
Atmospheric Sciences 6150
A Numerical Model for Simulating Convection

1 The model equations

You will develop a numerical model and use it to simulate a convective flow. The
model is based on the quasi-compressible outflow model (QCOM) described in Droege-
meier and Wilhelmson (1987). The model predicts the horizontal velocity (v), the
vertical velocity (w), the potential temperature (θ), and the non-dimensional pertur-
bation pressure (π1). The compressible, non-rotating, adiabatic equations in Carte-
sian coordinates (y, z) are:
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See Klemp and Wilhelmson (1978) for a derivation of (4). In our version, we neglect
the height variation of the density. In the equations above, π = (p/pr)

R/cp , where
pr = 1000 mb, R is the gas constant for dry air, and cp is the specific heat capacity
at constant pressure for dry air, and cs is the constant speed of sound. The terms
Dv, Dw, and Dθ represent turbulent mixing. Variables with a subscript 0 refer to
the basic state, which varies with height only. A subscript 1 indicates the departure
from the basic state. The basic state is in hydrostatic balance:
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2 Quasi-compressibility approximation

The quasi-compressibility approximation involves artificially slowing down the sound
wave modes so that a larger time step may be used. For large cs, the solution of
the equations approaches that of the anelastic system. For small cs (near the speed
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of the fastest non-acoustic signal in the simulation), incorrect results occur due to
artificially strong coupling between gravity wave and acoustic modes. Droegemeier
and Wilhelmson found that for cs > 50 m/s, elastic energy is much less than than
the kinetic energy, and solutions are essentially independent of cs.

3 Finite-difference equations

The grid is staggered, with π and θ located at the central point of the stencil, w
one-half grid interval above and below the central point, and v one-half grid interval
to the left and right of the central point. We will use the operator notation:
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where φ denotes a dependent variable, ξ is the independent variable, ∆ξ is a grid
interval, and n∆ξ is the interval over which the opertion takes place.

The right-hand sides of (1)-(4) will be denoted fv, fw, fθ, and fπ. Their centered,
second-order accurate finite-difference forms are
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Each of (1)-(4) can be written as
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which can be approximated with the second-order Adams-Bashforth scheme as
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Here ∆t is the time step, and the superscripts indicate the time levels. Because the
Adams-Bashforth scheme is a two-level scheme, it cannot be used for the first time
step of a simulation. Instead, the forward scheme may be used:

φn+1 − φn

∆t
= fn

φ .

The time step is based on the CFL criterion for linear sound waves:

∆t <
(∆y∆z)1/2

cs

.

For example, if ∆y = ∆z = 100 m and cs = 100 m/s, then ∆t < 1 s for stability.
Due to other aspects of the finite-difference scheme, the ∆t that is actually used is
usually smaller by a factor of 1/2 to 1/4.

4 Turbulence closure

For simplicity, we will use the eddy viscosity approach. Then terms Dv, Dw, and Dθ

each have the form
Kφ∇2φ,

or, in finite-difference form,

Kφ[δy(δyφ) + δz(δzφ)],

where Kφ is the eddy diffusivity.

5 Boundary conditions

The lower and upper boundaries (at z = 0 and z = H) are both rigid (i.e., w = 0),
either free-slip (∂v/∂z = 0) or no-slip (v = 0) and either non-conducting (insulating,
∂θ/∂z = 0) or conducting (θ = θ0). The lateral boundary conditions (at y = 0 and
y = L) are cyclic (periodic, φ(y + L, z) = φ(y, z)).

We can implement these boundary conditions in a way that allows the same code
to be used for the grid points adjacent to the boundaries as is used by the remainder
of the grid points. We do this by adding an extra level of grid points a distance ∆z/2
below the lower boundary and another extra level a distance ∆z/2 above the upper
boundary, and by adding an extra column of grid points a distance ∆y/2 to the left
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of the left boundary and another extra column of grid points a distance ∆y/2 to the
right of the right boundary.

