Meteorology 6150: Parallel-Plate Convection:
Horizontally Averaged Potential Temperature and
Kinetic Energy Equations

The model predicts the horizontal velocity (v), the vertical velocity (w),
the potential temperature (#), and the non-dimensional perturbation pres-
sure (7). The compressible, non-rotating, adiabatic equations in Cartesian
coordinates (y, z) are:
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The terms D,, D,,, and Dy each have the form
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where K4 is the molecular or eddy diffusivity. B
The equation for the horizontally averaged potential temperature, 6 (the
overbar indicates a horizontal average), is obtained from (3):

00 Owl 020
o = o, Tz (5)

To derive (5), we assumed that the lateral boundary conditions are cyclic,
and that the Boussinesq continuity equation,
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applies. Together, these imply that w = 0.
Eq. (5) can be written
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where (Fp)eony and (Fp)eona denote the convective and conductive vertical
fluxes of potential temperature.
The equation for the horizontally averaged kinetic energy, F, where £ =

(v2 + w?)/2, is obtained from (1) and (2):
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is the (molecular) dissipation rate. We have again assumed that the lateral
boundary conditions are cyclic and that the Boussinesq continuity equation
applies. In addition, we assumed that K,, = K, and 0v/0z = 0.

Eq. (7) can be written in a form which emphasizes the vertical fluxes of
kinetic energy:
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where (Fg)convs (FE)press and (Fg)molec denote the vertical fluxes of kinetic
energy due to convection, pressure-velocity correlations, and molecular pro-
cesses, and B and D represent the buoyancy production and molecular dis-
sipation of kinetic energy.



