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-  It is well known 
that convective 
updraft velocities 
depend on updraft 
width (and hence 
model !x in the 
“grey zone”) 
 

 
Idealized 3D 
simulations using 
CM1 model 
 
Markowski and 
Richardson (2010) 

 
-  There is also sensitivity of 
updraft velocities to 
dimensionality ! updrafts 
tend to be stronger in 3D than 
2D (by ~15-50% or more)  



 
-  These sensitivities are well known and attributable to 
perturbation pressure effects, however… quantification and 
deeper understanding are lacking. 

-  Relevance for models:  
      
     1) understanding sensitivity of “grey zone” modeling (!x ~ 1  
         to 10 km) to grid resolution and dimensionality 
 
     2) representing perturbation pressure effects in convection  
         parameterizations 



 
Review of the key equations 

 
Inviscid, nonhydrostatic momentum equation (anelastic): 

 
Thermodynamic maximum w: 

 
Diagnostic perturbation pressure equation: 

 
Vertical component of the momentum equation (2D): 
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Idealized 3D 
simulations using 
CM1 model 
 (similar to Markowski 
and Richardson 2010) 

 
For a weakly sheared 
environment, at the updraft 
center: 

 
For the numerical 
solution we solve: 
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Methodology 
 

1) Numerically solve the pB Poisson equation and (steady 
state) vertical velocity in updraft center with specified B 
distributions 
 
2) Derive theoretical scaling of w and perturbation pressure 
based on approximate analytic solutions to the governing 
momentum and continuity equations assuming steady state  
 
•  2D Cartesian and axisymmetric cylindrical coordinates are 

used to compare 2D versus 3D updrafts 
 
•  Buoyancy profiles are from six real and idealized 

soundings, ranging from weak shallow convection to intense 
deep convection, with a range of horizontal buoyancy 
distributions tested for each sounding ! entrainment is not 
explicitly included 



Direct numerical 
solution 

 

 
W-K idealized sounding 
 (Weisman and Klemp 1982) 
 
Horizontal buoyancy 
distribution specified as cosine 
function from updraft center to 
edge. 
 

 
R = 1 km  

 
R = 5 km  

 
R = 10 km  



Theoretical derivation 
 

Approach: relate perturbation pressure at updraft edge to u2 by 2 
step horizontal integration of u momentum equation, combine 
with integrated continuity equation to relate u to w, then combine 
with w momentum equation with another 2 step integration (LFC 
to LMB and LMB to LNB). 
 
Key assumptions: 
 
1.  Impact of overshooting convection above LNB is neglected 
2.   p = 0 at the level of maximum buoyancy 
3.  Impact of downdrafts on updraft dynamics is neglected 
4.  vertical profile of u-wind is linear 
5.  Proportionality of w averaged across updraft to w at updraft 

center is equal to !, where ! is given by ratio of B averaged 
across updraft to B at the updraft center   



 
2D 

 
3D 

 
For R/H ! 0: 

 
For R/H ! infinity: 

 
For R/H ! 0: 

 
For R/H ! infinity: 
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w at LNB (COS) 

 
w at LMB (COS) 



 
Vertical profiles of w 

 
Theoretical profiles are derived by assuming a linear 
profile of the pressure scaling of w between the LMB 
and LNB (reasonable given smoothness of p field): 
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R/H = 2 

 
R/H = 1/3 

 
R/H = 1 

 
R/H = 2 

 
R/H = 1 

 
R/H = 1/3 

 
thermodynamic max w 



Comparison with 2D and 3D fully dynamical updraft simulations 
 

Convection initiated 
using warm bubbles 
with different radii 

 
Simulations run 
using the CM1 

model (Bryan and 
Fritsch 2002) 

 
Results are 

calculated from 
400-1080 sec 

3D 

2D 



Implications for convection schemes 
 

 
Convection parameterizations often include simplified 
“plume” representations of w: they typically ignore 
perturbation pressure or represent it by a constant scaling of 
B (“virtual mass coefficient” ! parameter “a”).  
 
 
 
 
 
Most schemes set “a” ~ 1/3 to 1, but w/o physical justification. 
 
The theoretical solutions provide a physical interpretation of 
the virtual mass coefficient as a function of R and H and can 
improve treatment of perturbation pressure effects for almost 
no computational cost. 
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Summary and conclusions 
•  A simple, generalized theoretical scaling of perturbation 

pressure effects on w is proposed (for weakly-sheared 
environments). 

•  The theoretical scaling compares well with direct numerical 
solutions for a wide range of regimes from shallow to deep 
convection and fully dynamical updraft simulations. 

