
A Novel Approach for Simulating 
Droplet Microphysics in 

Entraining Clouds
Steven K. Krueger1 and Alan R. Kerstein2

1. University of Utah
       2. Sandia National Laboratories

       

Department of Atmospheric and Oceanic Sciences
University of California, Los Angeles

25 April 2012

Jay Oh, Helena Schluter, Pam Lehr, Chwen-Wei Su, Phil Austin, Pat McMurtry



Scales of  Atmospheric Motion 
1000 km 1 km10 km100 km 10 m100 m10,000 km

 Large Eddy Simulation
(LES) Model

Global Climate Model
(GCM)

 Cloud System Resolving
Model (CSRM)

Turbulence =>Cumulus
clouds 

Mesoscale
Convective Systems

Extratropical
Cyclones

Planetary 
waves

Cumulonimbus
clouds

Multiscale Modeling Framework



1 mm10 mm100 mm
Scales of  Atmospheric Motion 

1000 km 10 km100 km 1 km 1 m10 m100 m10,000 km

 Large Eddy Simulation
(LES) Model

Global Climate Model
(GCM)

 Cloud System Resolving
Model (CSRM)

Turbulence Cumulus
clouds 

Mesoscale
Convective Systems

Extratropical
Cyclones

Planetary 
waves

Cumulonimbus
clouds

EMPM

The smallest scale of turbulence is the Kolmogorov scale:

η ≡ (ν3/�)1/4

For � = 10−2 m2 s−3 and ν = 1.5× 10−5 m2 s−1, η = 0.7 mm.

Direct Numerical Simulation
(DNS)

EMPM

aircraft measurements



• Cloud droplet microphysics

• Large-eddy simulation

• Linear Eddy Model (LEM)

• Explicit Mixing Parcel Model (EMPM)

• ClusColl (Clustering and Collision Model)

OUTLINE



•Cloud droplet microphysics

• Large-eddy simulation

• Linear Eddy Model (LEM)

• Explicit Mixing Parcel Model (EMPM)

• ClusColl (Clustering and Collision Model)



Growth of Cloud Droplets in Warm Clouds

224 Cloud Microphysics

1 liter!1) in a cloud has to grow by this amount for
the cloud to rain. The mechanism responsible for the
selective growth of a few droplets into raindrops in
warm clouds is discussed in the next section.

6.4.2 Growth by Collection

In warm clouds the growth of some droplets from the
relatively small sizes achieved by condensation to the
sizes of raindrops is achieved by the collision and
coalescence of droplets.20 Because the steady settling
velocity of a droplet as it falls under the influence of
gravity through still air (called the terminal fall speed
of the droplet) increases with the size of the droplet
(see Box 6.2), those droplets in a cloud that are
somewhat larger than average will have a higher
than average terminal fall speed and will collide with
smaller droplets lying in their paths.

Typical raindrop
r = 1000   n = 1   v = 650

Large cloud
droplet

r = 50  n = 103
v = 27

Conventional
borderline
between cloud
droplets and
raindrops
r = 100
v = 70

Typical cloud droplet
r = 10  n = 106  v = 1

CCN
r = 0.1  n = 106  
v = 0.0001

Fig. 6.18 Relative sizes of cloud droplets and raindrops; r is
the radius in micrometers, n is the number per liter of air, and
v is the terminal fall speed in centimeters per second. The cir-
cumferences of the circles are drawn approximately to scale,
but the black dot representing a typical CCN is 25 times
larger than it should be relative to the other circles. [Adapted
from J. E. MacDonald, “The physics of cloud modification,”
Adv. Geophys. 5, 244 (1958). Copyright 1958, with permission
from Elsevier.]

20 As early as the 10th century a secret society of Basra (“The Brethren of Purity”) suggested that rain is produced by the collision of
cloud drops. In 1715 Barlow21 also suggested that raindrops form due to larger cloud drops overtaking and colliding with smaller droplets.
These ideas, however, were not investigated seriously until the first half of the 20th century.

21 Edward Barlow (1639–1719) English priest. Author of Meteorological Essays Concerning the Origin of Springs, Generation of Rain,
and Production of Wind, with an Account of the Tide, John Hooke and Thomas Caldecott, London, 1715.

22 Galileo Galilei (1564–1642) Renowned Italian scientist. Carried out fundamental investigations into the motion of falling bodies and
projectiles, and the oscillation of pendulums. The thermometer had its origins in Galileo’s thermoscope. Invented the microscope. Built a
telescope with which he discovered the satellites of Jupiter and observed sunspots. Following the publication of his “Dialogue on the Two
Chief Systems of the World,” a tribunal of the Catholic Church (the Inquisition) compelled Galileo to renounce his view that the Earth
revolved around the sun (he is reputed to have muttered “It’s true nevertheless”) and committed him to lifelong house arrest. He died the
year of Newton’s birth. On 31 October 1992, 350 years after Galileo’s death, Pope John Paul II admitted that errors had been made by the
Church in the case of Galileo and declared the case closed.

