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Appendix A

THIRD-ORDER ENSEMBLE MEAN TURBULENCE
CLOSURE MODEL

A.1 ENSEMBLE MEAN CLOSURE

Ensemble mean turbulence closure models predict ensemble means.
An ensemble mean is a quantity's value at a point in space and time
averaged over infinitely many flow realizations. These realizations
differ only infinitesimall.y in their initial conditions. Due to
subsequent development of flow instabilities, the realizations will
visibly differ after a short time. The ensemble hean thus includes

the averaged effect of the instabilities upon the flow.

One realization can suffice to determine the ensemble mean in
homogeneous flows. Homogeniety  exists when a running
average--taken over a 'region' larger than the fluctuation scale but
smaller than the flow domain--does not vary. Such a 'region’' can be
a length, an area, a volume, or a time interval, as well as a space-
time area or volume. The average over a 'region' is then the
ensemble mean. For example, the ensemble mean’ of a horizontally

homogeneous flow is the flow's horizontal average.

Atmospheric flows are never truly homogeneous. However, due to

the scale separation between turbulence and larger-scale circulations,

150



local homogeniety wusually exists. This means that our running
average varies, Eut relatively slowly and on scales characteristic of
the larger-scale flow. Fo;‘ example, a wind speed trace from a coastal
_station will show turbulent fluctuations as well as diurnal variations
due to the sea breeze. To get ensemble mean wind speeds, we
should choose. an averaging 'region'. to preserve the diurnal
variations, but eliminate the turbulent ones. If the tur‘buient time
scale is 100 seconds, we should use an averaging interval of about

1000 seconds, or 15 minutes.

By using Reynolds decomposition, we can form a set of equations
that describes the evolution of the ensemble mean fields. We divide
each field into its ensemble mean and its departure. F;ar example,
consider the governing equations for a homogenous, inc_:ompr'ess'ible

fluid at high Reynolds number:

. A
ot T URiU = 7 Py

(A1)
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In this a_ppendix, we use Cartesian tensor notation. Hereafter, we

will use "kinematic" pressure, p/p.

Decompose the variables into the ensemble mean and the departure:

[71: = Up'.-f-(,{,;)
p =P

Substitute these into (A.1) and average to get the ensemble mean

governing equations:

SU: -
se. tHLjUp o+ (@g)y = -P,

where the overbar indicates an ensemble mean. We now have more
unknowns than equations. To close (A.2) we need to specify the
Reynolds stress tensor /. Z/J . This is the problem of ensemble

mean closure.
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The simplegt type of closure assumes that the stress tensor (in
this example) is completely determined by the current mean velocity
field. This is called first-order closure, or more properly, first-
moment closure. Second-order closure assumes that the past history
of the stress tensor also matteré, so we use a tendency equation.

The additional unknowns introduced by this equation are modeled in

terms of mean and second-moment quantities. These unknowns
include third moments. [f the third moments are instead determined
from tendency equations, we have third-order closure. Fig. A.l

schematically shows the various closure types.

A.2 FIRST-ORDER CLOSURE MODELS (K-MODELS)

The first-order or "eddy viscosity” model for the Reynolds stress

tensor is
T ] (e m—
Ubua, = -§—- JLJ Ukak -K (U‘;); + UJ)I:) (A.3)

This is the simplest relationship that satisfies tensor invariance and
the continuity equation. K, the eddy viscosity, is of the order ¢/,
where g and [/ are the velocity ahd length scales of the energy-
containing eddies (those responsible for turbulent transport). Thus,

K is a property of the flow, not the fluid.
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CLOSURE MODELS

First-order closure model :

uiuj :> diagnostically
uie related to

Second-order closure model :

iujuk diagnostically
p(ui,j + uj’i) related to
etc.

Third-order closure model :

U U. uku]
p((u u. )'k
etc.

Figure A.1
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First-order closure is a limiting case of the more general second-
order closure. First-order closure is a good approximation only when
dissipation and shear production dominate the turbulence energy
budget; it is not a good approximation for flows with significant
transport or buoyant generation of turbulence energy. Because these
effects are often present in the ABL, there is motivation to use

second- or third-order closure for ABL modeling.

