Feedbacks Between Cloud Microphysics and Dynamics in Deep Convective Systems

Susan C. van den Heever

with contributions from Stephen M. Saleeby, Robert B. Seigel, Amanda M. Sheffield and Rachel L. Storer

Colorado State University Fort Collins, CO

Source: University of Arizona

09:01:00 Fri Aug 16 2002

Introduction

Storm Tracks

Vertical velocity at 4830m AGL at 15 minute intervals(from southwest to northeast). Contour interval is 10 m/s. Axes are distance (km) from southwest corner of grid.

Storm-Relative Wind Small Hail

Large Hail

Small hail: LM air comes predominantly from cold pool
Large hail: LM air comes predominantly from environment

Flow

Temperature (color, °C) and stormrelative wind vectors at 250m AGL

60

60

Microphysics-Dynamics

Convective Storm Processes

Storm Dynamics => vertical motion

Mixed-Phase / Ice Microphysics

Feedbacks / Links between them

Flow diagram showing microphysical processes and paths for precipitation formation (adapted from Braham (1968); after Cotton, Bryan and van den Heever, 2010)

Microphysics Storm Dynamics

Freezing Level - -

> Cloud Base -

Latent heat release due to phase change => updrafts

Anvil radiative interactions

Condensate Loading => updrafts Adiabatic heating and cooling => downdrafts

Precipitation => cold pools and outflow

boundaries

Factors Impacting Interactions

- Relative humidity
- Wind shear
- Aerosol indirect forcing

Aerosol Indirect Effects 101

Clean

Figure Credit: Geoff Krall

Fewer, larger cloud droplets

More, smaller cloud droplets

Clean

Polluted

Cold pool impacts through effects on amount and nature of surface precipitation

Polluted

Summary

- Aerosol indirect theory suggests that in polluted cases:
 - reduced collision-coalescence processes
 - reduced surface precipitation
 - less ice mass
 - weaker updrafts
 - stronger cold pools
- Not always the case with deep convection!

Basic Model Microphysics

Cloud Resolving Model

RAMS model developed at CSU
2 Moment bin-emulating bulk microphysics
Prognostic aerosol scheme (Saleeby and Cotton, 2004)

$$N_{activated} = N_{available}F_{activation}$$

Cloud droplets are nucleated from CCN as a function of temperature, w, CCN number concentrations and aerosol mean diameter

Cold Pools

Cold Pools

Evaporatively – generated cold pools Susceptible to size distributions and hence aerosol indirect forcing

Satellite imagery of ocean tropical cold pools and their associated outflow boundaries (Image courtesy of NASA/GSFC/LaRC/JPL, MISR Team)

Cold Pools and Outflow Boundaries

RCE Cold Pools

Cloud water mixing ratio (white, 1.5 g kg⁻¹ isosurface); water vapor mixing ratio (color; 15-19 g kg⁻¹); temperature (yellow contours); and wind vectors at 20m AGL

Cold Pools during CRYSTAL-FACE

The colder the cold pool the faster the gust front travels

Long-lived storms when the updraft co-located with gust front

Radar image demonstrating gust fronts observed during CRYSTAL-FACE (Frank and Kucera 2003)

Model and Experiment Setup

- During this field campaign outbreak of Saharan dust => providing opportunities for examining storm development in clean and dusty conditions
- 12 hour simulations of storm development observed over Florida during NASA's CRYSTAL-FACE field campaign
- 4 nested grids with 500m grid spacing on grid 4
 Aerosol initialization representing clean and dusty / polluted conditions observed during campaign

Precipitation Rates

Time series of horizontally-averaged precipitation rates (mm/hr) (van den Heever, 2012 in review)

Enhanced CCN concentrations: Overall reduced surface precipitation => in keeping with aerosol indirect forcing More consistent precipitation production with greater rates at times