By dropping objects of different masses from the
leaning tower of Pisa (so the story goes), Galileo
showed that freely falling bodies with different
masses fall through a given distance in the same
time (i.e., they experience the same accelera-
tion). However, this is true only if the force act-
ing on the body due to gravity is much greater
than the frictional drag on the body due to the
air and if the density of the body is much greater
than the density of air. (Both of these require-
ments were met by the heavy, dense objects used
by Galileo.)

Consider, however, the more general case of a
body of density "# and volume V# falling through
still air of density ". The downward force acting
on the body due to gravity is "#V#!, and the
(Archimedes’) upward force acting on the body
due to the mass of air displaced by the body is
"V#. In addition, the air exerts a drag force Fdrag
on the body, which acts upward. The body will
attain a steady terminal fall speed when these
three forces are in balance, that is

"#V#! $ "V#! % Fdrag

6.2 Was Galileo22 Correct? Terminal Fall Speeds of Water Droplets in Air

Continued on next page
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n: # per liter
v: fall speed 
(cm/s)



Cloud Condensation Nuclei (CCN)6.4 Growth of Cloud Droplets in Warm Clouds 223

eventually reaches saturation with respect to liquid
water. Further uplift produces supersaturations that
initially increase at a rate proportional to the updraft
velocity. As the supersaturation rises, CCN are acti-
vated, starting with the most efficient. When the rate at
which water vapor in excess of saturation, made avail-
able by the adiabatic cooling, is equal to the rate at
which water vapor condenses onto the CCN and
droplets, the supersaturation in the cloud reaches a
maximum value. The concentration of cloud droplets is
determined at this stage (which generally occurs within
100 m or so of cloud base) and is equal to the concen-
tration of CCN activated by the peak supersaturation
that has been attained. Subsequently, the growing
droplets consume water vapor faster than it is made
available by the cooling of the air so the supersatura-
tion begins to decrease. The haze droplets then begin
to evaporate while the activated droplets continue to
grow by condensation. Because the rate of growth of a
droplet by condensation is inversely proportional to its
radius [see (6.21)], the smaller activated droplets grow
faster than the larger droplets. Consequently, in this
simplified model, the sizes of the droplets in the cloud
become increasingly uniform with time (i.e., the
droplets approach a monodispersed distribution). This
sequence of events is illustrated by the results of theo-
retical calculations shown in Fig. 6.16.

Comparisons of cloud droplet size distributions
measured a few hundred meters above the bases of
nonprecipitating warm cumulus clouds with droplet
size distributions computed assuming growth by con-
densation for about 5 min show good agreement
(Fig. 6.17). Note that the droplets produced by con-
densation during this time period extend up to only
about 10 !m in radius. Moreover, as mentioned ear-
lier the rate of increase in the radius of a droplet
growing by condensation decreases with time. It is
clear, therefore, as first noted by Reynolds19 in 1877,
that growth by condensation alone in warm clouds is
much too slow to produce raindrops with radii of sev-
eral millimeters. Yet rain does form in warm clouds.
The enormous increase in size required to transform
cloud droplets into raindrops is illustrated by the
scaled diagram shown in Fig. 6.18. For a cloud droplet
10 !m in radius to grow to a raindrop 1 mm in radius
requires an increases in volume of one millionfold!
However, only about one droplet in a million (about
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Fig. 6.16 Theoretical computations of the growth of cloud
condensation nuclei by condensation in a parcel of air rising
with a speed of 60 cm s"1. A total of 500 CCN cm"1 was
assumed with im!Ms values [see Eq. (6.8)] as indicated. Note
how the droplets that have been activated (brown, blue, and
purple curves) approach a monodispersed size distribution
after just 100 s. The variation with time of the supersatura-
tion of the air parcel is also shown (dashed red line). [Based
on data from J. Meteor. 6, 143 (1949).]
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Fig. 6.17 Comparison of the cloud droplet size distribution
measured 244 m above the base of a warm cumulus cloud
(red line) and the corresponding computed droplet size distri-
bution assuming growth by condensation only (blue line).
[Adapted from Tech. Note No. 44, Cloud Physics Lab., Univ.
of Chicago.]

19 Osborne Reynolds (1842–1912) Probably the outstanding English theoretical mechanical engineer of the 19th century. Carried out
important work on hydrodynamics and the theory of lubrication. Studied atmospheric refraction of sound. The Reynolds number, which he
introduced, is named after him.
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♦Calculation of the 
growth of cloud 
droplets from a 
CCN population 
(500/cm3) by 
condensation in 
an updraft of 60 
cm/s.

♦Activated droplets 
are monodisperse 
by 100 s (60 m).

6 m

60 m
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♦ Increase of droplet radius by condensation is initially rapid, 
but diminishes as droplet grows.

