Analysis of fluid flow

® Uniform density: Dimensional analysis
® Plume (space)
® Thermal (time)

® Stably stratified fluid: Calculus, Geometry



Anelastic approx.

almost always true that the flow velocities are far less than the speed of
sound, that is,
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It 1s therefore appropriate to neglect the first term on the right of (1.3.5).
This is called the anelastic approzimation; the resulting equation no longer
contains a time derivative and is therefore a diagnostic equation' which



Boussinesq approx

If it 1s also true that the depth through which the convective motion

occurs 18 much less than the scale height (about 10 km

the Navier-Stokes equations may be written:

P+R)— —————(p+p)f.
>\ oz (1.3.7)

der that the system be energetically consistent. Therefore, the Boussinesg
approzimation neglects density variations in the fluid ezcept when they are
coupled with gravity [f; in (1.3.7)].



|l ocal convection
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|l ocal convection
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Fig. 2.9 Photographs of plumes in neutrally and stably stratified fluids. At left
1s a plume in a neutrally stratified ambient fluid; at right are time exposures of

a plume in a stable stratified fluid at early and late stages in its development.
[From Morton, Taylor, and Turner (1956).]



|l ocal convection

Fig. 2.14 Successive photo'g'raphs of a descending thermal, showing that the shape
of the thermal may persist while the volume increases several times [From Scorer

(1957).)



Plume Case

® Assumptions

the flow is fully turbulent, then it should be independent of the magnitude
of the molecular diffusivities. If the Boussinesq approximation is applicable,
then the only relevant dimensional parameter in the problem is the rate F at
which buoyancy is supplied by the point source! (As the source is regarded
as a point, it has no dimensions associated with it.) As the flow is driven
by buoyancy, there are no other fluid properties that are relevant to this
problem.
The buoyancy flux F' has the dimensions of

F ~ Buoyancy x Velocity x Area = L%t~3, (2.2.1)



Buckingham Pi theorem

If the equation ¢ (¢1,92,¢3, ... ,9n) = 0 is the only
relationship among the n ¢’s and if it holds for any

arbitrary choice of umits in which ¢y, ¢4, 4¢3, ... , g, are
measured, then the relation ¢ (7,73, 73, ... , 7)) =
0 1s satisfied where 7y, ms, ..., 7, are independent

dimensionless products of the g’s. Furthermore, if k is
the minimum number of primary quantities necessary
to express the dimensions of the ¢’s, then

m=n-—k.



Plume

® Properties depend only on F and z

)

:Clﬂ (F,2)

o | §|

® Derive on board
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Plume

® What should the equation be for the mean
radius of the plume?



Plume
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Fig. 2.2 Mean isotherms and streamlines for the turbulent convection due to
a maintained point source. The isotherms are labeled with the values of (T —
To)/T, while the streamlines are labeled with relative values of the Stokes stream
function. [(After Rouse, Yih, and Humphreys (1952).)



Plume mass flux

® Mass flux proportional to W times Area

® Derive on board



Plume mass flux

® Mass flux proportional to W times Area

® Derive on board
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Line source of
convection

® Similar analysis, except now F has units of
buoyancy flux per unit length (along the
source)



Thermals

Fig. 2.14 Successive photo'g'raphs of a descending thermal, showing that the shape
of the thermal may persist while the volume increases several times [From Scorer

(1957).)



Thermals
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Thermals

® Same as plumes, but now regard time as the
key variable rather than height

® The same assumptions for the plume still
apply (self-similarity and Boussinesq)



Thermals
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Thermals
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Thermals

® How does z relate to t?
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Thermals

® How does z relate to t?
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Thermals

® Plot of z*2 vs t with thermal outline
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Fig. 2.15 Successive outlines of thermals traced from photographs. Below each
is a graph of z? against t. [From Scorer 1957).]



Turbulent convection in
stably stratified fluid

® Stable means density increases with height

® Even without entrainment, positive
buoyancy is reduced as the buoyant
element moves upward



Turbulent convection in
stably stratified fluid

® Adding an additional parameter (stability)

® Use the actual governing equations
(Boussinesq)

® Must assume a geometric structure



Turbulent convection in
stably stratified fluid
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we assume a top-hat profile.
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Top hat profile
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® Flights through shallow cumulus (Rodts et
al. 2003 (JAS)



The primary assumptions made in the course of solving the governing
equations are borrowed from the self-similar solutions in unstratified flow:

1) The flow is steady.

2) The radial profiles of mean vertical velocity and mean buoyancy are
similar at all heights.

3) The mean turbulent inflow velocity is proportional to vertical velocity.

4) The flow is Boussinesq.



Continuity Equation

LA radral (cylimdrical) coordinates
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Continuity Equation

LA radral (cylimdrical) coordinates
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Continuity Equation

LA radral (cylimdrical) coordinates
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Continuity Equation
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Continuity Equation
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Vertical Momentum
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Vertical Momentum
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Vertical Momentum
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Vertical Momentum

DI‘VM%WCQ T . sery S

1

h v-ywdx Pul -4 ds

‘\

N D uat anual  veckn to Swafrce (S).

87 de"gﬁ/\fh\m/\' LW =0 At =Ry Se
ol chxf'

T:T'_R Pty d (TFR"w-?-) AZ] — TTR-2 = BTR-
.- AdZ A%

(top) ( borthner)

ﬁ(rrkzwl) = rrleej - (Rar)

Tlhee SeysS  Yloat (rerraar ot Vertrcak kivehe euergy
(w?) s due e  buovaucy .



Thermodynamic Eg'n
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Thermodynamic Eq'n




Thermodynamic Eg'n
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% [ﬂ'R2w (0 — 90)} = 21 Raw (5 — 90) . (2.7.3)

Since, from (2.7.1),

2raRw = C%(WRQQU),
(2.7.3) may be rewritten:
LR (0 — 60)] = (0 — 60) - (nR?w)
dz dz



% TR*w (0 — 0y)] = 2mRaw (6 — 6p) .

Since, from (2.7.1),

2raRw = C%(WRQQU),
(2.7.3) may be rewritten:
LR (0 - 80)] = (8- 00) = (rRw)
dz dz
d do

= [WRQ”LU (5 — «90)} — TR*w—

dz’

(2.7.3)



% TR*w (0 — 0y)] = 2mRaw (6 — 6p) .

Since, from (2.7.1),
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The above is multiplied through by g/6y and we arrive at

d
- (TR*wB) = -7 R*wN?, (2.7.4)

where

g df
N? = .
90 dz
N has the dimensions of (time)~! and is called the Brunt-Vaisila or buoy-

ancy frequency. In a stably stratified fluid, IV is the frequency at which an
infinitesimal sample of fluid oscillates if displaced vertically.



The above is multiplied through by g/6y and we arrive at

d

- (rR°wB) = —TR*wN?, (2.7.4)
2

where _
g db
90 dz .

N? =

N has the dimensions of (time)~! and is called the Brunt-Vaisila or buoy-
ancy frequency. In a stably stratified fluid, IV is the frequency at which an
infinitesimal sample of fluid oscillates if displaced vertically.
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Equation Summary

§umma/vj_L
r Al

Heﬁ«\-
(n baayamy) d ( RZL{/E) = RRIE Lo aNEE
Elmx g d

(2.7,6)

(2.7,:6)

(2:.0.71/