Storm and Cold Pool Development

Surface temperature (°C, colored), precipitation rates (white, 1 and 10 mm hr⁻¹ isolines shown), updrafts at 5.6km AGL (pink, 5 ms⁻¹ isoline shown), convergence (thick black, 0.0015 s⁻¹ isoline shown), coastline of west coast of Florida (thin black), and wind vectors (van den Heever, 2012 in review)

DUSTY

Lower-Level Characteristics

High CCN: weaker / warmer cold pools reduced rain mixing ratios suppressed warm rain process greater raindrop diameters

Time series of CCN-CLEAN horizontally-averaged surface temperature (red), near surface rain mixing ratios (blue) and rain mean diameters (green) (van den Heever, 2012 in review)

Clean

Polluted

Precipitation

⁽van den Heever, 2012 in review)

Cold Pool Summary

- Aerosol impacts on cold pool forcing may offset aerosol suppression of surface precipitation
 There may be an ideal amount of aerosol that produces maximum surface precipitation over the lifetime of the storm
- Highly nonlinear response once secondary convection produced

Role of Environment

Aerosol versus CAPE

Seibert, CO LP supercell Photos: Brian McNoldy

Supercell Simulations

Experiments in which CAPE and aerosol concentrations were varied

WK sounding
 CAPE values from 491 to 2828 J/kg ~6 times increase

CAPE (J kg ⁻¹)			$N ({\rm cm}^{-3})$		
	100	200	400	800	1600
491	A-100	A-200	A-400	A-800	A-1600
865	B-100	B-200	B-400	B-800	B-1600
1299	C-100	C-200	C-400	C-800	C-1600
1781	D-100	D-200	D-400	D-800	D-1600
2290	E-100	E-200	E-400	E-800	E-1600
2828	F-100	F-200	F-400	F-800	F-1600

Increasing CCN Concentrations

A - 100

Delayed and reduced precipitation Weak LM and secondary convection

Reduced CCN effect on precipitation and organization

Surface Cold Pool: dotted line; W at 5.4 km: 5 m/s, 10 m/s, 20 m/s; Surface Precipitation: 1 mm, 10 mm, 20 mm

Storm organization at 120 mins as a function of CCN and CAPE (after Storer, van den Heever and Stephens, 2010)

Mean CWP as a function of CCN and CAPE (after Storer et al 2010)

Mean IWP as a function of CCN and CAPE (after Storer et al 2010)

Accumulated precipitation as a function of CCN and CAPE (after Storer et al 2010)

CAPE vs Aerosol Summary

Various storm attributes are affected differently by environmental and aerosol variations
 CAPE modulates the impacts of aerosol indirect forcing => with greater CAPE we tend to see relatively weaker aerosol indirect effects

Aerosol Environment

Mesoscale circulations contribute ~30% to global dust production (Miller et al 2008)

How Does Dust Ingestion Occur?

Difficult problem to answerDifficult to measure in situ

Harmful to aircraft engines
Many production mechanisms

<u>Regime 1</u>

Synoptic-scale lofting (e.g. Saharan Air Layer)

Background dust

<u>Regime 2</u> Mesoscale lofting (e.g. Haboob dust storm)

Localized dust

<u>Regime 3</u> Boundary lofting (e.g. dust storms colliding)

Methodology

Three idealized numerical simulations of supercell within common dust regimes (Seigel and van den Heever, 2012)
 Identical supercell evolution in each experiment
 EXP-BACKGROUND

- Emulate regime of supercell dust ingestion within an already dusty atmosphere (i.e. SAL)
- Initialized horizontally-homogeneous background dust profile
 EXP-STORM
- Investigate dust ingestion purely by supercell itself
 Initialized clean atmosphere with surface dust emission scheme act
 EXP-BOUNDARY

Supercell Initiation

- Warm bubble initiation
- Splits ~45 minutes
- Right mover main focus

EXP-BACKGROUND

- Investigating dust ingestion by supercell within an <u>already</u> dusty environment
- Initialized with background dust
- Surface emission turned <u>off</u>

How do these towers ingest environmental dust?