Use j to denote a grid column at y = yj = j∆y, and k a grid level at z = zk =
k∆z. At the left boundary, j = 0, while at the right boundary, j = J . Similarly, at
the lower boundary, k = 0, while at the top boundary, k = K. The grid column at
y = ∆y/2 is at j = 1/2, while the extra grid column at y = −∆y/2 is at j = −1/2.
A variable φ located at grid column j and grid level k is denoted φj,k.

Free-slip: ∂v/∂z = 0 at z = 0, H. Thus, δzv = 0 at z = 0, H, and vj,k+1/2 −
vj,k−1/2 = 0 for k = 0, K.

No-slip: v = 0 at z = 0, H. Thus, v̄z = 0 at z = 0, H, and vj,k+1/2 + vj,k−1/2 = 0 for
k = 0, K.

Non-conducting: ∂θ/∂z = 0 at z = 0, H. Thus, δzθ = 0 at z = 0, H, and
θj,k+1/2 − θj,k−1/2 = 0 for k = 0, K.

Conducting: θ = θ0 at z = 0, H. Thus, θ̄z = θ0 at z = 0, H, and (θj,k+1/2 +
θj,k−1/2)/2 = (θ0)k for k = 0, K.

Cyclic: φ(y + L, z) = φ(y, z). Thus, φj+J,k = φj,k. To obtain the values needed for
the extra grid columns at j = −1/2 and j = J +1/2, apply the cyclic boundary
condition for j = −1/2 and j = 1/2.

6 Programming notes

See http://www.inscc.utah.edu/∼krueger/6150/qcom.html for links to a Fortran
program template file, a diagram of the arrangement of the model variables upon the
grid, information about printing source code, the Fortran compiler, and subroutine
PRINT, which you can use to easily print the results of your simulations.
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Table 1: Array subscripting conventions.

φj,k FORTRAN array element
wj,0 w(j,0)

wj,1 w(j,1)

θj,−1/2 th(j,0)

θj,1/2 th(j,1)

v0,k v(0,k)

v1,k v(1,k)

θ−1/2,k th(0,k)

θ1/2,k th(1,k)

Table 2: Predicted variable ranges.

variable subscript range FORTRAN subscript range
w j=1/2, J-1/2 j=1, jt

w k=1, K-1 k=1, kw

v j=1, J j=1, jv

v k=1/2, K-1/2 k=1, kt

θ j=1/2, J-1/2 j=1, jt

θ k=1/2, K-1/2 k=1, kt

Table 1 lists the locations of variables on the grid and the corresponding FOR-
TRAN array elements. The variable π1 is co-located with θ and follows the same
conventions.

Table 2 lists the predicted variable ranges. These variables are calculated using
the prognostic equations. (Boundary conditions are applied after predicting all of
the variables in the ranges listed.) We specify jt and kt. Then, kw = kt-1 and jv

= jt.
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7 Simulation 1: Conduction

(Due March 19, 2013)

This case will correspond to the conduction regime. In this regime, there is no fluid
motion, so only Eq. (3) is needed. The (potential) temperature will be specified to
be steady and horizontally uniform at the upper and lower boundaries. Under these
conditions, Eq. (3) simplifies to

∂θ

∂t
= Dθ = Kθ

∂2θ

∂z2
. (10)

Analytically determine the general steady-state (∂θ/∂t = 0) solution of
(10) that satisfies the boundary conditions.

The following parameters, along with Kv = Kw = Kθ, correspond to Ra=500,
which is subcritical for free-slip boundary conditions, when Kv, Kw, and Kθ are
interpreted as molecular diffusivities: H = 500 m, L = H, Kθ = 100 m2 s−1, θ0(0) =
288 K, θ0(H) = θ0(0)−∆θ, ∆θ = 1.2 K. Use your analytic, general, steady-state
solution to calculate the specific solution for these parameters.

Now use your program to calculate a numerical steady-state solution
for the same parameters. Start with θ(y, z) = (θ0(0) + θ0(H))/2. Use jt=1 and
kt=20. Use ∆t = 0.2(∆z)2/Kθ, where ∆t, ∆z, and Kθ are all in MKS (meter-
kilogram-second) units. Run for 200 s. Plot θ(z) every 10 s on a single graph.
Also plot the the corresponding analytic steady-state solution.
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