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1 Introduction

Turbulence is ubiquitous in the earth’s atmosphere. Its spatial scales range
from many tens of kilometres to a few millimetres. A wide assortment of tur-
bulent eddies of different size and shape lies within this range. These include
breeze circulations, storms, clouds, plumes and rolls in the planetary bound-
ary layer (PBL), and eddies in urban street canyons and in plant canopies,
to mention a few. It is this large variety of turbulent motions that numerical
weather prediction (NWP) models, as well as other numerical models of the
atmosphere, have to deal with.

Atmospheric turbulence is a notoriously difficult and extensive subject.
Even a cursory examination of its most important aspects would require a
voluminous account that goes far beyond the scope of the present paper. We
restrict our consideration to modelling turbulence in the lower troposphere
as it is practised nowadays in NWP and related applications, e.g. climate
modelling and air pollution dispersion studies. Turbulence modelling in this
context means the representation of the effect of turbulent motions, which
are not explicitly computed by a numerical model of the atmosphere, on the
explicitly computed fields. Other topics, such as measurements and numerical
simulations (large-eddy and direct numerical simulations) of turbulence in the
atmosphere, although very important, are not considered here. Readers are
referred to review articles and books [132, 184, 66, 209, 60, 120, 160, 68, 99,
67, 61], where further references can be found.

Before proceeding any further, we recall a plain point that a numerical
model of the atmosphere solves the evolution equations in the form

∂ 〈f〉
∂t

+ 〈ui〉
∂ 〈f〉
∂xi

= −∂ 〈u
′
if
′〉

∂xi
+ Ff , (1)

where t is the time, xi are the space co-ordinates, and ui are the velocity com-
ponents. The Einstein summation convention for repeated indices is adopted.
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A generic variable f refers to any quantity treated by an atmospheric model,
and Ff symbolises the source of f due to various processes, such as radiation
and precipitation. The angle brackets denote the quantities that are explic-
itly computed (resolved) by a numerical model, and primes denote deviations
therefrom. The incompressibility is assumed which is a fairly accurate ap-
proximation for the lower troposphere. Equation (1) is obtained by applying
a spatial filter to the governing momentum and scalar equations (see chapter 7
of this volume). The quantity 〈u′if ′〉 represents the flux of f due to sub-filter
scale motions.1 In what follows, the sub-filter scale quantities will be referred
to, perhaps somewhat loosely, as the sub-grid scale (SGS) quantities, consid-
ering that the latter term has been universally accepted. As the SGS motions
are not explicitly computed by a numerical model, the SGS flux must be mod-
elled, or parameterised, in terms of resolved quantities. The terms “model”
and “parameterisation scheme” may be used interchangeably in this context.
The term “parameterisation scheme” is more often used in the NWP commu-
nity.

The SGS flux divergence term on the right-hand side (r.h.s.) of Eq. (1)
should in principle represent the effect of all SGS motions down to the small-
est scales where turbulence kinetic energy (TKE) eventually dissipates. It is,
however, customary for NWP models to split this term into contributions due
to various processes. The contributions due to “turbulence”, that is thought
to represent quasi-random small-scale motions, and due to “convection”, that
is thought to represent quasi-organised motions of larger scales, are usually
distinguished. That is,

〈u′if ′〉 = 〈u′if ′〉turb + 〈u′if ′〉conv . (2)

The SGS momentum flux may also contain a contribution due to the oro-
graphic drag, i.e. the unresolved drag caused by the effects of sub-grid scale
orography, such as the absorption and reflection of orographically induced
gravity waves. The orographic drag parameterisation issues will not be con-
sidered in what follows. Readers are referred to [36, 140, 130, 23, 186], where
further references can be found. Although the decomposition (2) is commonly
accepted, it is not as innocent as it might seem. Caution is required to ensure
that the sum of the above two contributions actually represents the total SGS
flux. Otherwise, serious problems may be encountered, for example, double-
counting of some energetically relevant modes of SGS motions, or their loss.

It is general practice in NWP and related applications to model the
two contributions on the r.h.s. of Eq. (2) in different ways. Turbulence pa-
rameterisation schemes are usually developed on the basis of the ensemble-
mean second-order turbulence closure approach. Convection parameterisation

1 Strictly speaking, the Lilly [124] notation with no primes should be used to em-
phasise that the filter does not necessarily satisfy the Reynolds averaging assump-
tions. The sub-filter scale flux is then given by 〈uif〉 − 〈ui〉 〈f〉. See [184, 110] for
further discussion.



Turbulence in Lower Troposphere 3

schemes are usually developed on the basis of the mass-flux approach. In the
subsequent text (sections 2 and 3), we will consider these parameterisation
schemes in some detail. We attempt to show that the two approaches have
much in common, although differences remain and they may be important.

