Course Goals

® Expose students to nitty-gritty of cloud
modeling: build a basic, 2D model.

® | earn techniques of model development:
Build from simple to complex. Testing.

® | earn theoretical approaches to studying
convection: simple models with analytics

solutions to 3D CRMs.



® | earn about global (statistical) convection
and how it is represented in large-scale
models (e.g., cumulus parameterization).

® | earn how the physical processes that are
important for deep, moist convection are
represented in CRMs.



time-lapse movie of cumulus development
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Cloud-Resolving Model

® A 2D or 3D non-hydrostatic numerical
model that resolves individual cloud-scale
circulations.

® |t includes representations of:
® moist thermodynamics
® cloud and precipitation microphysics
® radiative transfer
® unresolved turbulence

® surface fluxes
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Isosurface of cloud water:




Scales of Atmospheric Motion

10,000 km 1000 km 100 km 10 km 1 km 100 m 10m
| | | | | |
| | | B | |
Planetary Extratropical Mesoscale Cuméjll(;)uncllrsnbus Cumulus Turbulence =>
waves Cyclones  Convective Systems clouds




Multiscale Modeling Framework (MMF)




Giga-LES of deep convection

* Goal is to simultaneously simulate boundary layer
turbulence, shallow convection, deep convection,
and mesoscale convective systems to provide a
benchmark for evaluation of coarser-grid
simulations.

e |dealized GATE (tropical ocean) simulation with
shear.

*Used a CSRM (SAM) with 2048 x 2048 x 256 (109)
grid points and 100-m grid size for a 24-h LES.

e Equivalent to 1024 6.4-km x 6.4-km LESSs.



LES “visible image” 180 km x 180 km







Cloud Water Path (vertical integral)




lce Water Path (vertical integral)




Water Vapor Mixing Ratio at surface




zoom into 50 km by 50 km

QuickTime™ and a
decompressor
are needed to see this picture.



Waterspouts!’

Several vortices of waterspout strength
occurred.

These vortices would presumably become
waterspouts with higher resolution.

Preferred location is along gust fronts
which produce low-level vorticity.

This vorticity is amplified by stretching due
to low-level convergence.



surface water vapor
25.6 x 25.6 km, 50 minutes duration
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Cumulonimbus Vertical Velocity Events in GATE. Part 1:
Diameter, Intensity and Mass Flux
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The following are statistics from the giga-LES
for up-cores and down-cores.

Each plotted point represents one level at
one time. Hourly results for the last 12
hours are plotted.

The first plot is a comparison to LeMone &
Zipser’s results. The second and third plots
include results to |8 km and the 99th
percentile.
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Downdrafts
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Giga-LES statistics

e Giga-LES core statistics compare well
to LZ GATE observations.

e Joint pdfs of buoyancy and drag show
that strongest updrafts have large
buoyancy and small drag.

e Co-located observations of w and
precip could be used to study dynamics
of deep convection.



Soundary layer clouds In
cloud-system-resolving models (CSRMSs)

e CSRMs may have horizontal grid
sizes of 4 km or more.

e Such CSRMs are used in MMF,
GCRMs (global CSRMs), and
tropical cyclone models.

e [n MMF and GCRMs, CSRMs are
expected to represent all types of
cloud systems.

e However, many cloud-scale
circulations are not resolved by
CSRMs.

e Representations of SGS (subgrid-
scale) circulations currently used
in CSRMs can be improved.




Use results from the giga-LES
to test the assumed PDF method

* Collected statistics for calculating the moments
needed to specify assumed PDFs for grid sizes of
800 m x 800 m x 100 m and multiples thereof.

* The statistics also include cloud fraction, liquid
water mixing ratio, and its vertical flux, that can be
compared to those obtained from the PDF.
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Isosurface of cloud water:

PDFs of cumulus clouds




PDFs of cumulus clouds




PDFs of cumulus clouds Horizontal cross section of vertical velocity; z=1680(m)




PDFs of cumulus clouds

Distribution of vertical velocity
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Example of a PDF fit
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Evaluations of the PDFs

To get a better idea of the performance of the
four families of PDFs, use Giga-LES results.
Compute

5 Cloud fraction

B Cloud water
5 iguiaiwater flux

for various grid sizes, from the Giga-LES.
Pete recently presented these results.




Giga-LES & Assumed PDF Method

* We are using the “benchmark” results from a large-domain
LES of deep convection to test the assumed PDF method
for various horizontal grid sizes.

* We will also use the “benchmark” results to evaluate
coarse-grid CSRMs with various configurations (SGS
parameterization, grid size, domain size, and
dimensionality).

* | arge-domain LES of deep convection can be used to
study many multiscale phenomena, such as triggering of
new convection, entrainment, cold pools, gust fronts, and
even waterspouts.
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POST (Phy5|cs of §tratocumu|us Top)

*A collaborative NSF-projectsthat involves |9
_scientists from | | institutions who are studying the
| stratocumulus-topped.boundary layér off the west.
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CIRFAS Twin Otter Research Aircraft
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Two high-rate probes (UFT and PVM) were mounted less than
0.5 m apart on the CIRPAS Twin Otter aircraft during POST.




POST Flight Plan
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Figure 1: Average, maximum, and minimum LWC from 1-kHz PVM data within each 50-m
segment during a 100-s (5-km) long flight segment during RF03 as the aircraft penetrated
the EIL from below. The LWC has not been adjusted to remove its zero offset.



Why are stratocumulus clouds important?

Figure 2: Sensitivity of shortwave cloud radiative forcing changes in response to long term SST changes
predicted in 1% CO» scenarios from 15 CMIP3/AR4 AOGCMs, separated into dynamical regimes. Dot-
ted lines show the maximum and minimum values. The red squares and lines show the mean and standard

deviation of the 8 higher sensitivity versions. The 7 lower sensitivity versions are shown in blue. From
Bony and Dufresne (2005).
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Stratocumulus cloud-to enrainment in the UU LE.







a quarter of the domain




What is the importance of POST
high-resolution measurements!?

~[00 m

photo by Jan Paegle



LWC (g m™)

Aircraft Measurements of Liquid Water Content
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Turbulent Mixing: Process by which a fiuid with two initialty
segiegated scalar properties mix at the molecular level
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LES of passive scalar in a convective boundary layer
(grid size = 20 m)




Buoyancy vs Mixture Fraction
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How small does the
grid size need to be to
adequately resolve Sc
cloud-top entrainment
and mixing!?



Cloud fraction histograms in all partly cloudy 50-m
segments for grid sizes of 50 m,5 m,and 0.5 m
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Figure 2: Cloud fraction histograms in all partly cloudy 50-m segments for grid sizes of 50
m, 5 m, and 0.5 m.



POST analysis plans

(prototyped using high-resolution LES results)
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EIL (entrainment interface layer)
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POST summary

® Almost all instruments performed as hoped
for most of the flights.

® Main disappointment is lack of high-rate
water vapor measurements.

® Co-located high-rate liquid water and
temperature measurements will allow
unprecedented analyses of mixing process
at Sc cloud tops.