A.3 SECOND-ORDER CLOSURE MODELS

To generate differential equations for Reynolds stress, heat flux,
and other turbulence moments, we use Reynolds decomposition. We
cannot solve the resulting second-moment equations exactly because
they contain unknown third-moments. Many closure approximations
for these equations have been proposed over the past twenty vyears.
Less expensive computer time has now made simplified second-moment

models a practical alternative to eddy diffusivity models.

We shall first derive and interpret the equations governing the

evolution of the stress tensor U;Ug and the temperature flux

vector ({; @ . Starting with the stress tensor, we note that

] ou,
E'—u.u =u.—u—k+uk——1—~
ot ik i ot ot
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Thus we multiply the uyg -equation by uj , average, and add this to

the equation with i and k interchanged. The result is

9 _
ot 1% T 7U1,5 U5k T Uk Byts T (gt Uy
- (uiujuk)’j - (ukP,i + Uip,k) (A.4)
g. . 8
+ = u 6 -+ k u,6

= —u. b - +vu _ u, 4vu, . u
R A k,33% T M, 55%

Let's identify the terms on the right side of (A.4). The first two,
representing products of turbulent stress and mean shear, are called
shear production terms; they are normally sources of ; Ure . The

third and fourth are divergences of the mean and turbulent fluxes of

Uil ; we call these advection and transport, respectiviey. They
integrate to zero over the flow volume by the divergence theorem,
and hence represent the movement of Uillk  from one part of the
flow to another. The fifth term is a covariance of fluctuating
pressure and velocity. The sixth and seventh are buoyancy terms,

and the final pair represent viscous effects.

The same procedure gives a temperature flux equation:
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5t Uy = —Ul,j euJ - O,J uiuJ - (Bu, U.),
Bi -
- (Bu uj), p,le +¥— eve (A.5)
+ Vvou, .. + 6
1,73 « JJul

The same types of terms that appeared in (A.4) also appear here.

The production, advection and buoyancy terms in (A.4) and (A.5)
involve covariances of the turbulence field as well as the mean values
U and ©. These terms can be considered known if the model set
contains equations for each covariance and for U and @. However,
the remaining terms--molecular, pressure covariances, and
transport--are not directly related to the covariances or the mean
fields, and must at this point be regarded as unknowns. This is the
closure problem in the second-moment approach: specifying these

unknown terms so the set can be solved.

157




A.4 THE CLOSURE PROBLEM

| cannot give a comprehensive review here of second-order
modeling. Instead, | will briefly describe a well-known second-

moment model, the Mellor-Yamada model (Mellor, 1973).

Let's look again at the second-moment equatibns we just derived,
(A.4) and (A.5). We can separate the pressure covariance terms in

(A.4) into a pressure transport term

—(/;T{’)Jk -(m)aﬁ

and a pressure redistribution term

/b (Ué,k + uk,i) )

Similarly, we can write the pressure covariance term in (5) as

(PO +PEsi-

" We also rewrite the molecular terms in (A.4) as
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Vu, .,.uu +Vu ,.u =V (u, L= 2 .
i,33 k k,jj i ST RATT VU 5%, 3

The first term on the right is the molecular diffusion, which is
negligible compared to turbulent transport, and the second is the

dissipation. Similarly, we write the molecular terms in (A.5) as

2

= V(0u,),,.. - v(6, . u,),. - .
( i 333 ) ( ,J l) j \) Ui’Je,j )

vu, ..0
1,33

6 = -a Lily o -
@ 8, =a @), - Uy -a N
Only the extreme right terms are retained in high Reynolds number

flows.

The temperature variance 62 appears in (A.5). We can derive a

differential equation for it as we did for UWjUk and Ui QG .