Convection in the atmosphere manifests itself in many different forms. Dry
convection is usually driven by the surface buoyancy flux and is confined to the
PBL. Regimes of moist convection are many and varied. As nicely stated by
Stevens [188] “moist convection is many, rather than one thing.” This author
presents a comprehensive account of many essential features of moist atmo-
spheric convection, including phenomenology and theoretical frameworks to
describe its major regimes, namely, stratocumulus, shallow non-precipitating
cumulus, and deep precipitating cumulus convection. Driven by a powerful
engine – the latent heat release due to water vapour condensation in rising
air parcels, moist convection can penetrate all the way up to the top of the
troposphere. Such deep penetrative convection is typically associated with
heavy precipitation. With their horizontal grid size of about 50 km or so,
the present-day global NWP models are unable to resolve deep convection. A
parameterisation is required to describe convective fluxes of scalar quantities
and of momentum, convection source terms due to condensation/evaporation,
due to release/consumption of latent heat and due to precipitation fall-out,
as well as a sophisticated interplay of convective, radiative and microphysical
processes. Improving deep convection parameterisations represents one of the
major challenges in NWP and related applications [12]. Details of this fasci-
nating phenomenon are discussed in [91, 60, 180, 61, 188]. The present-day
limited-area NWP models have a horizontal grid size of 10 to 5 km, and there
is a strong tendency to achieve an even higher resolution with a horizontal
grid size of order 1 km. With such a grid size, deep convection will likely be
computed explicitly. However, the PBL turbulence and shallow convection will
still remain at the sub-grid scale and will require an adequate parameterisation
scheme. Some theoretical problems related to parameterising SGS motions in
high-resolution atmospheric models are discussed in [211]. Notice that an in-
creased resolution will alleviate some parameterisation issues but will make
other issues even more complicated. One example is the atmospheric radia-
tion. High-resolution NWP models will need to account for three-dimensional
effects of radiation transfer, inevitably making the radiation parameterisation
schemes computationally very expensive.

Noteworthy are a number of issues that complicate the development of
physical parameterisations for NWP models, of turbulence-convection param-
eterisations in particular. Since NWP models are used operationally, their
quality is judged by the quality of the final product – the weather forecast.
The implementation of any innovation into an NWP model can only be jus-
tified if a new version of the NWP model that incorporates the innovation
beats an older version of the model in terms of the forecast quality. This is
by no means guaranteed. The NWP models are very complex non-linear sys-
tems where a very sophisticated interplay of their various components takes
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place. Apart from the physics and numerics, initialisation and data assimila-
tion should also be borne in mind. Every component of an NWP model has its
deficiencies. Working together, they produce errors that may amplify (a very
unwanted situation), but may partially compensate each other as well. Then,
the incorporation of a new physical parameterisation scheme does not neces-
sarily lead to an improved forecast, no matter how advanced and physically
sound that new scheme is as compared to an old scheme, i.e. to the scheme
currently used in the operational version of a given NWP model. Putting it
differently, it is not sufficient to prove that a new parameterisation scheme is
superior to an old one in that it is more physically sound and performs well
as a stand-alone physical model, e.g. as judged by a comparison of results
from idealised one-dimensional experiments with observational and numerical
data. It should also be ensured that a new parameterisation scheme works in
harmony with the other components of a particular NWP model.

One more aspect of great significance is that in order to be useful a
turbulence-convection parameterisation for NWP should be computationally
efficient. Since the NWP products must be delivered to end users in due time,
it is simply not possible to apply parameterisations whose high computa-
tional cost may lead to a forecast delay. There are many physically sound
turbulence-convection models which proved to be very useful research tools.
However, there is no way to use them in operational NWP models for they
are computationally prohibitively expensive. On the other hand, a useful pa-
rameterisation scheme should account for much of the essential physics of
atmospheric turbulence and convection. The key to the success in developing
turbulence-convection parameterisation schemes for NWP and related appli-
cations is, therefore, to find the best possible compromise between physical
realism and computational economy.

Recent advances in observations and numerical simulations of atmospheric
flows along with new theoretical ideas have led to considerable progress in rep-
resenting turbulence and convection in NWP models. The progress, however,
is somewhat slower than one might wish. Given the severe constraints men-
tioned above, it seems likely that comparatively simple second-order closure
schemes and mass-flux schemes will be further used in NWP models for some
years to come to parameterise turbulence and convection, respectively. The
question then arises whether more regime-dependent sub-models (parameter-
isation schemes) should be developed, or some unification of various parame-
terisation frameworks is possible (see discussions in [12, 188, 146]). A definitive
answer to this question does not seem to exist at present. Some attempts have
already been made to achieve a more unified description of several types of
fluctuating motions (see section 4). It is also the author’s opinion that a more
unified description is desirable. There are several ways to do so, however, and
it is not a priory clear which way should be preferred.

