
Meteorology 6150
A Numerical Model for Simulating Moist, Non-precipitating Convection

1. The dry model equations

The dry model is based on the quasi-compressible outflow model (QCOM) described
in Droegemeier and Wilhelmson (1987). This model predicts the horizontal velocity
(v), the vertical velocity (w), the potential temperature (θ), and the non-dimensional
perturbation pressure (π1). The compressible, non-rotating, adiabatic equations in
Cartesian coordinates (y, z) are:
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See Klemp and Wilhelmson (1978) for a derivation of (4). In our version, we neglect
the height variation of the density. In the equations above, π = (p/pr)

R/cp , where
pr = 1000 mb, R is the gas constant for dry air, and cp is the specific heat capacity
at constant pressure for dry air, and cs is the constant speed of sound. The terms
Dv, Dw, and Dθ represent turbulent mixing. Variables with a subscript 0 refer to
the basic state, which varies with height only. A subscript 1 indicates the departure
from the basic state. The basic state is in hydrostatic balance:
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2. The model equations including water vapor and cloud water

Density now depends on water vapor mixing ratio, qv, and cloud water mixing ratio,
qc, as well as temperature through the equation of state:

p = ρRT (1 + 0.61qv − qc) ≡ ρRTv,
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where Tv is the virtual temperature. As a consequence, the buoyancy acceleration
becomes proportional to departures from the basic state of the virtual potential
temperature, θv, so
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The basic state hydrostatic balance now involves θv0, so
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For consistency with the basic state hydrostatic balance, θ0 in the pressure gra-
dient accelerations must be replaced by θv0, so the v and w equations become
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For consistency with the v and w equations, θ0 in the π1 equation must also be
replaced by θv0, so it becomes
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When there is no heating other than that due to condensation or evaporation,
and there is no precipitation, liquid water potential temperature, defined as

θl ≡ θ − L

cpπ0

qc,

where L is the latent heat of condensation, and total (suspended) water mixing ratio,

qw ≡ qv + qc,
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are conserved, so we replace the conservation equation for θ with analogous conser-
vation equations for θl and qw:
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To close the set of equations, we must obtain θ, qv, and qc from θl and qw. One way
to do so is to assume that

qc = (qw − qs)H(qw − qs)

where qs = qs(T, p) is the saturation mixing ratio. Here H(x) = 1 when x > 0 and
H(x) = 0 otherwise. This equation states that when the grid volume is saturated,
qv = qs, and when unsaturated, qc = 0. If qc = 0, then qv = qw and θ = θl. If qc > 0,
then
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L
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which cannot be solved for θ directly because qs is a non-linear function of T =
π0θ. However, it can be solved iteratively using the saturation adjustment algorithm
described by Krueger (2006).

3. Implementating saturation adjustment

Use subroutine adjust.f to implement saturation adjustment. The inputs for sub-
routine adjust.f are guesses for the adjusted (output) values of θ, qv, and qc that
are consistent with the current values of θl and qw. “Consistent” means that the
guesses (θ∗, q∗v , and q∗c ) satisfy
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and
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The simplest guess is q∗c = 0. Then

θ∗ = θl

and
q∗v = qw.

Note that the model’s predicted thermodynamic variables, θl and qw, are both con-
served during saturated adiabatic processes (including saturation adjustment).
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4. Simulation: Isolated cumulus cloud
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