Global Energy and Water Budgets

Global Heat Flows

Kiehl and Trenberth 1997

EARTH'S ENERGY BUDGET

Depiction of CAPE on a Skew-T-logP Diagram Co

Conceptual Model of Cumulonimbus

 $\begin{array}{l} \theta \\ \theta \\ \theta \\ entire \\ enti$

©The COMET Program

Cloud Radiative Effects

https://www.atmos.washington.edu/~dennis/321/

Global Physical Climatology by Dennis Hartmann

Cloud Radiative Effects

Table 3.2 Cloud radiative effect on the top-of-atmosphere global energy balance as estimated from satellite measurements. Irradiances are given in W m^{-2} and albedo in percent. (From CERES data as described in Loeb et al. 2009.)

	Average	Cloud-Free	Cloud Effect
OLR	240	266	+26
Absorbed Solar Radiation	240	288	-47
Net Radiation	+0.56	+22	-21
Albedo	29%	15%	+14%

- S_0 : solar constant (incoming solar flux, 1367 W m⁻²).
- α_p : planetary albedo (0.30).
- $F^{\uparrow}(\infty)$: outgoing longwave (IR) radiation at TOA (234 W m⁻²).

• TOA Energy Balance

$$R_{\text{TOA}} = \frac{S_0}{4} (1 - \alpha_p) - F^{\uparrow}(\infty)$$
$$\Delta R_{\text{TOA}} = R_{\text{cloudy}} - R_{\text{clear}} = \Delta Q_{\text{abs}} - \Delta F^{\uparrow}(\infty)$$

Cloud Radiative Effect – Add Clouds, what changes?

$$\Delta Q_{abs} = \frac{S_0}{4} (1 - \alpha_{cloudy}) - \frac{S_0}{4} (1 - \alpha_{clear})$$
$$= \frac{S_0}{4} (\alpha_{cloudy} - \alpha_{clear}) = -\frac{S_0}{4} \Delta \alpha_p$$

Cloud Radiative Effect – Add Clouds, what changes?

$$\Delta R_{\rm TOA} = R_{\rm cloudy} - R_{\rm clear} = \Delta Q_{\rm abs} - \Delta F^{\uparrow}(\infty)$$

Shortwave bit

$$\Delta Q_{\text{abs}} = \frac{S_0}{4} (1 - \alpha_{\text{cloudy}}) - \frac{S_0}{4} (1 - \alpha_{\text{clear}})$$
$$= \frac{S_0}{4} (\alpha_{\text{cloudy}} - \alpha_{\text{clear}}) = -\frac{S_0}{4} \Delta \alpha_p$$

Longwave bit

$$\Delta F^{\uparrow}(\infty) = F^{\uparrow}_{\text{cloudy}}(\infty) - F^{\uparrow}_{\text{clear}}(\infty)$$

Longwave bit

$$\Delta F^{\uparrow}(\infty) = F^{\uparrow}_{\text{cloudy}}(\infty) - F^{\uparrow}_{\text{clear}}(\infty)$$

Expand using grey absorption integral equations

$$\Delta F^{\uparrow}(\infty) = \sigma T_{z_{\text{ct}}}^{4} \mathscr{T}\{z_{\text{ct}},\infty\} - \sigma T_{s}^{4} \mathscr{T}\{z_{s},\infty\} - \int_{\mathscr{T}\{z_{s},\infty\}}^{\mathscr{T}\{z_{\text{ct}},\infty\}} \sigma T(z')^{4} d\mathscr{T}\{z',\infty\}$$

 Assume cloud top is above most of water vapor, then OLR is emission from top of cloud

$$\mathscr{T}{z_{ct},\infty} \approx 1.0$$

$$\Delta F^{\uparrow}(\infty) = \sigma T_{z_{\text{ct}}}^{4} - \sigma T_{s}^{4} \mathscr{T}\{z_{s},\infty\} - \int_{\mathscr{T}\{z_{s},\infty\}}^{1} \sigma T(z')^{4} d\mathscr{T}\{z',\infty\}$$
$$\Delta F^{\uparrow}(\infty) = \sigma T_{z}^{4} - F_{\text{clear}}^{\uparrow}(\infty)$$

²ct

Putting the pieces together,

$$\Delta R_{\text{TOA}} = R_{\text{cloudy}} - R_{\text{clear}} = \Delta Q_{\text{abs}} - \Delta F^{\uparrow}(\infty)$$

• becomes

$$\Delta R_{\text{TOA}} = -\frac{S_0}{4} \Delta \alpha_p + F_{\text{clear}}^{\uparrow}(\infty) - \sigma T_{z_{\text{ct}}}^4$$

 The solar and longwave parts tend to be of opposite sign and we can calculate the cloud top temperature at which they will exactly cancel.

$$T_{z_{\rm ct}} = \left\{ \frac{-(S_0 / 4) \Delta \alpha_p + F_{\rm clear}^{\downarrow}(\infty)}{\sigma} \right\}^{1/4}$$

Cloud Radiative Forcing $A_i = cloud amount for cloud type i$ A = total cloud amount $A = A_i \cdot I$

OvcCRF_i = ovc CRF for cloud type i CRF_i = avg CRF for cloud type i CRF = total avg CRF

 $CRF_i = A_i * OvcCRF_i$

 $CRF = A_i \cdot CRF_i = OvcCRF_i \cdot I$

A_i

= CRF_i

from Hartmann, Moy, and Fu 2001

There is good agreement between modeled radiative fluxes (using observed cloud type frequencices) and observed (ERBE) radiative fluxes.

TABLE 1. ERBE and modeled radiation balanc	e components for the west Pacific convec	ctive region $0^{\circ}-15^{\circ}N$, $120^{\circ}-150^{\circ}E$ (W m ⁻²).
--	--	---

	Longwave		Shortwave		Net radiation	
	ERBE	Model	ERBE	Model	ERBE	Model
Average sky	211	213	117	119	96	92
Clear sky	280	278	40	42	103	103
Cloud forcing	70	65	-77	-77	-7	-11

from Hartmann, Moy, and Fu 2001

Observed Cloud Fractions

• High Clouds (p<440mb)

Net Radiation – Annual Mean

Net Radiation CERES 2003-2006

Annual ISCCP C² Inferred Stratus Cloud Amount

Observed Cloud Radiative Effects in Wm⁻² from CERES TOA CRE Longwave Flux

CERES JJA 2000-2013

Observed Cloud Radiative Effects in Wm⁻² from CERES

CERES JJA 2000-2013

Observed Cloud Radiative Effects in Wm⁻² from CERES

CERES JJA 2000-2013