♦Condensational growth by itself cannot produce raindrops. 
(First noted by Osborne Reynolds in 1877.) 
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Collision-coalescence

♦Growth of droplets into raindrops is achieved by collision-
coalescence.  

♦Fall velocity of a droplet increases with size.
♦Larger drops collect smaller cloud droplets and grow.
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Collision-coalescence
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Consider a single drop23 of radius r1 (called the
collector drop) that is overtaking a smaller droplet of
radius r2 (Fig. 6.19). As the collector drop approaches
the droplet, the latter will tend to follow the stream-
lines around the collector drop and thereby might
avoid capture. We define an effective collision cross
section in terms of the parameter y shown in
Fig. 6.19, which represents the critical distance
between the center fall line of the collector drop and
the center of the droplet (measured at a large
distance from the collector drop) that just makes a
grazing collision with the collector drop. If the center

of a droplet of radius r2 is any closer than y to the
center fall line of a collector drop of radius r1, it will
collide with the collector drop; conversely, if the cen-
ter of a droplet of radius r2 is at a greater distance
than y from the center fall line, it will not collide with
the collector drop. The effective collision cross
section of the collector drop for droplets of radius r2
is then !y2, whereas the geometrical collision cross
section is !(r1 " r2)2. The collision efficiency E of a
droplet of radius r2 with a drop of radius r1 is there-
fore defined as

(6.25)

Determination of the values of the collision effi-
ciency is a difficult mathematical problem, particu-
larly when the drop and droplet are similar in size,
in which case they strongly affect each other’s
motion. Computed values for E are shown in
Fig. 6.20, from which it can be seen that the collision
efficiency increases markedly as the size of the col-
lector drop increases and that the collision efficien-
cies for collector drops less than about 20 #m in
radius are quite small. When the collector drop is
much larger than the droplet, the collision efficiency
is small because the droplet tends to follow closely

E $
y2

(r1 " r2)2

6.2 Continued

or, if the body is a sphere of radius r, when

(6.22)

For spheres with radius %20 #m

(6.23)

where v is the terminal fall speed of the body and
& is the viscosity of the air. The expression for
Fdrag given by (6.23) is called the Stokes’ drag
force. From (6.22) and (6.23)

v $
2
9
 
!('( ) ')r2

&

Fdrag $ 6!&rv

4
3
 !r3!('( ) ') $ Fdrag

or, if '( ** ' (which it is for liquid and solid objects),

(6.24)

The terminal fall speeds of 10- and 20-#m-radius
water droplets in air at 1013 hPa and 20 +C are 0.3
and 1.2 cm s)1, respectively. The terminal fall speed
of a water droplet with radius 40 #m is 4.7 cm s)1,
which is about 10% less than given by (6.24). Water
drops of radius 100 #m, 1 mm, and 4 mm have ter-
minal fall speeds of 25.6, 403, and 883 cm s)1,
respectively, which are very much less than given by
(6.24). This is because as a drop increases in size, it
becomes increasingly nonspherical and has an
increasing wake. This gives rise to a drag force that
is much greater than that given by (6.23).

v $
2
9
 
!'(r2

&

23 In this section, “drop” refers to the larger and “droplet” to the smaller body.

r1

Radius r2

y

Fig. 6.19 Relative motion of a small droplet with respect to
a collector drop. y is the maximum impact parameter for a
droplet of radius r2 with a collector drop of radius r1.
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Relative motion of a droplet with
respect to a collector drop. At the
radius y the two make a grazing
collision.

The collision efficiency is

E =
effective collision cross section

geometrical collision cross section

therefore

E =
y2

(r1 + r2)2
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Relative motion of a droplet with
respect to a collector drop. At the
radius y the two make a grazing
collision.

The collision efficiency is

E =
effective collision cross section

geometrical collision cross section

therefore

E =
y2

(r1 + r2)2
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the collector drop, but as the droplet and drop
approach each other in size, E! increases sharply.
This behavior can be explained as follows. Whether
coalescence occurs depends on the relative magni-
tude of the impact energy to the surface energy of
water. This energy ratio provides a measure of the
deformation of the collector drop due to the impact,
which, in turn, determines how much air is trapped
between the drop and the droplet. The tendency for
bouncing is a maximum for intermediate values of
the size ratio of the droplet to the drop. At smaller
and larger values of the size ratio, the impact energy
is relatively smaller and less able to prevent contact
and coalescence.

The presence of an electric field enhances coales-
cence. For example, in the experiment illustrated in
Fig. 6.21a, droplets that bounce at a certain angle of
incidence can be made to coalesce by applying an
electric field of about 104 V m"1, which is within
the range of measured values in clouds. Similarly,
coalescence is aided if the impacting droplet carries
an electric charge in excess of about 0.03 pC. The
maximum electric charge that a water drop can
carry occurs when the surface electrostatic stress
equals the surface tension stress. For a droplet
5 #m in radius, the maximum charge is !0.3 pC;
for a drop 0.5 mm in radius, it is !300 pC.
Measured charges on cloud drops are generally
several orders of magnitude below the maximum
possible charge.