In the next section, we outline the ensemble-mean second-order modelling
framework and briefly discuss parameterisation assumptions that should be
made in order to arrive at a reasonably simple turbulence closure. As we shall
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see subsequently, only a small fraction of what is presented in sections 2.1 and
2.2 is actually used in applications. A rather extended discussion is necessary,
however, in order to understand how simplified parameterisation schemes are
obtained and what is lost on the way (section 2.3). In particular, comprehend-
ing the role of the third-order moments in maintaining the second-order mo-
ment budgets is the key to understanding how non-local transport properties
of convective motions can be accounted for within the second-order modelling
framework. A consideration of parameterisations of the pressure redistribution
terms is required, among other things, to understand how the down-gradient
diffusion approximation for fluxes are derived from the second-moment bud-
get equations. Furthermore, a systematic consideration of the second-order
modelling framework demonstrates the limits of applicability of simplified
turbulence closures. The mass-flux parameterisation schemes are outlined in
section 3. In section 3.3, we explore analogies between the ensemble-mean
and the mass-flux approaches. This exercise helps to elucidate the essential
physics behind various parameterisation assumptions and suggests possible
ways towards their improvement. It also shows that the two approaches have
much in common and suggests how the mass-flux parameterisation ideas can
be translated into the language of the ensemble-mean second-order closures
and vice versa. In section 4, we discuss the steps that should be made towards
an improved description of turbulence and shallow non-precipitating convec-
tion within a unified parameterisation framework. Conclusions are presented
in section 5. The discussion below inevitably reflects the author’s personal ex-
perience, and, to some (hopefully minor) extent, his preferences. The author
apologises for omissions that are unavoidable in any effort to address such an
extensive and difficult subject as atmospheric turbulence.

2 Turbulence Parameterisation Schemes

2.1 Governing Equations

The basis for the development of turbulence parameterisation schemes is the
set of transport equations for the second-order turbulence moments (see e.g.
[153]). Those equations are derived using the Reynolds averaging and are
thought to describe the ensemble-mean statistical moments of fluctuating
fields. As already noted, a filter applied to the governing momentum and
scalar equations does not generally coincide with the Reynolds averaging.
Hence, the sub-grid scale (sub-filter scale) moments of fluctuating fields do
not coincide with the ensemble-mean moments. It is, however, assumed (often
tacitly) that the two sets of moments are not too different. The ensemble-
mean second-order closure approach is commonly taken to parameterise the
SGS fluxes and variances as if these were truly ensemble-mean quantities.
Caution should be exercised since the validity of this assumption deteriorates
as the resolution of atmospheric models is refined.
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For the sake of clarity, we first consider the case of the unsaturated at-
mosphere, treating the atmospheric air as a two-component medium charac-
terised by the two thermodynamic variables, viz., potential temperature θ and
specific humidity q. The real atmosphere is of course more complicated as it
also contains water in liquid and solid forms. Some issues related to modelling
turbulence in the cloudy atmosphere are briefly discussed in section 2.5.

The set of governing equations, hereafter referred to as the ensemble-mean
equations, consists of the transport equations for the Reynolds stress

〈
u′iu
′
j

〉
,

for the scalar fluxes 〈u′iθ′〉 and 〈u′iq′〉, for the scalar variances
〈
θ′2
〉

and
〈
q′2
〉
,

and for the temperature-humidity covariance 〈θ′q′〉. Using the Boussinesq ap-
proximation and assuming that the Reynolds number is sufficiently high to
neglect the molecular diffusion terms in the second-moment budget equations
(a good approximation for the majority of atmospheric flows), they read

(
∂

∂t
+ 〈uk〉

∂

∂xk

)〈
u′iu
′
j

〉
= −

(
〈u′iu′k〉

∂ 〈uj〉
∂xk

+
〈
u′ju
′
k

〉 ∂ 〈ui〉
∂xk

)

−
(
βi
〈
u′jθ
′
v

〉
+ βj 〈u′iθ′v〉

)
− 2

(
εilkΩl

〈
u′ku

′
j

〉
+ εjlkΩl 〈u′ku′i〉

)

−
(〈

u′i
∂p′

∂xj

〉
+

〈
u′j
∂p′

∂xi

〉
− 2

3
δij

∂

∂xk
〈u′kp′〉

)

− ∂

∂xk

(〈
u′ku

′
iu
′
j

〉
+

2

3
δij 〈u′kp′〉

)
− εij , (3)