EXP-BACKGROUND

1800 2200

EXP-BACKGROUND

1800 2200

- Investigating ingestion purely by mechanics of supercell itself
- Initially <u>clean</u> environment
- Surface emission <u>on</u>

Does this lofted dust become ingested?

40 cm⁻³ dust concentration

Maximum dust concentrations in cold pool ~ 700-1700 cm⁻³

Cold pool lofting and storm ingestion mechanism

Seigel and van den Heever, JAS, 2012

- Investigating ingestion within complex regime of boundary interactions
- Initially <u>clean</u> environment
- Surface emission <u>on</u>
- Convergence boundary initialized with -5 K cold pool ahead of supercell

How does ingestion change as this dust storm near the developing cell?

Dust Ingestion Summary

- Dust concentrations ingested in the updraft are at least an order of magnitude greater in the background case than in the cold pool generated case
- It is extremely difficult to ingest dust into the parent storm when relying solely on the action of the storm itself
- Microphysical-dynamical interactions may therefore be background-aerosol limited

System-Wide Responses

Trimodal Distribution (Johnson et al 1999)

Deep Convective Mode CTs~tropopause

Congestus Mode CTs~6km

> Shallow Convective Mode CTs~2km

> > Image Source: CRYSTAL-FACE website

Total Response?

Deep Convection

Congestus

Shallow Convection

Goal

- To investigate the response of tropical convective systems to aerosol indirect forcing from a local AND system-wide perspective
 To be achieved through the use of CRM simulations under a Radiative Convective Equilibrium (RCE) framework
- Tropical atmosphere is never far from RCE => suitable framework to study convective, microphysical and radiative effects of tropical

Model Setup

2D and 3D model grid ■ 500m to 1 km grid spacing ■ 10,000 km in zonal direction Variable grid spacing in the vertical Time period: 100 days Periodic lateral boundary conditions Oceanic boundary with fixed SST (300K) Constant solar zenith angle Harrington 2-stream radiation scheme TOGA-COARE sounding with zero mean wind Convection - randomized perturbations to potential temperature

Experiment Setup

Control Run

allow CONTROL simulation to reach RCE (60 days)
introduce aerosol layer between 2 and 4 km AGL => Saharan dust layer over the Atlantic Ocean
aerosol layer updated each time step
run simulations for another 40 days
CCN Experiments:
Experiments: 100, 200, 400, 800, 1600 cc⁻¹

Convective Organization

Self-sustaining moist and dry bands3D experiments

Time series of precipitable water (mm) for fully interactive radiation scheme (left) and interactive radiation without contributions by clouds and precipitation (after Stephens, van den Heever and Pakula, 2008)

Radiative Influences

Time series of precipitable water (mm) for fully interactive radiation scheme (left) and interactive radiation without contributions by clouds and precipitation (after Stephens, van den Heever and Pakula, 2008) Breakdown of banded organization Effects of clouds on radiative heating and feedbacks to convective organization important

Trimodal Distribution

Trimodal structure typical of tropical convection (Johnson et al., 1999) is evident in CloudSat data (left) and RAMS output (right)

PW and Cloud Regime

Low: CTs < 4km Middle: 4 - 7 km High: CTs > 7km

Normalized frequency of cloud regime as a function of PW for the CCN-100 case

PW Budget

∂ ∂**t**

Local rate of change in PW (mm/hr) Evaporation and Precipitation rates (mm/hr)

Horizontal water vapor flux convergence (mm/hr)

Equation contains no forcing information
PW Budget Terms

Aerosol Experiments

Self-sustaining moist and dry bands
Aerosol experiments started at day 60
2D

Hovmuller plot of verticallyintegrated water vapor (mm) for the Control experiment

Aerosol Impacts on Trimodal Dist

Enhanced aerosol concentrations: Reduced shallow cloud fraction Enhanced congestus fraction Enhanced deep convective mode fraction

Vertical profiles of temporally (40 days) and spatially-averaged total condensate

Large Scale Effects on Shallow Mode

Higher CCN concentration Greater downward mass flux in undisturbed regions Reduced shallow cloud fraction