Let us now consider a collector drop of radius r1
that has a terminal fall speed v1. Let us suppose that

this drop is falling in still air through a cloud of equal
sized droplets of radius r2 with terminal fall speed v2.
We will assume that the droplets are uniformly dis-
tributed in space and that they are collected uni-
formly at the same rate by all collector drops of a
given size. This so-called continuous collection model
is illustrated in Fig. 6.23. The rate of increase in the
mass M of the collector drop due to collisions is
given by

(6.26)

where wl is the LWC (in kg m"3) of the cloud droplets
of radius r2. Substituting into (6.26), where
$l is the density of liquid water, we obtain

(6.27)

If v1 %% v2 and we assume that the coalescence effi-
ciency is unity, so that Ec & E, (6.27) becomes

(6.28)

Because v1 increases as r1 increases (see Box 6.2),
and E also increases with r1 (see Fig. 6.20), it follows
from (6.28) that dr1"dt increases with increasing r1;
that is, the growth of a drop by collection is an accel-
erating process. This behavior is illustrated by the
red curve in Fig. 6.15, which indicates negligible
growth by collection until the collector drop has
reached a radius of !20 #m (see Fig. 6.20). It can be
seen from Fig. 6.15 that for small cloud droplets,
growth by condensation is initially dominant but,

dr1

dt
&

v1wl E
4$l

dr1

dt
&

(v1 " v2)wl Ec

4$l

M & 4
3'r3

1$l

dM
dt

& 'r2
1(v1 " v2)wlEc
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Fig. 6.22 Coalescence efficiencies E! for droplets of radius
r2 with collector drops of radius r1 based on an empirical fit
to laboratory measurements. [Adapted from J. Atmos. Sci. 52,
3985 (1995).]

r1

v1

v2

Cloud droplets of
radius r2 uniformly
distributed in space

Collector drop of
radius r1 

Fig. 6.23 Schematic illustrating the continuous collection
model for the growth of a cloud drop by collisions and
coalescence.
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According to the continuous
collection model, the rate of
increase of the collector drop’s
mass M due to collisions is the
volume of the cylinder swept out
per unit time by the collector drop
moving at the relative velocity
v1 − v2 × LWC × collection
efficiency:

dM

dt
= πr2

1(v1 − v2)wlEc

where wl is the LWC of the cloud
droplets of radius r2.
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• Goal:  To develop an economical model that 
represents the essential processes that 
contribute to the rapid formation of rain 
drops by collision and coalescence of cloud 
droplets.

• Processes that may contribute:

• Entrainment and mixing of unsaturated air

• Droplet clustering due to turbulence

• Giant aerosols



Small-scale variability in Cumulus mediocris

overlay is for illustration only



photo by Jan Paegle

~100 m

Small-scale variability in Cumulus fractus



• Cloud droplet microphysics

• Large-eddy simulation

• Linear Eddy Model (LEM)

• Explicit Mixing Parcel Model (EMPM)

• ClusColl (Clustering and Collision Model)



2 Model Description

In this section we describe ODTLES, an approach for extending the one-dimensional turbulence
model of Kerstein [6] to treat turbulent flow in three-dimensional domains. ODTLES can also be
thought of as a novel LES approach, and we will show how large-scale 3D turbulent motions are
captured by the LES aspects of the model but are strongly coupled to the small-scale turbulent
motions generated by the ODT part of the model.

Before continuing we also note that ODT might be combined with LES in at least two different
ways. One option is to start with the LES equations (derived by spatially averaging the NS equa-
tions), and seek a method for using ODT as a subgrid closure model for these equations. This can
be thought of as a top-down approach, and is denoted LES/ODT. A second option is to begin with
the ODT equations, and then add additional terms so that mutually orthogonal ODT domains might
be coupled together and 3D LES modeling constraints enforced. The ODTLES model described
here follows the latter bottom-up approach.

Figure 1. Illustrative geometry of the ODT and LES subdomains

2.1 Geometry and Numerical Discretization

In ODTLES we discretize our domain of interest in two distinct but interdependent ways. The first
is by a standard set of rectangular control volumes. The second is formed by embedding three,
mutually orthogonal ODT domain arrays within the coarser 3D mesh. This is illustrated in Figure
1 for a simple box-shaped region. Here we see that the overall domain is subdivided into N3les
uniform LES control volumes, where Nles = 3 is the number of LES-scale subdivisions in each

13

Large-Eddy Simulation (LES) model

100 m
no subgrid-scale variability



• The premise of LES is that only the large 
eddies need to be resolved.

• LES is appropriate if the important small-
scale processes can be parameterized. 

