1 The model equations

You will develop a numerical model and use it to simulate a convective flow. The
model is based on the quasi-compressible outflow model (QCOM) described in Droege-
meier and Wilhelmson (1987). The model predicts the horizontal velocity (v), the
vertical velocity (w), the potential temperature (#), and the non-dimensional pertur-
bation pressure (7). The compressible, non-rotating, adiabatic equations in Carte-
sian coordinates (y, z) are:
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See Klemp and Wilhelmson (1978) for a derivation of (4). In our version, we neglect
the height variation of the density. In the equations above, m = (p/p,)®/, where
pr = 1000 mb, R is the gas constant for dry air, and ¢, is the specific heat capacity
at constant pressure for dry air, and c, is the constant speed of sound. The terms
D,.D,, and Dy represent turbulent mixing. Variables with a subscript 0 refer to
the basic state, which varies with height only. A subscript 1 indicates the departure
from the basic state. The basic state is in hydrostatic balance:

d?TO g
v I 5
e (5)

cp90 .






2 Quasi-compressibility approximation

The quasi-compressibility approximation involves artificially slowing down the sound
wave modes so that a larger time step may be used. For large c,, the solution of

the equations approaches that of the anelastic system. For small ¢, (near the speed
of the fastest non-acoustic signal in the simulation), incorrect results occur due to

artificially strong coupling between gravity wave and acoustic modes. Droegemeier
and Wilhelmson found that for ¢, > 50 m/s, elastic energy is much less than than
the kinetic energy, and solutions are essentially independent of c;.



4 Turbulence closure

For simplicity, we will use the eddy viscosity approach. Then terms D,, D,,, and Dy
each have the form

K(vaQb,
or, in finite-difference form,

where K, 1s the eddy diffusivity.

3 Finite-difference equations

The grid is staggered, with m and 6 located at the central point of the stencil, w
one-halt grid interval above and below the central point, and v one-half grid interval
to the left and right of the central point. We will use the operator notation:
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where ¢ denotes a dependent variable, £ is the independent variable, A¢ is a grid
interval, and nA¢ is the interval over which the opertion takes place.




Time differencing

Each of (1)-(4) can be written as
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which can be approximated with the second-order Adams-Bashforth scheme as
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Here At is the time step, and the superscripts indicate the time levels. Because the
Adams-Bashforth scheme is a two-level scheme, it cannot be used for the first time
step of a simulation. Instead, the forward scheme may be used:
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Time differencing

The time step is based on the CFL criterion for linear sound waves:
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For example, if Ay = Az = 100 m and ¢, = 100 m/s, then At < 1 s for stability.
Due to other aspects of the finite-difference scheme, the At that is actually used is

usually smaller by a factor of 1/2 to 1/4.

For the diffusion equation, a different criterion applies:

Use At = 0.2(Az)?/ Ky,
where At, Az, and Ky are all in MKS (meter-

kilogram-second) units.



Simulation 1: Conduction

This case will correspond to the conduction regime. In this regime, there is no fluid
motion, so only Eq. (3) is needed. The (potential) temperature will be specified to
be steady and horizontally uniform at the upper and lower boundaries. Under these
conditions, Eq. (3) simplifies to

O Dy = K2 r. (10)

Analytically determine the general steady-state (06/0t = 0) solution of
(10) that satisfies the boundary conditions.

The following parameters, along with K, = K, = Ky, correspond to Ra=500,
which is subcritical for free-slip boundary conditions, when K,, K,, and Ky are
interpreted as molecular diffusivities: H = 500 m, L = H, Ky = 100 m? s, 6,(0) =
288 K, 0p(H) = 09(0)—AH, A8 = 1.2 K. Use your analytic, general, steady-state
solution to calculate the specific solution for these parameters.
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Predicted Variable Ranges
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Cyclic Boundary Conditions
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Lower Boundary Conditions
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Upper and Lower Boundary Conditions

Free-slip: Ov/0z = 0 at z = 0,H. Thus, 6,v = 0 at z = 0, H, and Vjht1/2 —
Uj,k—1/2 — 0 for k£ = O, K.

No-slip: v =0at 2z =0,H. Thus, v* =0 at 2 =0, H, and v; j41/2 + Vjx—1/2 = 0 for
k=0, K.

Non-conducting: 00/0z = 0 at z = 0,H. Thus, 0,0 = 0 at z = 0,H, and
Qj’k_H/Q — 9j,k—1/2 — (0 for k = O, K.

Conducting: § = 6, at 2z = 0,H. Thus, > = 6, at z = 0, H, and (0} 54172 +
Hj,k—l/Q)/z = (Qg)k for k = O, K.




Lower Boundary Conditions
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