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- There is also sensitivity of
updraft velocities to
dimensionality 2 updrafts
tend to be stronger in 3D than
2D (by ~15-50% or more)
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- It is well known
that convective
updraft velocities
depend on updraft
width (and hence
model Ax in the
“grey zone”)

Idealized 3D
simulations using

w| CMI1 model

Markowski and
Richardson (2010)




- These sensitivities are well known and attributable to
perturbation pressure effects, however... quantification and
deeper understanding are lacking.

- Relevance for models:

1) understanding sensitivity of “grey zone” modeling (Ax ~ 1
to 10 km) to grid resolution and dimensionality

2) representing perturbation pressure effects in convection
parameterizations




Review of the key equations

Inviscid, nonhydrostatic momentum equation (anelastic):

Thermodynamic maximum w:

w=~/2CAPE CAPE= [ Bdz
LFC

Diagnostic perturbation pressure equation:

d(pB)
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Methodology

1) Numerically solve the p, Poisson equation and (steady
state) vertical velocity in updraft center with specified B
distributions

2) Derive theoretical scaling of w and perturbation pressure
based on approximate analytic solutions to the governing
momentum and continuity equations assuming steady state

* 2D Cartesian and axisymmetric cylindrical coordinates are
used to compare 2D versus 3D updrafts

Buoyancy profiles are from six real and idealized
soundings, ranging from weak shallow convection to intense
deep convection, with a range of horizontal buoyancy
distributions tested for each sounding > entrainment is not
explicitly included
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Theoretical derivation

Approach: relate perturbation pressure at updraft edge to u? by 2
step horizontal integration of # momentum equation, combine
with integrated continuity equation to relate # to w, then combine
with w momentum equation with another 2 step integration (LFC
to LMB and LMB to LNB).

Key assumptions:

Impact of overshooting convection above LNB is neglected

. p =0 at the level of maximum buoyancy
Impact of downdrafts on updraft dynamics is neglected
vertical profile of #-wind is linear
Proportionality of w averaged across updratt to w at updraftt
center is equal to a, where a is given by ratio of B averaged
across updraft to B at the updraft center
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Vertical profiles of w

Theoretical profiles are derived by assuming a linear
profile of the pressure scaling of w between the LMB
and LNB (reasonable given smoothness of p field):
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Comparison with 2D and 3D fully dynamical updraft simulations
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Implications for convection schemes

Convection parameterizations often include simplified
“plume” representations of w: they typically ignore
perturbation pressure or represent it by a constant scaling of
B (“virtual mass coefficient” = parameter “a”).

Most schemes set “a” ~ 1/3 to 1, but w/o physical justification.

The theoretical solutions provide a physical interpretation of
the virtual mass coefficient as a function of R and H and can
improve treatment of perturbation pressure effects for almost
no computational cost.




Summary and conclusions

* A simple, generalized theoretical scaling of perturbation
pressure effects on w is proposed (for weakly-sheared
environments).

The theoretical scaling compares well with direct numerical
solutions for a wide range of regimes from shallow to deep
convection and fully dynamical updraft simulations.

Different geometries in 2D and 3D lead to fundamental
differences in scaling of perturbation pressure effects
consistent with results from fully dynamical models -
provides a concise explanation for weaker 2D convection
(directly related to differences in mass continuity)




* Results suggest perturbation pressure effects may be a key
for grid resolution sensitivity of convective strength in
“grey zone” models because of updrafts that are too wide

Perturbation pressure effects in convection schemes can be
improved and made consistent with other aspects that scale
with R and/or H (e.g., entrainment) for little computational
cost




For simple periodic buoyancy forcing functions in 2D, e.g.,

This can be combined with the w momentum equation to give

4R*
H2

w_ =, [2CAPE (1 +

Analogous solutions can be derived for axisymmetric 3D
updrafts by representing the buoyancy forcing using a Fourier-
Bessel expansion.
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The difference in pg from the LNB to LFC at the updraft
center Ap is found by evaluating (6) at x =0 and z = H

and subtracting (6) evaluated at x = 0 and z = 0. This can

be expressed in terms of CAPE = figgB dz by in-

tegrating (5) from z =0 to H, combining with the Ap
evaluated from (6), and rearranging terms to yield

H2\



A similar expression for Ap can be derived for axisym-
metric cylindrical quasi-3D updrafts using a Fourier—Bessel
expansion. In this case, the single normal mode hori-
zontal r component of the Laplacian in cylindrical co-
ordinates is approximated as —k%p, where kp is the first
root of the Bessel function of the first kind, Jy(kgR) =0
(Holton 1973). This gives kg~ 2.41/R. Given that
Jo(0) =1, we can repeat the steps above to derive an
expression for Ap in 3D analogous to (7):

H? O\
Ap = p,CAPE (1 + 260R2> : (8)

where ¢y =~ 7%/(2 X 2.41%) =~ (0.849.



For less idealized forcing the first term in a Fourier/Fourier-
Bessel expansion can be retained to give equivalent expressions.

However, there are some conceptual issues:

* The CAPE is that from single normal mode Fourier
expansion of buoyancy forcing, which in general is different

from the actual CAPE - can lead to large errors in
integrated quantities (but one can assume scalings still apply)

Underlying assumption of periodicity and symmetry in
horizontal and vertical
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Ap from LNB to LFC (COS)
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But the effect on w is small!
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