• Many cloud processes are subgrid-scale, yet 
can’t (yet) be adequately parameterized.

LES Limitations



Joseph Zehnder, Santa Cataline Mountain Project
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• Small-scale finite-rate mixing of clear and 
cloudy air determines evaporative cooling 
rate and affects buoyancy and cloud 
dynamics.

• Small-scale variability of water vapor due to 
entrainment and mixing broadens droplet 
size distribution (DSD) and increases 
droplet collision rates. 

• Small-scale turbulence increases droplet 
collision rates.

Subgrid-scale Cloud Processes



Large droplets can initiate 
collision-coalescence growth
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Figure 4.10: Radius histories of 30 droplets for f = 0.1 and RHe = 0.219.

To summarize, drier entrained air requires more evaporation to regain saturation and

with that the size distribution is broadened to smaller sizes. The entrainment fraction

has a major effect on the distribution.

Still, we have to ask why is the droplet spectrum broader for these cases than for

the control case? It is obvious that it depends on the mixing process which is also

determined by the mixing and evaporation time scales. For this we will take a closer

look in a later section.

4.2.2 The Effects of Different Dissipation Rates

For a given entrained blob size, the turbulent dissipation rate determines the mixing

rate of the cloudy and clear air segments. The purpose of this section is to examine

the calculated cloud droplet spectral properties as functions of varying dissipation rates

only. The different dissipation rates for this are 10−2(control), 5 x 10−3, 10−4, and

10−6m2s−3. The run for ε = 10−4m2s−3 was conducted with a higher frequency of the
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Figure 4.6: Standard deviation of the droplet radii just before entrainment until homog-
enization for entrainment fraction f = 0.2 for the control case.

Again, for each case two different random number seeds were computed. The results

are qualitatively similar for cases without sedimentation to the ones with sedimentation.

The spectral shape is just slightly wider when sedimentation of drops is present than the

absence of sedimentation.

During the time it takes for mixing to the fine-scale, some of the droplets will sed-

iment into the subsaturated air. The droplets that do so will evaporate partly and thus

modify their immediate environment.

To summarize, entrainment (f ) and mixing broadens the droplet size distribution.

With higher entrained fractions the broadening increases towards smaller radius sizes

due to more droplets being affected by the subsaturated air and evaporate partly. Un-

til entrained fraction 0.2, the domain is still large enough so that some of the largest

droplets do not evaporate at all. With an entrained fraction of 0.8, all droplets evapo-

rated totally. The mixing process is faster than the evaporation process. Most variations

An unsaturated blob is entrained at 375 s
some individual droplet radii width of droplet size distribution

Entrainment and mixing affect 
cloud droplet size distributions

Helena Schluter, Univ of Utah



1!c"# suggests that the regions with little or no particles are
on the order of 1/10 the box length, making the size of these
regions on the order of 10$.

III. MODELING CONSIDERATIONS
A. Radial distribution function

Consider a canonical ensemble of systems, each of vol-
ume V , containing N indistinguishable particles of diameter,
%, and density, &p . For such an ensemble, the joint probabil-
ity that each of the N particles lie within volumes dx1 cen-
tered at x1 ,. . . , through dxN centered at xN is defined as

P !N "!x1 ,. . . ,xN"dx1 .. .dxN , !7"

where the standard normalization applies, i.e.,

!
V
¯!

V
P !N "!x1 ,. . . ,xN"dx1¯dxN!1. !8"

The two-particle distribution function is then obtained by
integrating out the dependence on the remaining particles

P !2 "!x1 ,x2"'!
V
¯!

V
P !N "!x1 ,. . . ,xN"dx3¯dxN . !9"

The two-particle radial distribution function is then defined
as32,33

g!x1 ,x2"!
N!N"1 "

n2 P !2 "!x1 ,x2", !10"

where n'N/V . For a statistically homogeneous and isotro-
pic volume, particle positions can be expressed in terms of a
relative separation distance, r'"x1"x2", and P (2)(x1 ,x2) re-
duces to P (2)(r)/V to give the working definition of g(r)
used in this study

g!r "!
N!N"1 "

n2V P !2 "!r ". !11"

As the rdf is near unity for a uniformly distributed system, it
is convenient to define a residual rdf !rrdf" as

h!r "'g!r ""1. !12"

A physical interpretation of g(r) is the number of par-
ticle centers located in a spherical shell between r and r
#dr about a central particle divided by the expected number
of particles given a uniformly distributed particle field.
Based on the definition of the rdf shown in Eq. !11" and the
integral relationship given in Eq. !8", it is easy to show that
the rrdf must satisfy the following integral constraint34

n!
V
h!r "dr!"1. !13"

B. Parametric dependence
Isotropic turbulence is characterized by the fluid density,

&, kinematic viscosity, v , turbulence intensity U!, and ki-
netic energy dissipation rate, (. In dimensionless terms, this
reduces to the turbulent Reynolds number, defined here in
terms of the Taylor microscale

Re)'U!2!15
v(
. !14"

For a monodisperse suspension, the particle phase introduces
three additional variables, viz., the particle density &p , diam-
eter %, and total number N. In terms of dimensionless vari-
ables, these can be expressed as the volumetric loading *
'+%3N/6V , nondimensional size parameter %̂'%/$ and
particle Stokes number St ,see Eq. !1"#. This implies that the
most general form of the rdf in isotropic turbulence can be
expressed functionally as

g! r̂;Re) ,* ,%̂ ,St", !15"

where r̂'r/$ is the dimensionless independent variable and
the variables after the semicolon are the dimensionless pa-
rameters.