(
∂

∂t
+ 〈uk〉

∂

∂xk

)
〈u′iθ′〉 = −〈u′kθ′〉

∂ 〈ui〉
∂xk

− 〈u′iu′k〉
∂ 〈θ〉
∂xk

−βi 〈θ′θ′v〉 − 2εijkΩj 〈u′kθ′〉 −
〈
θ′
∂p′

∂xi

〉
− ∂

∂xk
〈u′ku′iθ′〉 − εiθ, (4)

(
∂

∂t
+ 〈uk〉

∂

∂xk

)
〈u′iq′〉 = −〈u′kq′〉

∂ 〈ui〉
∂xk

− 〈u′iu′k〉
∂ 〈q〉
∂xk

−βi 〈q′θ′v〉 − 2εijkΩj 〈u′kq′〉 −
〈
q′
∂p′

∂xi

〉
− ∂

∂xk
〈u′ku′iq′〉 − εiq , (5)

1

2

(
∂

∂t
+ 〈uk〉

∂

∂xk

)〈
θ′2
〉

= −〈u′kθ′〉
∂ 〈θ〉
∂xk

− 1

2

∂

∂xk

〈
u′kθ
′2〉− εθ, (6)
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1

2

(
∂

∂t
+ 〈uk〉

∂

∂xk

)〈
q′2
〉

= −〈u′kq′〉
∂ 〈q〉
∂xk

− 1

2

∂

∂xk

〈
u′kq
′2〉− εq , (7)

(
∂

∂t
+ 〈uk〉

∂

∂xk

)
〈θ′q′〉 = −〈u′kθ′〉

∂ 〈q〉
∂xk

− 〈u′kq′〉
∂ 〈θ〉
∂xk

− ∂

∂xk
〈u′kθ′q′〉 − εθq. (8)

Here, θv = θ[1 + (Rv/Rd − 1)q] ≈ θ(1 + 0.608q) is the virtual potential tem-
perature, Rv and Rd are the gas constants for water vapour and for dry air,
respectively, βi = gi/θr is the buoyancy parameter, gi is the acceleration due
to gravity, θr is the reference value of temperature, Ωi is the angular velocity
of the earth’s rotation, and p is the kinematic pressure (deviation of pressure
from the hydrostatically balanced pressure divided by the reference density
ρr). The dissipation rates of various quantities are denoted by εij , εiθ, εiq , εθ,
εq, and εθq.

Taking the trace of Eq. (3) yields the budget equation for the TKE e =
1
2

〈
u′2i
〉
,

1

2

(
∂

∂t
+ 〈uk〉

∂

∂xk

)〈
u′2i
〉

= −〈u′iu′k〉
∂ 〈ui〉
∂xk

− βi 〈u′iθ′v〉

− ∂

∂xk

(
1

2

〈
u′ku

′2
i

〉
+ 〈u′kp′〉

)
− ε. (9)

where ε = 1
2 εii is the TKE dissipation rate.

It should be noted that the decomposition of the pressure gradient-velocity
correlation

(〈
u′j∂p

′/∂xi
〉

+ 〈u′i∂p′/∂xj〉
)

that appears in the Reynolds stress
equation (3) is not unique. Along with a more traditional decomposition into
pressure-strain and pressure-diffusion, the decomposition into deviatoric and
isotropic parts has also been advocated (e.g. [185]). Keeping in mind that the
issue is not resolved, the former decomposition is adopted here.

2.2 Closure Assumptions

The second-order equations (3)–(9) are not closed as they contain a num-
ber of unknown quantities. There are three groups of unknowns, namely,
the pressure-velocity and pressure-scalar covariances, the third-order velocity-
velocity and velocity-scalar covariances, and the dissipation rates of the
second-order moments. Parameterisations (closure assumptions) are required
for these quantities to express them in terms of the first-order and the
second-order moments involved and thereby close the system of governing
equations. A large number of parameterisations have been developed to
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date that vary greatly in terms of their complexity and field of applica-
tion. These parameterisations are the subject of an extremely voluminous
literature. General scope reviews are given in e.g. [195, 131, 85, 121, 161].
Reviews of second-order closures for geophysical applications are given in
[143, 155, 170, 99, 37, 61, 203, 16, 186], among others. In this section, we
consider parameterisations typically utilised in the second-order modelling of
geophysical flows. We briefly discuss their advantages and limitations, empha-
sising their utility for modelling turbulence in the lower troposphere.