Substituting for the pressure covariance and molecular terms in
(A.4), (A.5), and the 82 equation, we obtain the equations shown

below. The underlined terms must be modeled.
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ouu; 9 d o R
+~—I:U kuiuj—}-uku,-u,-—-v——-um{l%————pu;
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o
+—pu;
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aU,; av;
= —up———wp;———L (g0 +gi11;0)
0xp dxy,
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— -i———L (O ~1p246 —oeej—— u(?w—]
9t day dxr Oy
a
+—p8
axj
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Xk dxy x5
duy £l
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A.5 THE MELLOR-YAMADA SECOND-ORDER CLOSURE MODEL

The Mellor-Yamada model was one of the first second-order models.
It is based on our knowledge of simple turbulent flows and the
requirement of tensor invariance. The modeled terms have the same
tensor properties as the original terms, and their coefficients are
determined from neutral flow measurements. Since the Mellor-Yamada
model was introduced, more éccurate ways to model turbulent
transport in the convective PBL have been developed (Andre et al.
1978; Lumley, Zeman and Seiss, 1978) but at a consider‘éble

computational cost.

The transport terms are modeled as down-gradient diffusion terms.
The proportionalty .constant is like an eddy viscosity coefficient so
Mellor and Yamada use g\, where q is the turbulent wvelocity scale
(the square root of twice the turbulent kinetic energy) and )\ is a

turbulent length scale.

The pressure redistribution term redistributes turbulence kinetic
energy among components and destroys off-diagonal stresses. It is

modeled as a tendency toward isotropy:

—--3—37 (U?UE-—Jzk —;1) + Gy %“(Uz,k +U;<,z).
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The model for this term also includes a rapid term proportional to the

mean deformation.

Mellor and Yamada neglect the pressure transport terms since little
is known about them and measurements show that they are usually

small.

The model for the molecular dissipation is independent of the
viscosity. The dissipation rate is approximately the rate of energy

"~ transfer from large eddies to smaller eddies; thus it is modeled as
3

2

/\

where ./\_1 is a length scale for the large eddies. Also the small-
scale turbulence is assumed to be isotropic so that the dissipation is
equ.ally divided among the turbulent energy components. The table

on the next page summarizes the modeling assumptions.

Each modeled term introduces a length scale. We assume these are
proportional to a master length scale. Specifying this length scale is

the remaining closure problem. Blackadar (1962) proposed

_ kz
L= ]+ kz/Le
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—---l-———) = —-—-<uiu,-—-—q2>+C(]2 —t
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a6 g —
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Table A.1
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for use in atmosperic boundary layers. k is von Karman's constant,
and ,Zoo is a length, which modelers usually prescribe, but may

instead determine from a formula such as

A
/em— f:o %di‘:

where «=0.1 is usually used.

A.6 THIRD-ORDER CLOSURE MODELS

Second-order closure models like Mellor and Yamada's underpredict
the growth of the convective PBL (Yamada and Mellor,1975). They
don't transport enough turbulence to the PBL top to support active
entrainment, so the PBL deepens too slowly. Third-order closure
models--which use approximate conservation equations for the third
moments-- predict re_alistic growth rates (Andre et a/., 1978). The.

models include the effects of buoyancy on turbulent transport.

Both second- and third-moment closure models have been used to
simulate the evolution of a convective boundary layer. The
convective atmospheric boundary layer measured on day 33 of the
Wangara experiment was simulated by Yamada and Mellor (1975) (YM)

and by Andre et al/., (1978) (A). Fig. A.2 shows the simulated
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evolution of the mixed layer depth using a second-moment model (YM)
and Fig. A.3 shows the same using a third-moment model (A). Each
figure also shows the observed depth. YM underpredicts the growth
of the daytime mixed layer, while A nearly matches the observed
depths. (The mixed layer depth is the height of the minimum value

of —\X/-S‘.)

Fig. A.4 shows how the mixed layer grows: .potentially warm
overlying air is entrained at the mixed layer top. This process
consumes turbulent kinetic energy (TKE), as indicated by the
negative w8 in the entrainment region. Figs. A.5 and A.6 show w8
simulated by YM and A, respectively. Entrainment must be more

active in A since w8 is more negative.

The simulated TKE budgets clearly show the difference between
the two models. Fig. A.7 shows that turbulent transport of TKE is
unimportant throughout the mixed layer in YM. Since the only
possible sources of TKE at the mixed layer top are turbulent
transport and mechanical (shear) production, and both are
unimportant in this simulation, there cannot be active entrainment.
Fig. A.8 shows the TKE budget for A, the third-moment closure
simulation. In this case, turbulent transport is a significant source

of TKE at the mixed layer top.