C. Simplifying assumptions
The large parameter space shown in Eq. !15" would

make it difficult to interpret and correlate the results from the
numerical simulations. It is, therefore, advantageous to con-
sider the sensitivity of the rdf to each of the parameters, and
search for simplifications where applicable.

FIG. 1. 2d slices of ghost-particle simulations at: !a" St!0.0; !b" St!0.2;
!c" St!0.7; !d" St!1.0; !e" St!2.0; and, !f" St!4.0. Dots correspond to
particle center locations.

2533Phys. Fluids, Vol. 12, No. 10, October 2000 Effect of preferential concentration on turbulent collision rates
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Direct numerical simulation results 
from Reade & Collins (2000)

Clustering of 
inertial particles 

in turbulence 
increases 

collision rates



The collision rate between droplets with radii r1

and r2 is

Ċ ≡ �C�
∆t

=
ΓN1N2

V
,

where �C� is the number of collisions in volume V
in time interval ∆t, Γ is the collision kernel, and
N1 and N2 are the number of droplets with radii
r1 and r2 in volume V .

The mean collision rate in the presence of fluctu-
ations of N1 and N2 is

Ċ ≡ C

∆t
=

Γ(N1 N2 + N �
1N

�
2)

V
.



How to resolve the small-scale 
variability?

• Decrease LES grid size?

• To decrease LES grid size from 10 m to       
1 cm would require 109 grid points per 
(10 m)3 and an increase in CPU time of 
1012.

• This is not possible now or in the forseeable 
future. 



How to resolve the small-scale 
variability?

• Decrease dimensionality from 3D to 1D?

• To decrease grid size from 10 m to 1 cm 
would require only 103 grid points per 
(10 m)3.

• This is feasible now.



2 Model Description

In this section we describe ODTLES, an approach for extending the one-dimensional turbulence
model of Kerstein [6] to treat turbulent flow in three-dimensional domains. ODTLES can also be
thought of as a novel LES approach, and we will show how large-scale 3D turbulent motions are
captured by the LES aspects of the model but are strongly coupled to the small-scale turbulent
motions generated by the ODT part of the model.

Before continuing we also note that ODT might be combined with LES in at least two different
ways. One option is to start with the LES equations (derived by spatially averaging the NS equa-
tions), and seek a method for using ODT as a subgrid closure model for these equations. This can
be thought of as a top-down approach, and is denoted LES/ODT. A second option is to begin with
the ODT equations, and then add additional terms so that mutually orthogonal ODT domains might
be coupled together and 3D LES modeling constraints enforced. The ODTLES model described
here follows the latter bottom-up approach.

Figure 1. Illustrative geometry of the ODT and LES subdomains

2.1 Geometry and Numerical Discretization

In ODTLES we discretize our domain of interest in two distinct but interdependent ways. The first
is by a standard set of rectangular control volumes. The second is formed by embedding three,
mutually orthogonal ODT domain arrays within the coarser 3D mesh. This is illustrated in Figure
1 for a simple box-shaped region. Here we see that the overall domain is subdivided into N3les
uniform LES control volumes, where Nles = 3 is the number of LES-scale subdivisions in each
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Multiscale Modeling Framework (MMF)



• Cloud droplet microphysics

• Large-eddy simulation

• Linear Eddy Model (LEM)

• Explicit Mixing Parcel Model (EMPM)

• ClusColl (Clustering and Collision Model)



• Linear Eddy Model (LEM)

• Evolves scalar spatial variability on all 
relevant turbulence scales using one 
dimension.

• Distinguishes turbulent deformation and 
molecular diffusion.

• Turbulence properties are specified.





Turbulent motion of fluid elements is modeled 
as a sequence of triplet maps that preserve 

desired advection properties, even in 1D

The triplet map imitates 
the effect of a 3D eddy 
on property profiles 
along a line of sight.

c(y)

y

c(y)

y

The triplet map (1D eddy)
• moves fluid parcels without 

intermixing their contents
• conserves fluid properties
• does not cause property 

discontinuities
• reduces fluid separations by 

at most a factor of 3
Alan Kerstein



Turbulent motion of fluid elements is modeled as a 
sequence of triplet maps that preserve desired 

advection properties, even in 1D

The triplet map 
captures
compressive strain 
and 
rotational folding 
effects, and causes 
no property 
discontinuities.

c(y)

Alan Kerstein



Turbulent motion of fluid elements is modeled as a 
sequence of triplet maps that preserve desired 

advection properties, even in 1D

The triplet map 
is implemented 
numerically as 
a permutation 
of fluid cells.

