both play
an integral part in the formation of rotors.
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