One remark is in order. Plausible parameterisations used in the second-
order equations should satisfy a number of physical and mathematical require-
ments. Apart from the requirements of proper physical dimensions, tensor in-
variance and symmetry, the so-called realisability requirements should also be
met. The concept of realisability [171, 57, 131] states that the Schwarz’ in-
equalities for all turbulence moments must always be satisfied. For the second-
order moments, this means that the velocity variances and the scalar variances
must always be non-negative and that the magnitude of the correlation coef-

ficient 〈a′b′〉 /
(〈
a′2
〉 〈
b′2
〉)1/2

between any two fluctuating quantities a and b
must not exceed 1. Intrinsically realisable models do not generate, by virtue of
their construction, physically impossible results. Notice that the realisability
constraints not only help to develop turbulence models that possess desired
physical and mathematical properties. They are also useful in that they pro-
vide additional relations between the model coefficients, thus reducing the
number of undetermined coefficients to be evaluated (tuned) on the basis of
empirical and/or numerical data.

Pressure Terms

Rotta [169] proposed a return-to-isotropy parameterisation for the pressure-
velocity gradient covariance in turbulent shear flows. That parameterisation
states that the rate of return of turbulence to isotropy is proportional to the
degree of anisotropy and inversely proportional to a certain time scale called
“return-to-isotropy” time scale. Then, the pressure redistribution term, the
fourth term on the r.h.s. of Eq. (3) that we denote by Πij , is given by

(〈
u′i
∂p′

∂xj

〉
+

〈
u′j
∂p′

∂xi

〉
− 2

3
δij

∂

∂xk
〈u′kp′〉

)
≡

Πij =

〈
u′iu
′
j

〉
− 1

3δij 〈u′ku′k〉
τu∗

, (10)

where τu∗ is the return-to-isotropy time scale. The return-to-isotropy formu-
lation was extended to the pressure gradient-scalar covariance, assuming that
the rate of destruction of turbulent scalar flux is related to the flux in ques-
tion through a certain relaxation time scale. By way of example, consider the
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formulation for the potential temperature. Other scalars can be treated in
much the same way. Denoting the pressure gradient-temperature covariance,
the fifth term on the r.h.s. of Eq. (4), by Πθi, we get

〈
θ′
∂p′

∂xi

〉
≡ Πθi =

〈u′iθ′〉
τθ∗

, (11)

where τθ∗ is the relaxation “return-to-isotropy” time scale for potential tem-
perature.

Applying return-to-isotropy parameterisations to the entire pressure terms,
one lumps all the uncertainties on the relaxation time scales. A more common
approach nowadays is to decompose Πij and Πθi into the contributions due to
the non-linear turbulence interactions, mean shear, buoyancy, and the Corio-
lis effects, and to model these contributions separately. Then, the return-to-
isotropy parameterisation is applied to the non-linear turbulence contributions
only. The approximations for the pressure terms Πij and Πθi can be written
in the form (see e.g. [215, 145, 203]):

Πij = Cut
aij
τu
e

+

[
Cus1Sij + Cus2

(
aikSkj + ajkSki −

2

3
δijaklSkl

)
+ Cus3 (aikWkj + ajkWki)

]
e

+Cub

(
βi
〈
u′jθ
′
v

〉
+ βj 〈u′iθ′v〉 −

2

3
δijβk 〈u′kθ′v〉

)

+2Cuc
(
εilkΩl

〈
u′ku

′
j

〉
+ εjlkΩl 〈u′ku′i〉

)
+NLT, (12)

Πθi = Cθt
〈u′iθ′〉
τθ

+
(
Cθs1Sij + Cθs2Wij

) 〈
u′jθ
′〉

+Cθbβi 〈θ′θ′v〉+ 2Cθc εijkΩj 〈u′kθ′〉+NLT. (13)

Here, aij = 2
〈u′iu′j〉
〈u′ku′k〉 −

2
3δij is the departure-from-isotropy tensor, Sij =

1
2

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)
and Wij = 1

2

(
∂〈ui〉
∂xj
− ∂〈uj〉

∂xi

)
are the symmetric and the

antisymmetric parts of the mean-velocity gradient tensor, respectively, and
Cut , Cus1, Cus2, Cus3, Cub , Cuc , Cθt , Cθs1, Cθs2, Cθb and Cθc are dimensionless coef-
ficients. The return-to-isotropy time scales τu and τθ should not be confused
with τu∗ and τθ∗ in Eqs. (10) and (11).

Jones and Musogne [94] (see also [50]) added an additional term to the
parameterisation of Πθi that is proportional to the gradient of mean scalar
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concentration. It reads Cθmeaij∂ 〈θ〉/∂xj , where Cθm is a dimensionless coef-
ficient. The Jones and Musogne approach was further developed by Craft et
al. [46] who incorporated the mean-gradient term into the expression for the
non-linear turbulence (return-to-isotropy) contribution to Πθi.