Alan Kerstein



Triplet Map for Fluid Elements

Each triplet map has a location, size, and time.

• Location is randomly chosen.

• Size   is randomly chosen from a distribution 
that matches inertial range scalings.

• Smallest map (eddy) is Kolmogorov scale, 

• Largest eddy is L, usually domain size.

• Eddies occur at a rate determined by the 
large eddy time scale and eddy size range.

η.
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• Cloud droplet microphysics

• Large-eddy simulation

• Parcel model

• Linear Eddy Model (LEM)

• Explicit Mixing Parcel Model (EMPM)

• ClusColl (Clustering and Collision Model)



• Explicit Mixing Parcel Model (EMPM)

• Combines the Linear Eddy Model with:

• A parcel model.

• Stochastic entrainment events.

• Bulk or droplet microphysics.

• Specified ascent speed.

• Cloud droplets can grow or evaporate 
according to their local environments.
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motions generated by the ODT part of the model.

Before continuing we also note that ODT might be combined with LES in at least two different
ways. One option is to start with the LES equations (derived by spatially averaging the NS equa-
tions), and seek a method for using ODT as a subgrid closure model for these equations. This can
be thought of as a top-down approach, and is denoted LES/ODT. A second option is to begin with
the ODT equations, and then add additional terms so that mutually orthogonal ODT domains might
be coupled together and 3D LES modeling constraints enforced. The ODTLES model described
here follows the latter bottom-up approach.

Figure 1. Illustrative geometry of the ODT and LES subdomains

2.1 Geometry and Numerical Discretization

In ODTLES we discretize our domain of interest in two distinct but interdependent ways. The first
is by a standard set of rectangular control volumes. The second is formed by embedding three,
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Parcel model
Large-Eddy Simulation (LES) 

model

100 m

100 m

Cumulus cloud



Parcel Model

p2, θ2, w2

p1, θ1, w1

thermodynamic process

State 1

State 2



droplet evaporation

molecular diffusion

turbulent deformation

saturated parcel

entrainment

EMPM with droplets and entrainment
100 m



Explicit Mixing Parcel Model (EMPM)

• The EMPM predicts the evolving in-cloud variability due to
entrainment and finite-rate turbulent mixing using a 1D
representation of a rising cloudy parcel.

• The 1D formulation allows the model to resolve fine-scale
variability down to the smallest turbulent scales (∼ 1 mm).

• The EMPM can calculate the growth of several thousand
individual cloud droplets based on each droplet s local
environment.

Krueger, S. K., C.-W. Su, and P. A. McMurtry, 1997: Modeling 
entrainment and fine-scale mixing in cumulus clouds. J. Atmos. Sci., 
54, 2697–2712.

Su, C.-W., S. K. Krueger, P. A. McMurtry, and P. H. Austin, 1998: 
Linear eddy modeling of droplet spectral evolution during entrainment 
and mixing in cumulus clouds. Atmos. Res., 47–48, 41–58.



• Bulk microphysics:

– Liquid water static energy

– Total water mixing ratio

• Droplet microphysics:

– Temperature

– Water vapor mixing ratio

EMPM Fluid Variables



EMPM Droplet Variables

• Location (in one coordinate)

• Radius

• CCN properties

In the EMPM, droplets move relative to 
the fluid at their terminal velocities.



Droplet Microphysics

droplet radius:

supersaturation

water 
vapor:

temperature:



shown: 
16 cells ~ 1.6 cm

Each cell is ~ 1 mm3

The EMPM domain 
consists of cubic cells

Number of droplets per cell =
concentration X cell volume =

100 cm-3 X 0.001 cm3 =
0.1 (1 droplet per cm)



128 cells ~ 10 cm 
(10 droplets)



1024 cells ~ 1 m 
(100 droplets)



EMPM Required Inputs

• Required for a classical (instant mixing) parcel model
calculation:

Thermodynamic properties of cloud-base air

Updraft speed

Entrainment rate

Thermodynamic properties of entrained air

Aerosol properties

• In addition, the EMPM requires:

Parcel size

Entrained blob size, d

Turbulence intensity (e.g., dissipation rate, ε)





EMPM water vapor and temperature fields





Droplet radius histories during mixing

Helena Schluter, Univ of Utah
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Applying the EMPM to Hawaiian Cumuli

The EMPM produced realistic, 
broad droplet size spectra that 
included super-adiabatic-sized 
droplets. The computed spectra 
agreed with those measured by 
aircraft. 