There are no turbulence measurements from the Wangara simulation

. to compare with, but we do have data from a large-eddy simulation
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(Deardorff, 1974), Fig. A.9.. These data are nearly as reliable as
measurements themselves since such simulations depend very little on
modeling assumptions. The simulated TKE is very similar to A's,
especially for the turbulent transport. | conclude that third-moment
closure can accurately simulate a convective boundary layer, but

second-moment closure cannot.

Now let's look at the third-moment equation for the turbulent flux

of uiuj to see how buoyancy affects it.

The conservation equation for U[Mk(//', the turbulent flux in the

Ui Uk -equation, is

= = - +
5t uiukuj [Ui,m umuj u

)

(uiumuj uk

m

RTINS : ' (A.6)

1 m m

- [p’iujuk + ..]

S —
+ [ _’ITeVujuk + ..]

1.

2vfu, .u, ,u + ..
[uly‘J jsd k

The *.. indicates two more terms obtained from the first by cyclic

permutation of the indices i, j» k.  The terms in (A.é) are, in
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order, shear production, turbulent transport, furbulent production,
pressure interaction, buoyancy, and molecular. The turbulent
transport term here is a four;th moment. Even-order moments of
velocity and temperature (but not derivative moments) are usually
Gaussian, to a good approximation. If we use a Gaussian model for

this fourth moment, we can write

.U u,u = g.u ,u + u.u, + .
Yi%m ik Y% u_'] k Uluj Yntk T YUk umuj (A.7)

This allows us to combine transport and turbulent production in’

(A.6) to get

= {u,u
( i mujuk>’m + [(uium),m usu + ..]

(A.8)

= [ —(ujuk)’m wu + L]

Let's consider ((A.6) in an idealized, near-neutral surface layer,
using the rjesult ( A.B) of our Gau-ssian transport approximation.
Assume that the pressure (P[J'k) and molecular (M:;k) terms in
(A.6) behave roughly like their counterparts in the second-moment
equations, so that

' e _ iik, -
Poge T Mg ¥ 7 T 1 (A.9)

with ( A9), the Uilfpi'{/k-equation ‘in this case reduces to

'T[<ujuk)’m u,u (ukui)’m usu + (uiuj)’in u,

um] =~ uiuju » (A.10)
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This is exactly the gradient-diffusion approximation used for

in many models. Mellor and Yamada further assumed that
2

U; Um = a/‘,l/m= Ul = ——f——

and used

AL
7 ==
Z

to obtain their gradient-diffusion model.

In the very unstable surface layer, or in the mixed layer during
even mildly unstable conditions, the buoyant term in (A.§) will be

important. Then (/\.6) becomes

u,uju = —T[(ujuk),m uium + (ukui)’m ujum + (uiuj),m ukum] .
(A.11)
By

g. g.
S —1 X
= Svujuk + 7 6Vuiuk + T evuiuj].

+ 1]

Now the gradient-diffusion model (A.l9) for Mbd}ak need not hold. If
the buoyant term in (A.ll) is also important, U(}H)Uk can depend on

more than second-moment gradients.

Consider the situation for \2in the unstable surface layer. Both

W? and dW*/0Zare observed to be positive there, while (A.I0) implies

w3 = —E)'rw2 awz/az
or that they have opposite sign. Thus the usual gradient-diffusion
model fails. One reason for this failure is that the buoyant term in

the w? budget (A-é) is significaﬁt in the unstable surface layer.
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Strong buoyancy effects are the rule in the PBL. Thus we should
expect that gradient-diffusion approximations (such as (Ad0)) for

third moments will not be accurate.