The mean-shear, buoyancy and Coriolis terms on the r.h.s. of Eqs. (12) and
(13) represent linear contributions to the so-called rapid parts of Πij and Πθi

(the return-to-isotropy contributions to Πij and Πθi are referred to as slow
parts of the pressure terms). Notice that these linear rapid terms have the
same form as the mean-shear, buoyancy and Coriolis terms in Eq. (3) for the
Reynolds stress and Eq. (4) for the temperature flux. Therefore, the effect of
linear rapid terms, sometimes referred to as the implicit mean-shear, buoyancy
and Coriolis terms, is simply to partially offset the respective explicit terms
already present in Eqs. (3) and (4).

Generally speaking, the pressure-velocity and the pressure-scalar covari-
ances depend non-linearly on the departure-from-isotropy tensor and on the
other tensors involved, e.g. on the rotation tensor εikjΩk. The non-linear parts
of Πij and Πθi are symbolised by NLT on the r.h.s. of Eqs. (12) and (13).
Numerous elaborate non-linear formulations of the pressure terms have been
proposed (e.g. [131, 215, 167, 46, 85, 145]). Particular emphasis is placed on
the realisability of parameterised pressure terms, following different ways of
imposing realisability constraints. The non-linear models perform better than
the simplified linear models, particularly in flows with large departures from
isotropy. However, the non-linear models are inevitably complex. They are
often inconvenient to use and are computationally expensive. It is therefore
common practice in geophysical applications to put up with the shortcom-
ings of linear models and apply Eqs. (12) and (13) without NLTs. In doing
so the TKE dissipation time scale τε = e/ε is typically used instead of the
return-to-isotropy time scales τu and τθ, assuming that all these time scales
are proportional to each other. The dimensionless coefficients Cut through Cθc
in Eqs. (12) and (13) are adjusted to provide a good fit of the model results
to empirical data, i.e. these coefficients are treated as tuning model param-
eters. Some estimates of these dimensionless coefficients used in geophysical
turbulence modelling are given in [203]. Several important points should be
discussed in relation to the parameterisation of the pressure terms.

First and foremost we recall how the parameterisations for the pressure
terms are derived. Taking the divergence of the transport equation for the
fluctuating velocity, a Poisson equation for the fluctuating pressure is ob-
tained. Parameterisations for various contributions to Πij and Πθi are then
developed on the basis of the Green’s function solution to the Poisson equation
[45]. That solution depends on the entire fluid domain considered. In practice,
however, the two-point correlations are assumed to be different from zero only
in the vicinity of the point where the pressure terms are evaluated. Then, the
pressure-velocity and pressure-scalar covariances are modelled as if they were
local (dependent on the flow variables at the same point), although they may
actually be non-local (dependent on the flow variables in the entire domain).
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Therefore, formulations of the type given by Eqs. (12) and (13) have inherent
limitations. These formulations may not perform well in situation where tur-
bulence is essentially non-local, as is, for example, the case for atmospheric
convection. Notice that both linear and non-linear one-point formulations for
Πij and Πθi suffer from this shortcoming.

Although linear models of Πij and Πθi are attractive from the standpoint
of practical applications, they may entirely fail in some situations of interest.
An illustrative example is turbulent convection driven by the surface buoyancy
flux and affected by rotation [148, 145]. In the seemingly simple case where the
rotation axis is aligned with the vector of gravity, the linear model predicts
a Coriolis contribution to Πθi that is identically zero, although the Coriolis
contribution becomes one of the dominant parts of Πθi as the rotation rate
increases. As shown in [145], a non-linear formulation is required which is at
least quadratic in the rotation tensor εikjΩk. Fortunately, the effect of rotation
on turbulence is of little importance in most atmospheric flows.2 Similar prob-
lems may, however, be encountered when the effects of buoyancy and shear
are considered. Caution must be exercised when simplified parameterisations
are applied.

To conclude this section, we remark that modelling the pressure transport
term 2

3δij∂ 〈u′kp′〉 /∂xk in Eq. (3) represents a separate problem. Lumley [131]
and Shih [174] discussed this problem in some detail. The pressure transport
term is usually smaller than the third-order velocity correlation term, although
this is not always the case. It is standard practice in applied turbulence mod-
elling to neglect the pressure transport term entirely, or to incorporate it into
a parameterisation of the third-order velocity correlation.

