Buoyancy Oscillation

We will use the equation for the vertical acceleration of an air parcel to
calculate the parcel’s velocity and height as a function of time. In the follow-
ing description, a variable with an overbar is a property of the environment;
a variable without an overbar is a property of the parcel.

We assume that the environment of the parcel is in hydrostatic equilib-
rium:

dw _dp 0

a - YT T
The parcel itself will have a specific volume « and an acceleration dw/dt. We
assume that the pressure of the parcel is the same as that of its environment

so that

dw dp
i g— aa.
We use the hydrostatic equation to eliminate dp/dz from this equation:
dw  a—a
@ T a

The right hand side is called the buoyancy and is due to the difference in
specific volume (or density) between the parcel and the environment. Sub-
stitute for a and @ from the equation of state for dry air, pa = RT, (for
simplicity, we assume that the air contains no water vapor) to obtain

Let z = 0 denote the parcel’s equilibrium location. Then at z = 0,
T =T, and dw/dt = 0. Assume that the temperature in the environment
varies linearly with height. Then the temperature at any height z in the
environment is

T(z) =T(0) — vz,

where v = —dT/dz is the environmental lapse rate. Similarly, the parcel
temperature at any height z is

T(z) =T(0) —Tqz = T(0) — Tyz,
where I'y = —dT'/dz = g/c, is the dry adiabatic lapse rate. When these
expressions are substituted in Eq. (1), we obtain
dw g
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Eq. (2) describes how w changes with time. By definition,

dz
dt
Egs. (2) and (3) are coupled linear differential equations which are easy
to solve analytically for z(¢). If the coefficient b in Eq. (2) is negative, the

solution z(t) is sinusoidal. The parcel will oscillate about its original position
with period

= w. (3)
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If the coeflicient b is positive, the solution z(t) is exponentially increasing.

Numerical Solution of Ordinary Differential Equations

Egs. (1) and (3) are examples of first-order ordinary differential equa-
tions, which have the general form

dcb
= f(9,1). (5)
The corresponding finite-difference form is
A ¢ ¢n+1 ¢n ~
A D (6)
which can be solved for ¢"*1:
o't = ¢" + f AL (7)

The superscripts n and n+1 indicate the time level (or time step). The tilde
indicates a (to be specified) linear combination of f at time levels n — 1, n,
and n + 1.

Many choices (schemes) are possible for f. A scheme that does not use
f at time level n + 1 is an explicit scheme, whereas one that does is an
implicit scheme. Finite-difference equations that use implicit schemes often
have unconditionally stable numerical solutions, which is desirable, but can
also be difficult to solve, especially in coupled sets of differential equations. A
scheme that uses just one time level is a first-order scheme, whereas one that
uses two time levels is a second-order scheme. The truncation error due to
finite At decreases ~ At for first-order schemes, but ~ (At)? for second-order
schemes.



Forward Euler: (explicit, first-order)

f=f"=fo"t").
Backward Euler: (implicit, first-order)
]Z _ fn+1 = f(¢n+1’tn+1).

Trapezoidal (Crank-Nicolsen): (implicit, second-order)

[f(@", ") + f(o™ "]
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Euler Trapezoidal (Heun): (explicit, second-order)

¢" = 9" + f(¢",1") AL

F=5Um+ 1) = 5 [Fn ) + 767,00,
Adams-Bashforth: (explicit, second-order)
F= 5@ =y = S Bt - fe ]

The Euler Trapezoidal (Heun) scheme uses a predictor-corrector method.
This method combines an explicit scheme (Forward Euler) with an implicit
scheme (Trapezoidal) to obtain a higher-order (more accurate) yet explicit
scheme.

The Adams-Bashforth scheme approximates the Trapezoidal scheme by
estimating f"*1 (not ¢"*!) by extrapolation:

fnJrl ~ fn + (fn o fnfl)'

For more information on the numerical solution of ordinary differential
equations, see http://web.mit.edu/10.001/Web/Course Notes/Differentia
Equations Notes/lec24.html.



Numerical Solution of Buoyancy Oscillation Equations

We will solve the set of differential equations composed of Egs. (1) and
(3) which governs buoyancy oscillations in an atmosphere with any 7'(2):

dw T-T
E—gTzB(z)a (8)
dz

To solve these numerically, we first write them in general finite-difference
form, as in Eq. (7): .
w"t = w" + B At, (10)
2= 2" b At (11)
Next, we choose a scheme to use for B and w. We will use the Euler
Trapezoidal (Heun) scheme. Then Egs. (10) and (11) become

w* =w" + B(2") At, (12a)
2¥=2"+w" At, (12b)
and
n+1 n 1 n *
W' =w +§[B(z )+ B(z")] At, (13a)
1
2= 5 (w" +w*) At. (13b)

Egs. (12a) and (12b) are the predictors, while Eqs. (13a) and (13b) are the
correctors.



