Meteorology 6150 A Numerical Model for Simulating Moist, Non-precipitating Convection

1. The dry model equations

The dry model is based on the quasi-compressible outflow model (QCOM) described in Droegemeier and Wilhelmson (1987). This model predicts the horizontal velocity (v), the vertical velocity (w), the potential temperature (θ) , and the non-dimensional perturbation pressure (π_1) . The compressible, non-rotating, adiabatic equations in Cartesian coordinates (y, z) are:

$$\frac{\partial v}{\partial t} = -v\frac{\partial v}{\partial y} - w\frac{\partial v}{\partial z} - c_p\theta_0\frac{\partial \pi_1}{\partial y} + D_v,\tag{1}$$

$$\frac{\partial w}{\partial t} = -v\frac{\partial w}{\partial y} - w\frac{\partial w}{\partial z} - c_p\theta_0\frac{\partial \pi_1}{\partial z} + g\left(\frac{\theta}{\theta_0} - 1\right) + D_w,\tag{2}$$

$$\frac{\partial\theta}{\partial t} = -v\frac{\partial\theta}{\partial y} - w\frac{\partial\theta}{\partial z} + D_{\theta},\tag{3}$$

$$\frac{\partial \pi_1}{\partial t} = -\frac{c_s^2}{c_p \theta_0^2} \left[\frac{\partial}{\partial y} (\theta_0 v) + \frac{\partial}{\partial z} (\theta_0 w) \right].$$
(4)

See Klemp and Wilhelmson (1978) for a derivation of (4). In our version, we neglect the height variation of the density. In the equations above, $\pi = (p/p_r)^{R/c_p}$, where $p_r = 1000$ mb, R is the gas constant for dry air, and c_p is the specific heat capacity at constant pressure for dry air, and c_s is the constant speed of sound. The terms D_v, D_w , and D_θ represent turbulent mixing. Variables with a subscript 0 refer to the basic state, which varies with height only. A subscript 1 indicates the departure from the basic state. The basic state is in hydrostatic balance:

$$\frac{d\pi_0}{dz} = -\frac{g}{c_p \theta_0}.\tag{5}$$

2. The model equations including water vapor and cloud water

Density now depends on water vapor mixing ratio, q_v , and cloud water mixing ratio, q_c , as well as temperature through the equation of state:

$$p = \rho RT(1 + 0.61q_v - q_c) \equiv \rho RT_v,$$

where T_v is the virtual temperature. As a consequence, the buoyancy acceleration becomes proportional to departures from the basic state of the virtual potential temperature, θ_v , so

$$\frac{g}{\theta_0}(\theta_v - \theta_{v0}) = g\left(\frac{\theta}{\theta_0} - 1 + 0.61(q_v - q_{v0}) - q_c\right)$$

where

$$\theta_v \equiv \theta + \theta_0 (0.61q_v - q_c)$$

and

$$\theta_{v0} \equiv \theta_0 (1 + 0.61 q_{v0}).$$

The basic state hydrostatic balance now involves θ_{v0} , so

$$\frac{d\pi_0}{dz} = -\frac{g}{c_p \theta_{v0}}.\tag{6}$$

For consistency with the basic state hydrostatic balance, θ_0 in the pressure gradient accelerations must be replaced by θ_{v0} , so the v and w equations become

$$\frac{\partial v}{\partial t} = -v\frac{\partial v}{\partial y} - w\frac{\partial v}{\partial z} - c_p\theta_{v0}\frac{\partial \pi_1}{\partial y} + D_v,\tag{7}$$

$$\frac{\partial w}{\partial t} = -v\frac{\partial w}{\partial y} - w\frac{\partial w}{\partial z} - c_p\theta_{v0}\frac{\partial \pi_1}{\partial z} + g\left(\frac{\theta}{\theta_0} - 1 + 0.61(q_v - q_{v0}) - q_c\right) + D_w.$$
 (8)

For consistency with the v and w equations, θ_0 in the π_1 equation must also be replaced by θ_{v0} , so it becomes

$$\frac{\partial \pi_1}{\partial t} = -\frac{c_s^2}{c_p \theta_0^2} \left[\frac{\partial}{\partial y} (\theta_{v_0} v) + \frac{\partial}{\partial z} (\theta_{v_0} w) \right].$$
(9)

When there is no heating other than that due to condensation or evaporation, and there is no precipitation, liquid water potential temperature, defined as

$$\theta_l \equiv \theta - \frac{L}{c_p \pi_0} q_c,$$

where L is the latent heat of condensation, and total (suspended) water mixing ratio,

$$q_w \equiv q_v + q_c,$$

are conserved, so we replace the conservation equation for θ with analogous conservation equations for θ_l and q_w :

$$\frac{\partial \theta_l}{\partial t} = -v \frac{\partial \theta_l}{\partial y} - w \frac{\partial \theta_l}{\partial z} + D_{\theta_l}, \qquad (10)$$

$$\frac{\partial q_w}{\partial t} = -v \frac{\partial q_w}{\partial y} - w \frac{\partial q_w}{\partial z} + D_{q_w}.$$
(11)

To close the set of equations, we must obtain θ , q_v , and q_c from θ_l and q_w . One way to do so is to assume that

$$q_c = (q_w - q_s)H(q_w - q_s)$$

where $q_s = q_s(T, p)$ is the saturation mixing ratio. Here H(x) = 1 when x > 0 and H(x) = 0 otherwise. This equation states that when the grid volume is saturated, $q_v = q_s$, and when unsaturated, $q_c = 0$. If $q_c = 0$, then $q_v = q_w$ and $\theta = \theta_l$. If $q_c > 0$, then

$$\theta = \theta_l + \frac{L}{c_p \pi_0} (q_w - q_s),$$

which cannot be solved for θ directly because q_s is a non-linear function of $T = \pi_0 \theta$. However, it can be solved iteratively using the saturation adjustment algorithm described by Krueger (2006).

3. Implementating saturation adjustment

Use subroutine adjust.f to implement saturation adjustment. The inputs for subroutine adjust.f are guesses for the adjusted (output) values of θ , q_v , and q_c that are consistent with the current values of θ_l and q_w . "Consistent" means that the guesses (θ^* , q_v^* , and q_c^*) satisfy

$$\theta_l = \theta^* - \frac{L}{c_p \pi_0} q_c^*$$

and

$$q_w = q_v^* + q_c^*.$$

The simplest guess is $q_c^* = 0$. Then

$$\theta^* = \theta_l$$

and

$$q_v^* = q_w$$

Note that the model's predicted thermodynamic variables, θ_l and q_w , are both conserved during saturated adiabatic processes (including saturation adjustment).

4. Simulation: Isolated cumulus cloud

References

- Droegemeier, K. K., and R. B. Wilhelemson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 1180–1210.
- Klemp, J. B., and R. B. Wilhelemson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096.
- Krueger, S. K., 2006: Parcel model. Notes for Meteorology 5210. http://www.met. utah.edu/skrueger/5210/Parcel_Model.pdf