Third-Order Moments

The second group of terms that require closure assumptions includes tur-
bulence moments of the third-order. These terms enter Eqs. (3)–(9) in the
divergence form. They describe the transport of the second-order moments by
the fluctuating velocity. Numerous formulations have been proposed for the
third-order transport terms (e.g. [49, 86, 118, 43, 83]), ranging from the sim-
plest down-gradient approximations to very complex formulations based on a
sophisticated treatment of transport equations for the third-order turbulence
moments. Simple down-gradient approximations have been most popular in
geophysical applications. They read

〈
u′iu
′
ju
′
k

〉
= −Kuu

(
∂
〈
u′iu
′
j

〉

∂xk
+
∂ 〈u′iu′k〉
∂xj

+
∂
〈
u′ju
′
k

〉

∂xi

)
, (14)

2 This holds for deep convective updraughts, boundary-layer plumes and rolls, and
eddy motions on a smaller scale. Eddy motions of larger spatial scale, such as
synoptic weather systems (e.g. cyclones and fronts) and regional circulations, do
feel the earth’s rotation. These motions are, however, resolved by the present-day
NWP models so that there is no need for a parameterisation.
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〈
u′iu
′
jθ
′〉 = −Kuθ

(
∂ 〈u′iθ′〉
∂xj

+
∂
〈
u′jθ
′〉

∂xi

)
, (15)

〈
u′iθ
′2〉 = −Kθθ

∂
〈
θ′2
〉

∂xi
, (16)

where Kuu, Kuθ and Kθθ are the eddy diffusion coefficients. Other scalar
quantities are treated in the same way as the potential temperature. The
down-gradient approximation for the TKE transport term reads

〈
u′iu
′2
k

〉
= −Ke

∂
〈
u′2k
〉

∂xi
, (17)

where Ke is the eddy diffusion coefficient with respect to the TKE.
The down-gradient formulations (14)–(17) are attractive for their simplic-

ity. It has long since been recognised, however, that their performance in
complex flows leaves very much to be desired and a more accurate treatment
of the third-order moments is required. This is particularly true for convec-
tive flows (e.g. [151, 148]), but may also be the case for stably stratified flows
(e.g. [46]). In an attempt to develop a physically plausible parameterisation,
the focus has been on buoyant convection where the third-order moments are
largely responsible for non-local transport properties of turbulent motions.

A straightforward way is to derive expressions for the third-order moments
from their budget equations. These equations require closure assumptions in
much the same way as the second-moment equations. In particular, the fourth-
order moments that describe the transport of the third-order quantities by the
fluctuating velocity should be parameterised. The so-called Millionshchikov
hypothesis [144] has been used for this purpose over several decades. It states
that the fourth-order moments can be considered as quasi-Gaussian, even
though the third-order moments are non-zero. That is, the following relation
holds for any four fluctuating quantities a, b, c and d:

〈a′b′c′d′〉 = 〈a′b′〉 〈c′d′〉+ 〈a′c′〉 〈b′d′〉+ 〈a′d′〉 〈b′c′〉 . (18)

Using Eq. (18) for the fourth-order moments, the Rotta-type formulations
for the pressure terms, and the relaxation-type formulations for the dissipa-
tion terms, then neglecting the advection and the time-rate-of-change of the
third-order moments, a closed set of algebraic expressions for the third-order
moments is derived. Canuto et al. [43] developed such expressions for the
horizontally-homogeneous convective boundary layer (CBL). The third-order
moments appear to be linear combinations of the derivatives (in the x3 verti-
cal direction only) of all second-order moments involved multiplied by certain
combinations of governing parameters with dimensions of eddy diffusivity.
Some of those combinations explicitly depend on the buoyancy parameter.
Canuto et al. [42] employed a modified quasi-normal approximation that ba-
sically amounts to multiplying the r.h.s. of Eq. (18) by a correction function



Turbulence in Lower Troposphere 13

of the dissipation time scale and of the buoyancy time scale (a reciprocal
of the buoyancy frequency). These authors proposed modified (and slightly
simplified) expressions for the third-order moments that show a better agree-
ment with large-eddy simulation (LES) data from a shear-free CBL than the
expressions given in [43].

An attractive way of looking at the problem of non-local convective trans-
port is based on the observation that convective turbulence is skewed. For ex-
ample, in the CBL driven by the surface buoyancy flux, the vertical transport
in mid-CBL is dominated by quasi-organised motions, convective updraughts,
whose size is of the order of the CBL depth. The updraughts are more lo-
calised (occupy a smaller area) than the compensating downward motions,
downdraughts. A quantitative measure of this localisation is the vertical-

velocity skewness Sw =
〈
u′33
〉
/
〈
u′23
〉3/2

. Likewise the potential-temperature

skewness Sθ =
〈
θ′3
〉
/
〈
θ′2
〉3/2

is a quantitative measure of the localisation of
potential-temperature anomalies (with respect to a horizontal mean). Guided
by this view of convective circulation and of the bottom-up top-down trans-
port asymmetry [210], Abdella and McFarlane [1], Canuto and Dubovikov
[41], and Zilitinkevich et al. [227] proposed the following parameterisation for
the flux of potential-temperature flux:

〈
u′23 θ

′〉 = Sw
〈
u′23
〉1/2 〈u′3θ′〉 . (19)

This expression has an advective rather than a down-gradient diffusive form,
indicating that the temperature flux is transported by the CBL-scale quasi-
organised eddies rather than diffused by small-scale random turbulence.