Convective mass flux and cloud fraction for the disturbed and undisturbed regions as a function of aerosol concentrations

Liquid Water and Ice Response Enhanced aerosol concentrations => greater cloud water and cloud ice

Vertical profiles of temporally and spatially-averaged cloud water and cloud ice represented as a difference from the Control experiment

Dynamic Response

Enhanced CCN concentrations => stronger updrafts

Vertical profiles of temporally and spatially-averaged updraft strength represented as a difference from the Control experiment for various updraft thresholds

Domain-Wide Precipitation Rates

Temporally (40 days) and horizontallyaveraged precipitation rates over entire model domain as a function of CCN concentration

Averages are comparable to those observed in the Tropics Enhanced CCN decreased surface precipitation rates ■ in keeping with aerosol indirect theory (Twomey, 1974; Albrecht, 1989)

Precipitation Contribution (%)

Cloud Type	CCN- 100	CCN- 200	CCN- 400	CCN- 800	CCN- 1600	
Shallow	12.3	10.8	9.4	6.9	4.8	
Congestus	9.3	8.6	8.8	9.0	9.7	
Deep	78.4	80.5	81.7	84.0	85.4	

Precipitation Rate Frequencies

Enhanced CCN concentrations reduced relative frequency of light rain points greater relative frequency of heavier rainfall points

Precipitation Summary

Overall system-wide precipitation response is relatively weak – largely controlled by RCE

Congestus Mode Mixed response

Suppression of shallow cloud precipitation offset by increases in deep convective precipitation Deep Convective Mode Enhanced precipitation

Aerosol indirect forcing may therefore have greatest effect on the frequency and intensity of precipitation compared with overall totals

Shallow Convective Mode Suppressed precipitation

Image Source: CRYSTAL-FACE website

Deep Convective Updraft Frequency

Higher CCN concentration greater number of wider convective updrafts

Histogram of deep convective profiles (Storer and van den Heever, 2012)

Dynamic Forcing – CloudSat Evidence

Convective Organization

 Self-sustaining moist and dry bands

 Organization very similar between Control and Aerosol experiments

Hovmuller plot of vertically-integrated water vapor (mm) for the Control experiment and domain-wide aerosol experiments (after van den Heever et al., 2011)

New Experiment Setup

Hovmuller plot of vertically-integrated water vapor (mm) for the Control experiment Control
Constant clean background
Polluted Exp
400 cc⁻¹ in region of western band

Control – Convective Organization

Relatively similar moist bands

Hovmuller plot of vertically-integrated water vapor (mm) for the Control experiment

Control – Vertical Structure

Vertical structure of bands relatively similar
East band slightly deeper

20-day average of total condensate (g/kg) for the Control experiment

Aerosol Experiment

 Aerosol distributed throughout the western band

Aerosol concentration (color, /cc) superimposed on total condensate (g/kg) for the aerosol experiment after 10 days

Aerosol – Convective Organization

Aerosol Experiment

"Polluted" band wider than in Hovmuller plot of vertically-integrated water vapor (mm) for the Control

Moist bands

narrows with

quite

band

time

different

"Clean"

Aerosol Exp – Vertical Structure

Vertical structure of bands very different Polluted band – greater total condensate and deeper band Clean band not as deep

20-day average of total condensate (g/kg) for the Aerosol Experiment

Control – Liquid Water and Ice

20-day average of liquid water and ice (g/kg) for the Control Experiment

Aerosol Exp – Liquid Water and Ice

20-day average of liquid water and ice (g/kg) for the Aerosol Experiment

Precipitation Rates

Polluted band
 => greater
 precipitation
 rates than clean
 band

20-day average of precipitation rates (mm/hr) for the control (blue) and aerosol (red) experiments

Convective Mass Flux

20-day average of the convective mass flux (w>0) (kg/m^2/s)

Subsidence Rates

Domain-wide 20-day average subsidence expressed as a difference between Polluted and Control experiments (w<0) (kg/m²/s)