 

•   Different geometries in 2D and 3D lead to fundamental 
differences in scaling of perturbation pressure effects 
consistent with results from fully dynamical models ! 
provides a concise explanation for weaker 2D convection 
(directly related to differences in mass continuity) 



•  Results suggest perturbation pressure effects may be a key 
for grid resolution sensitivity of convective strength in 
“grey zone” models because of updrafts that are too wide  

 
•  Perturbation pressure effects in convection schemes can be 

improved and made consistent with other aspects that scale 
with R and/or H (e.g., entrainment) for little computational 
cost 



 
For simple periodic buoyancy forcing functions in 2D, e.g., 
 
 
 
then a solution is: 
 
 
 
 
This can be combined with the w momentum equation to give 
 
 
 
 
Analogous solutions can be derived for axisymmetric 3D 
updrafts by representing the buoyancy forcing using a Fourier-
Bessel expansion. 
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The difference in pB from the LNB to LFC at the updraft
center Dp is found by evaluating (6) at x5 0 and z5H
and subtracting (6) evaluated at x5 0 and z5 0. This can
be expressed in terms of CAPE5

Ð LNB
LFCBdz by in-

tegrating (5) from z5 0 to H, combining with the Dp
evaluated from (6), and rearranging terms to yield

Dp5 r
0
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!
11

H2

4R2

"21

(7)

Note that, for consistency, CAPE is that relative to the
horizontally averaged buoyancy of zero (over a period).
A similar expression for Dp can be derived for axisym-

metric cylindrical quasi-3Dupdrafts using a Fourier–Bessel
expansion. In this case, the single normal mode hori-
zontal r component of the Laplacian in cylindrical co-
ordinates is approximated as2k2

Bp, where kB is the first
root of the Bessel function of the first kind, J0(kBR)5 0
(Holton 1973). This gives kB ; 2:41/R. Given that
J0(0)5 1, we can repeat the steps above to derive an
expression for Dp in 3D analogous to (7):
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where c0 ’p2/(23 2:412)’ 0:849.
Equation (8) can be combined with the vertical mo-

mentum equation integrated from the LFC to the LNB
at the updraft center, assuming a steady state, to yield an
expression for w at the LNB, which is the maximum in
the absence of entrainment. With the condition that
w5 0 at the LFC, and assuming Boussinesq flow so that
r 5 r0, this yields
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for axisymmetric quasi-3D updrafts. A similar equation
can be derived for 2D.
For less idealized forcing, equivalent solutions to (7)–

(9) can be derived using a Fourier or Fourier–Bessel
transform of rB and retaining only the first term.
However, some issues arise. First, the CAPE in (7)–(9) is
that derived from vertical integration of the single nor-
mal mode representation of buoyancy from 0 to H. In
general, this will be different from the actual CAPE
unless the vertical integral of the single mode repre-
sentation is exact. This can lead to large errors in the
calculation of integrated quantities, such as Dp and w,
and inconsistent behavior in the limits R/H/ 0 and

R/H/‘. This problem can be circumvented by using
the actual CAPE in (7)–(9), with the assumption that
these scalings still apply, but the validity of such an ap-
proach is unclear. Second, expansion using Fourier or
Fourier–Bessel series is valid only for periodic forcing
functions. For isolated (nonperiodic) updrafts, the
transform depends on the size of the domain over which
it is calculated, which is inherently ambiguous. Third, it
is unclear how well the functional forms of the single
normal mode expansion capture horizontal gradients of
buoyancy in real updrafts, and the consequences of er-
rors in this representation are not well understood.
These issues highlight challenges in applying single
normal mode solutions to the problem and motivate the
more general approach derived in section 3 for a better
quantitative understanding.
Analytic solutions to (3) and (5) can also be obtained

for more complicated forcings and boundary conditions
using, for example, themethod ofGreen’s functions (Yau
1979). However, this approach still requires the use of
analytically integrable forcing functions, and by con-
struction it leads to rather complicated solutions com-
pared to the single normalmode approach.Holton (1973)
andKuo andRaymond (1980) used a combined analytic–
numerical approach, avoiding some of the aforemen-
tioned issues. They estimated the horizontal component
of the Laplacian using the first term of a Fourier–Bessel
expansion to reduce the equations to one dimension and
then numerically integrated the vertical component.
More recently, Pauluis and Garner (2006) described re-
lationships between perturbation pressure, vertical ve-
locity, and updraft diameter D and height H for a rising
bubble using the Green’s function of a second-order or-
dinary differential equation derived from a simplified,
discretized version of the anelastic 3D equations of mo-
tion. Approximating the Green’s function, they derived a
simple pressure scaling of w as (11D/H)21/2, different
from the scalings in Weisman et al. (1997) or those de-
rived using single normal mode solutions of the pB
equation above having the form (11D2/H2)21/2 as well
as the more general derivation in section 3. Specific rea-
sons for these differences in the scalings are difficult to
pinpoint, but the approaches are rather different. For
example, unlike the single normal mode approach or the
derivation in section 3, Pauluis andGarner (2006) did not
assume a steady state: that is, they did not explicitly as-
sume ›/›t5 0 in the momentum equations. They also
neglected all nonlinear advection terms analogous to
linearizing the momentum equations in deriving the
nonhydrostatic perturbation pressure, while some of
these terms are retained in the derivation here.
An alternative analytic approach for approximating