A.7 A THIRD-MOMENT TURBULENCE MODEL

I am using a third-moment closure model in the cumulus ensemble
~model. This is necessary not only to model the subcloud layer
turbulence as accurately as possible without going to the expense of a
large-eddy model, but also to mode!l the turbulence in the clouds in a
realistic manner. In the lower cloud layer, turbulent-scale
condensation is important due to many shallow cumulus clouds. These
clouds do not always have organized "cloud-scale" motions. Their
kinetic energy is mostly on the turbulent scales. To accurately
include the turbulent effects of these clouds, a turbulence model

which is realistic in convective boundary layers is required.

Even though the cloud-scale motions are governed by the anelastic
equations, we assume that turbulent-scale motions are governed by
the Boussinesq (or shallow anelastic) equations. This is valid as long
as the turbulent motions are shallow compared the scale height of the

atmosphere.

The turbulence model chosen is essentially that developed by

Andre et al. (1976a; 1978) and used by Bougeault (1981b). It is
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Table A.2 Closure assumptions for two tur\bulence models.

Term Andre Mellor-Yamada
pressure- Return-to-isotropy and Neglects some
correlation rapid terms (mean rapid terms.

shear, buoyancy).

turbulent Approximate rate Down-gradient model
transport eqs. (quasi-Guassian, appropriate to nearly
eddy-damped approxima- isotropic neutal
tion) used. Buoyancy shear flow. No
effects included. buoyancy effects.

Clipping approximation

to enforce realizability.

pressure -1/5 * energy transport. Neglected.
transport

molecular Isotropic. Inviscid estimate for

terms dissipation rate. Turbulent length scale

must be specifed. Destruction of scalar

variances proportional to dissipation rate.

174



more physcically based than the Mellor-Yamada model. Table A.2

presents a comparison.

fn the model | am using, the closure assumptions for the pressure
correlations, as well as for the third-moments, differ from those of
Mellor-Yamada (MY). The pressure correlations are modeled as the
sum. of a pressure transport term, a return-to-isotropy term, and a
rapid term. The pressure transport slightly reduces turbulent
kinetic‘ energy transport. The return-to—isotropy term is standard,
and the rapid terms (which MY took proportional to the mean

deformation) are modeled following Launder (1975).

The third-moment equations present new closure problems. They
introduce unknown pressure correlations, molecular terms and fourth
moments. The latter are expressed in terms of second moments using

the quasi-Gaussian approximation:

abcd = ab ed + ac bd +ad be .

Pressure correlations are assumed to follow closures like the second-
moment pressure correlations. However, | do not include rapid
terms. Molecular terms are neglected except in scalar correlation
equations, for which there are no pressure correlation terms. The
"clipping" approximation (Andre et a/.,(1976a) is used to limit the
growth of the third-moments. For a correlatién «fX, the clipping

approximation is to enforce
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[a?(B® v 4By )P
@By |<min [B3(aty +ay )T
[[F(E‘z.@r&?“)]%
Lumley (1978) theoretically dérived a closure model for the
third-moment equations that has no more empirical constants than does
second-moment closure. | am using his closure constants for the

third moment equations.

Since the only widely known and applied third-moment model is the
one developed by Andre et af., (1976a; 1978) and extended by
Bougeault (1981a,b), |.will first point out the differences between my
model and Bougeault's, before presenting the model equations | use.
My equations differ in only two modeling assumptions. First, |
neglect the mean shear production terms in the third moment
equations, which Bougeault does not. | neglect these terms because
they are not important in strongly buoyant conditions (Andre et al.,
1976a,b; Lumiey, 1978). | also retain the clipping approximation to
damp the growth of the ‘third moments whereas Bougeault uses a
"rapid" term in the third moment equations. The clipping
approximation is useful because one can judge by the frequency of

"clipping" how well the third-moment closure model is doing.

In addition, the equations differ because | use a two-dimensional
version, include advection terms, and use a different set of closure
constants. Table A.3 compares the values | use with Bougeault's

values; c4'-c7 are from Zeman and Lumley (1976); Cy is from Launder
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Table A.3

constant Bougeault present

(1981b) work
c2 1.3 1.25
Cs 4.5 1.75
Cs 0 0.3
Cs 4,85 3.75
cy 0.4 0.33
Cs 6.5 5.25-9.25
c1o 3.9 3.75
c11 0.4 0
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(1975): and g C10- and Cqq are based on Lumley (1978). The most

significant differences are in the values for Cy and Ce

The turbulence model equations can be written as follows, using a

and b for h or qy, and, for simplicity, assuming p is a constant. In

7

the following, & is the turbulent kinetic energy, £ is the dissipation

rate, 1=e/e, and B=g/T.
1. The prognostib equations for the 6 mean quantities, u, w,

B,qv, S and q, are given in section 3.2.