Greater subsidence domain-wide in aerosol experiment Together with enhanced convective mass flux suggests stronger largescale circulation

Zonal Flow

Stronger upperlevel divergence Stronger lowerlevel convergence

20-day average of the zonal flow (m/s) for the Control (left) and Polluted (right) experiments

Precipitable Water

Polluted band

 > wider with
 greater PW

 Clean band =>

 narrower with
 similar PW

20-day average of precipitable water (mm) for the control (blue) and aerosol (red) experiments

Aerosol – Convective Organization

Moist bands quite different "Clean" band narrows with time "Polluted" band wider than in Control

Hovmuller plot of vertically-integrated water vapor (mm) for the Aerosol Experiment

Latent Heat of Freezing

Polluted band
 => greater
 latent heat
 release

20-day average of latent heat of freezing (K/day) for the polluted (blue) and clean (red) band

Net Radiative Heating Rates

Polluted experiment => greater net cooling at anvil top Gradients in radiative heating Need enhanced subsidence to offset cooling (Gray and Jacobson, 1977)

20-day average of the Polluted-Control total radiative heating rate (K/day) for the polluted band

Convective Organization Summary

Control Experiment

Moist bands with similar cloud distributions and characteristics

Aerosol Layer

Deeper convective systems
Greater ice and liquid water mass
Greater surface precipitation

Aerosol Layer

Greater convective mass flux
Greater subsidence
Stronger large-scale circulation
Broader, more moist regions

Aerosol Layer

Greater latent heat release

- Greater net radiative cooling at cloud top
- Cold pool impacts
- Aerosol indirect effects => large-scale organization of tropical convective systems

Final Summary

CRM simulations demonstrate a wide range of storm dynamical responses to changes in the microphysics due aerosol indirect forcing with subsequent feedbacks to the microphysics Cold pools Environmental roles Dust transport System wide responses Anvil forcing More field campaigns are needed that measure "the right stuff" for model assessments and comparisons
Way Forward

Cloud-Precipitation ETH Histograms

Methodologyby Stephens and Wood (MWR 2007) adapted from Masunaga et al. (JC 2005)

NICAM

convective mode

Shallow convection frequency a little low

Cloud-Drizzle Transitions: Obs and Models

Precipitation categories:

No precipitation: $Z_{sfc} < -15$ dBZ Drizzle: -15dBZ $< Z_{sfc} < 0$ dBZ Rain: 0dBZ $< Z_{sfc}$

Suzuki et al (2011)

Source: University of Arizona

09:01:00 Fri Aug 16 2002

To a

Trimodal Distribution

Deep Convective Mode CTs~tropopause Enhanced precipitation

Congestus Mode CTs~6km Mixed response

> Shallow Convective Mode CTs~2km Suppressed precipitation

Image Source: CRYSTAL-FACE website

Congestus

Freezing Level

Photo credit: Dave Rogers, ICE-T field campaign, July 2011

Terminal versus Transient?

Terminal versus transient congestus (Luo et al, 2009)
Dynamical response to aerosol indirect forcing? after Luo et al (2009) JGR

Congestus Cloud Top Frequency

Higher CCN concentration => greater number of congestus clouds extending beyond the freezing level

Histogram of congestus cloud top frequency as a function of aerosol concentration (Sheffield, van den Heever and Saleeby, 2012)

Cumulus Congestus Updraft Speeds

 Updraft speed generally increases in the more
 polluted cases, but this trend changes
 aloft

Greater net surface area enhances latent heat of condensation

Latent Heat Release

Latent Heat of Vaporization Latent Heat of Freezing

Cumulus Congestus Updraft Speeds

 Updraft speed generally increases in the more
 polluted cases, but this trend changes
 aloft

Condensate Loading

 Insufficient increased buoyancy due to ice formation to offset enhanced condensate loading

Congestus Summary

Enhanced aerosol concentrations => invigorate congestus through condensational growth and associated latent heat release => produce greater frequency of congestus cloud tops above freezing level => enhanced opportunity for mixed-phase processes, further invigoration and development into deep convection