Dp and w is derived in the next section. Instead of using
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for axisymmetric quasi-3D updrafts. A similar equation
can be derived for 2D.
For less idealized forcing, equivalent solutions to (7)–

(9) can be derived using a Fourier or Fourier–Bessel
transform of rB and retaining only the first term.
However, some issues arise. First, the CAPE in (7)–(9) is
that derived from vertical integration of the single nor-
mal mode representation of buoyancy from 0 to H. In
general, this will be different from the actual CAPE
unless the vertical integral of the single mode repre-
sentation is exact. This can lead to large errors in the
calculation of integrated quantities, such as Dp and w,
and inconsistent behavior in the limits R/H/ 0 and

R/H/‘. This problem can be circumvented by using
the actual CAPE in (7)–(9), with the assumption that
these scalings still apply, but the validity of such an ap-
proach is unclear. Second, expansion using Fourier or
Fourier–Bessel series is valid only for periodic forcing
functions. For isolated (nonperiodic) updrafts, the
transform depends on the size of the domain over which
it is calculated, which is inherently ambiguous. Third, it
is unclear how well the functional forms of the single
normal mode expansion capture horizontal gradients of
buoyancy in real updrafts, and the consequences of er-
rors in this representation are not well understood.
These issues highlight challenges in applying single
normal mode solutions to the problem and motivate the
more general approach derived in section 3 for a better
quantitative understanding.
Analytic solutions to (3) and (5) can also be obtained

for more complicated forcings and boundary conditions
using, for example, themethod ofGreen’s functions (Yau
1979). However, this approach still requires the use of
analytically integrable forcing functions, and by con-
struction it leads to rather complicated solutions com-
pared to the single normalmode approach.Holton (1973)
andKuo andRaymond (1980) used a combined analytic–
numerical approach, avoiding some of the aforemen-
tioned issues. They estimated the horizontal component
of the Laplacian using the first term of a Fourier–Bessel
expansion to reduce the equations to one dimension and
then numerically integrated the vertical component.
More recently, Pauluis and Garner (2006) described re-
lationships between perturbation pressure, vertical ve-
locity, and updraft diameter D and height H for a rising
bubble using the Green’s function of a second-order or-
dinary differential equation derived from a simplified,
discretized version of the anelastic 3D equations of mo-
tion. Approximating the Green’s function, they derived a
simple pressure scaling of w as (11D/H)21/2, different
from the scalings in Weisman et al. (1997) or those de-
rived using single normal mode solutions of the pB
equation above having the form (11D2/H2)21/2 as well
as the more general derivation in section 3. Specific rea-
sons for these differences in the scalings are difficult to
pinpoint, but the approaches are rather different. For
example, unlike the single normal mode approach or the
derivation in section 3, Pauluis andGarner (2006) did not
assume a steady state: that is, they did not explicitly as-
sume ›/›t5 0 in the momentum equations. They also
neglected all nonlinear advection terms analogous to
linearizing the momentum equations in deriving the
nonhydrostatic perturbation pressure, while some of
these terms are retained in the derivation here.
An alternative analytic approach for approximating

Dp and w is derived in the next section. Instead of using
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For less idealized forcing the first term in a Fourier/Fourier-
Bessel expansion can be retained to give equivalent expressions.  
 
However, there are some conceptual issues: 
 
•  The CAPE is that from single normal mode Fourier 

expansion of buoyancy forcing, which in general is different 
from the actual CAPE ! can lead to large errors in 
integrated quantities (but one can assume scalings still apply) 

•  Underlying assumption of periodicity and symmetry in 
horizontal and vertical 



 
w at LNB (COS2) 

 
w at LNB (TOP-HAT) 



 
!p from LNB to LFC (COS)  

" = "(z) 
 
" = constant 



 
But the effect on w is small! ! 

w at LMB (COS) 
 

w at LNB (COS) 