2. The tendencies of the velocity correlations are

LT, « - (T - B g ),

~{2-¢s) {u e Ujsk + OO, Usk
‘SULGVJ.”J —ﬁaé.eyggé}

2 e o CE o 2 S
“pess - 2@ -3

+ Cs ‘g‘ éto) {B w6, — Uglk Uﬂ;k}.
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3. The scalar correlation tendencies are

%38 = ~(kab) ~{aT B + T Auk}

Ca —7
-— —

T

4. The scalar flux equations are

'j'{_z Q= —(Uxlid),; — U Ox A,k

~(1- o) {Tr@ Uik ~85:Ba} — 2

e a .

5. The equations for the fluxes of velocity correlations are

-%L U;U)'L(kf sy (U)' Uk),j, - m (L{;Uk),,g
'—UKUL'(U{:U}))/E

+ Bask Uillj Oy + B §sj UilleBy + fds; Uj Uk By.

- % (405 U )
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6.

7.

-i‘
dt

The tendencies of the triple scalar correlations are

“cah = ~Usb (a%),2 -2 Ura(ab),s

~Uea* By -2Ucab A,z -%a”b.

For the fluxes of the scalar fluxes, the equations are

Uilija = - dpa (Uilj),q — Uitz (T5d), 4
~Ulp (Hdia),y ~U:UUx A,z
+BUiaB, &35 +BUabl §si

. - - CI :
-Uilsa U},,Q = Uilha Uz,z -—,Z_ﬁﬂi[/;a,
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8. Finally, for the fluxes of scalar correlations, the equations are

-ﬁ-u;ag = =iy (ab), 4 _—axa(m),z.
—Uxb (Uid),p, -Wlzq B,o -T;Ugh A,z

+8 6,ab §5 - wa

Note that | use different values for Cgs Cg and c8”, following

Lumley (1978).

| found it necessary to include a small diffusion term in in all of
the second-moment equations, and both damping term and diffusion
terms in all of the fhird—moment equations. Deardorff (1978) pointed
out that diffusion terms are required in the third-moment equations to

match a'nalytical solutions of the Gaussian plume.

If F_, and F represent the tendencies of ab and abc given by

ab abc

the model equations above, then the modified equations are

ab

FaA + KzV’”a_g,

2 abe

der. + KB VZZ}J—C— -D3VQEC
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where K2=K3=10 m2/s and D3=O.024 s~! Without these added terms,
the model could not simulate the GATE fair-weather boundary layer

(see section 3.9).

In the horizontally-homogeneous case, with no mean wind, allowing

uwh and/or uwq, to be non-zero leads to an instability. (This is a

property of the continuous equations.) To guard against this

possibility, | enforced uwh = uwq = 0 in all of the simulations.

A.8 DISSIPATION RATE AND TURBULENT LENGTH SCALE

I have not had much success with prognostic equations for the
dissipation rate in flows which are rapidly evolving, such as in
cumulus clouds. Since so little is known about turbulence in cumulus
clouds, | chose to use the simpler diagnostic modeling of the
dissipation rate. This is known to work well for convective boundary
layers (Andre et al., 1976b). As noted in section 3.8, | simulated a
cumulonimbus cloud using this formulation for a range of turbulent
length scales, and didn't find a strong influence on the cI(;ud
dynamics, although it significantly affected the cloud turbulence

intensity.

The dissipation rate is calculated from

—3/2

_ e
£= 01 @
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where /(z) is calculated from Blackadar's formula (see section A.4),

leo=0.15 Zix (Bougeault, 1981b), Z_ix =400 m, and cq =0.14

(Andre et al., 1978). Above 400 m, / = /(400). There is little

guidance for choosing / in the cloud layer.

183