Su et al. 1998



Large Droplet Production due 
to Entrainment and Mixing







Entrainment of CCN affects 
droplet spectra in cumulus clouds
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• Cloud droplet microphysics

• Large-eddy simulation

• Linear Eddy Model (LEM)

• Explicit Mixing Parcel Model (EMPM)

•ClusColl (Clustering and Collision 
Model)



•ClusColl (Droplet Clustering and 
Collision Model)

• Inertial droplets move in response to 
Kolmogorov-scale turbulence and gravity.

• Economically evolves 3D droplet 
positions and detects collisions.

• Can be incorporated into EMPM.



• Motivation:  To develop an economical 
model that represents the essential 
processes that contribute to the 
formation of rain drops by collision 
and coalescence of cloud droplets.



An Economical Simulation Method for Droplet 
Motions in Turbulent Flows

Each droplet has a radius and a 3-D position.

• Radius changes due to collision and 
coalescence.

• Position changes due to turbulence and 
sedimentation.

• Map-based advection is an efficient tool for 
capturing the physics that governs droplet 
motions and collisions in turbulence.





Continuum interpretation: slip induces fluctuations in 
an initially uniform particle-density field

compress copy

flip 
middle 
copy

threefold
particle
density

reduction

apply finite-inertia map

threefold
particle
density

reduction

Zero inertia: uniform multiplicative compression, compensated by number reduction

Particle 
number 

density n 3n 3n 3n3n 3n 3n 3n n

Non-zero inertia: non-uniform compression, inducing particle-density fluctuations

n >3n >3n<3n >n >n<n

Alan Kerstein



Droplets are ejected from highly turbulent regions



Triplet Map for Droplets

Each triplet map has a 
location, orientation, size, and time.

• Location is randomly chosen.

• Orientation is parallel to x-, y-, or z-coordinate 
and is randomly chosen.

• Size ~ Kolmogorov length scale.

• Interval between maps ~ Kolmogorov time 
scale.
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• To use the triplet map to calculate droplet motions 
in turbulence we had to relate:

• The ratio of droplet displacement to fluid 
displacement (S) for each map to the particle 
Stokes number (St).

• The model’s map (eddy) size to the Kolmogorov 
length scale.

• The map (eddy) interval to the Kolmogorov time 
scale.



Evaluation of ClusColl



We implemented an efficient collision 
detection code and compared our collision 
kernels of 

• bidispersions with inertia and gravity with 
those from DNS by Franklin et al. (2005).

• monodispersions with inertia and gravity 
with those from DNS by Ayala et al. (2008).

Collision Kernels
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Collision and Coalescence Calculations

• Case 1:  Narrow DSD from 15.5 to 15.8 microns. 
LWC = 1.6 g m-3. 

• Case 2:  Wide DSD from 12 to 16.5 microns.  
LWC = 1.4 g m-3. 
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• Turbulence acting on zero-inertia droplets 
is similar to no turbulence.

• When turbulence acts on inertial droplets, 
rain forms 5 to 8 minutes sooner than with 
zero-inertia droplets or no turbulence.

• Under the same conditions, rain forms 6 to 
9 minutes sooner with the broader DSD.

Collision and Coalescence Calculations



• An economical simulation method for droplet 
motions in turbulent flows has been developed.

• Collision kernels agree reasonably well with 
DNS results.

• Collision and coalescence calculations have 
been performed.

• These suggest that turbulence can accelerate 
rain formation by droplet clustering due to 
droplet inertia and by spectral broadening due 
to entrainment and mixing.

Summary



• Combine EMPM and ClusColl into a single 
model.

• Extend the 1D approach to SGS modeling in 
LES of clouds.  

• Use results of EMPM and ClusColl to improve 
conventional SGS models for LES of clouds.

• A difficult remaining problem is representing 
the effects of entrainment and mixing on 
DSDs in LES.

What’s ahead...



2 Model Description

In this section we describe ODTLES, an approach for extending the one-dimensional turbulence
model of Kerstein [6] to treat turbulent flow in three-dimensional domains. ODTLES can also be
thought of as a novel LES approach, and we will show how large-scale 3D turbulent motions are
captured by the LES aspects of the model but are strongly coupled to the small-scale turbulent
motions generated by the ODT part of the model.

Before continuing we also note that ODT might be combined with LES in at least two different
ways. One option is to start with the LES equations (derived by spatially averaging the NS equa-
tions), and seek a method for using ODT as a subgrid closure model for these equations. This can
be thought of as a top-down approach, and is denoted LES/ODT. A second option is to begin with
the ODT equations, and then add additional terms so that mutually orthogonal ODT domains might
be coupled together and 3D LES modeling constraints enforced. The ODTLES model described
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In ODTLES we discretize our domain of interest in two distinct but interdependent ways. The first
is by a standard set of rectangular control volumes. The second is formed by embedding three,
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