
Buoyancy Oscillation

We will use the equation for the vertical acceleration of an air parcel to
calculate the parcel’s velocity and height as a function of time. In the follow-
ing description, a variable with an overbar is a property of the environment;
a variable without an overbar is a property of the parcel.

We assume that the environment of the parcel is in hydrostatic equilib-
rium:

dw̄

dt
= −g − ᾱ

dp̄

dz
= 0.

The parcel itself will have a specific volume α and an acceleration dw/dt. We
assume that the pressure of the parcel is the same as that of its environment
so that

dw

dt
= −g − α

dp̄

dz
.

We use the hydrostatic equation to eliminate dp̄/dz from this equation:

dw

dt
= g

α− ᾱ

ᾱ
.

The right hand side is called the buoyancy and is due to the difference in
specific volume (or density) between the parcel and the environment. Sub-
stitute for α and ᾱ from the equation of state for dry air, pα = RT , (for
simplicity, we assume that the air contains no water vapor) to obtain

dw

dt
= g

T − T̄

T̄
. (1)

Let z = 0 denote the parcel’s equilibrium location. Then at z = 0,
T = T̄ , and dw/dt = 0. Assume that the temperature in the environment
varies linearly with height. Then the temperature at any height z in the
environment is

T̄ (z) = T̄ (0)− γz,

where γ = −dT̄ /dz is the environmental lapse rate. Similarly, the parcel
temperature at any height z is

T (z) = T (0)− Γdz = T̄ (0)− Γdz,

where Γd = −dT/dz = g/cp is the dry adiabatic lapse rate. When these
expressions are substituted in Eq. (1), we obtain

dw

dt
=

g

T̄ (0)− γz
(γ − Γd)z ≈

g

T̄ (0)
(γ − Γd)z = bz. (2)
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Eq. (2) describes how w changes with time. By definition,

dz

dt
= w. (3)

Eqs. (2) and (3) are coupled linear differential equations which are easy
to solve analytically for z(t). If the coefficient b in Eq. (2) is negative, the
solution z(t) is sinusoidal. The parcel will oscillate about its original position
with period

τ =
2π√
−b

=
2π√

g
T̄ (0)

(Γd − γ)
. (4)

If the coefficient b is positive, the solution z(t) is exponentially increasing.

Numerical Solution of Ordinary Differential Equations

Eqs. (1) and (3) are examples of first-order ordinary differential equa-
tions, which have the general form

dφ

dt
= f(φ, t). (5)

The corresponding finite-difference form is

∆φ

∆t
≡ φn+1 − φn

tn+1 − tn
= f̃ , (6)

which can be solved for φn+1:

φn+1 = φn + f̃ ∆t. (7)

The superscripts n and n+1 indicate the time level (or time step). The tilde
indicates a (to be specified) linear combination of f at time levels n − 1, n,
and n + 1.

Many choices (schemes) are possible for f̃ . A scheme that does not use
f at time level n + 1 is an explicit scheme, whereas one that does is an
implicit scheme. Finite-difference equations that use implicit schemes often
have unconditionally stable numerical solutions, which is desirable, but can
also be difficult to solve, especially in coupled sets of differential equations. A
scheme that uses just one time level is a first-order scheme, whereas one that
uses two time levels is a second-order scheme. The truncation error due to
finite ∆t decreases ∼ ∆t for first-order schemes, but ∼ (∆t)2 for second-order
schemes.
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Forward Euler: (explicit, first-order)

f̃ = fn ≡ f(φn, tn).

Backward Euler: (implicit, first-order)

f̃ = fn+1 ≡ f(φn+1, tn+1).

Trapezoidal (Crank-Nicolsen): (implicit, second-order)

f̃ =
1

2
(fn + fn+1) ≡ 1

2

[
f(φn, tn) + f(φn+1, tn+1

]
.

Euler Trapezoidal (Heun): (explicit, second-order)

φ∗ ≡ φn + f(φn, tn) ∆t.

f̃ =
1

2
(fn + f ∗) ≡ 1

2

[
f(φn, tn) + f(φ∗, tn+1)

]
.

Adams-Bashforth: (explicit, second-order)

f̃ =
1

2
(3fn − fn−1) ≡ 1

2

[
3f(φn, tn)− f(φn−1, tn−1)

]
.

The Euler Trapezoidal (Heun) scheme uses a predictor-corrector method.
This method combines an explicit scheme (Forward Euler) with an implicit
scheme (Trapezoidal) to obtain a higher-order (more accurate) yet explicit
scheme.

The Adams-Bashforth scheme approximates the Trapezoidal scheme by
estimating fn+1 (not φn+1) by extrapolation:

fn+1 ≈ fn + (fn − fn−1).

For more information on the numerical solution of ordinary differential
equations, see http://web.mit.edu/10.001/Web/Course Notes/Differential

Equations Notes/lec24.html.
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Numerical Solution of Buoyancy Oscillation Equations

We will solve the set of differential equations composed of Eqs. (1) and
(3) which governs buoyancy oscillations in an atmosphere with any ¯T (z):

dw

dt
= g

T − T̄

T̄
≡ B(z), (8)

dz

dt
= w. (9)

To solve these numerically, we first write them in general finite-difference
form, as in Eq. (7):

wn+1 = wn + B̃ ∆t, (10)

zn+1 = zn + w̃ ∆t. (11)

Next, we choose a scheme to use for B̃ and w̃. We will use the Euler
Trapezoidal (Heun) scheme. Then Eqs. (10) and (11) become

w∗ = wn + B(zn) ∆t, (12a)

z∗ = zn + wn ∆t, (12b)

and

wn+1 = wn +
1

2
[B(zn) + B(z∗)] ∆t, (13a)

zn+1 = zn +
1

2
(wn + w∗) ∆t. (13b)

Eqs. (12a) and (12b) are the predictors, while Eqs. (13a) and (13b) are the
correctors.
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