The quantity Sw
〈
u′23
〉1/2

=
〈
u′33
〉
/
〈
u′23
〉

was termed “large-eddy skewed-
turbulence advection velocity” in [227]. Zilitinkevich et al. [227] (see also [83])
added a conventional down-gradient diffusion term −Kwθ∂ 〈u′3θ′〉/∂x3, Kwθ

being the turbulent diffusivity with respect to 〈u′3θ′〉, to the r.h.s. of Eq. (19)
in order to arrive at an interpolation formula that should work in both well-
mixed regions of the flow, where advective transport by the CBL-scale eddies
dominates, and in stratified regions, where turbulent transport is primarily of
diffusive character.

A skewness-dependent parameterisation for the flux of potential-tempera-
ture variance was formulated by Mironov et al. [147], Abdella and McFarlane
[2], and Abdella and Petersen [3]. It reads

〈
u′3θ
′2〉 = Sθ

〈
θ′2
〉1/2 〈u′3θ′〉 . (20)

An interpolation formula for
〈
u′3θ
′2〉 that incorporates the down-gradient term

−Kθθ∂
〈
θ′2
〉
/∂x3, Kθθ being the turbulent diffusivity with respect to

〈
θ′2
〉
,

was presented in [83].
Equations (19) and (20) are consistent with the top-hat representation of

fluctuating quantities. The top-hat representation is central to the mass-flux
approach widely used to parameterise convection in numerical models of the
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atmosphere. The simplest top-hat mass-flux model can be formulated in terms
of a probability distribution function (PDF) which consists of only two Dirac
delta functions, i.e. the probabilities of motions to be either updraughts or
downdraughts are Pu and Pd, respectively, and Pu+Pd = 1. A comprehensive
account of the two-delta-function mass-flux framework is given by Randall et
al. [163], Lappen and Randall [111, 112], and Gryanik and Hartmann [83]. In
order to emphasise a different localisation (different fractional area coverage of
positive/negative anomalies with respect to a horizontal mean) of the vertical
velocity and of the scalar quantities, as manifested by a difference between
Sw and Sθ (see Fig. 1 in [147]), Gryanik and Hartmann [83] refer to their
approach as to the two-scale mass-flux approach. Notice that different PDFs
can be used to develop parameterisations of statistical moments of turbulence.
For example, Larson and Golaz [117] developed parameterisations of various
third-order and fourth-order moments, using a combination of two trivariate
Gaussian functions. These authors considered moist CBL and presented their
results in terms of vertical velocity, liquid water potential temperature and
total water specific humidity. The formulations based on the two-Gaussian-
function PDF revealed a somewhat improved fit to data for some moments as
compared to the formulations based on the two-delta-function PDF.

Equations (19) and (20) require that Sw and Sθ be specified. If the budget
equations for the third-order moments are used for this purpose as discussed
above, formulations for the fourth-order moments are required. Taking the
two-scale mass-flux approach, Gryanik and Hartmann [83] and Gryanik et al.
[84] proposed (see also [2])

〈
u′43
〉

= 3

(
1 +

1

3
S2
w

)〈
u′23
〉2
,

〈
θ′4
〉

= 3

(
1 +

1

3
S2
θ

)〈
θ′2
〉2
, (21)

〈
u′33 θ

′〉 = 3

(
1 +

1

3
S2
w

)〈
u′23
〉
〈u′3θ′〉 , (22)

〈
u′3θ
′3〉 = 3

(
1 +

1

3
S2
θ

)〈
θ′2
〉
〈u′3θ′〉 , (23)

〈
u′23 θ

′2〉 =
〈
u′23
〉 〈
θ′2
〉

+ 2 〈u′3θ′〉
2

+ SwSθ 〈u′3θ′〉
〈
u′23
〉1/2 〈

θ′2
〉1/2

. (24)

Similar expressions for the fourth-order moments that incorporate horizontal
velocity components u1 and u2 are presented in [84]. Both Eqs. (19) and (20)
for the third-order moments and Eqs. (21)–(24) for the fourth-order moments
were favourably tested against data from LES and from aircraft measurements
in the atmospheric CBL [83, 84], from numerical simulation of open-ocean
deep convection [129], and from numerical simulation of solar and stellar con-
vection [109].
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Equations (21)–(24) amount to a generalisation of the Millionshchikov hy-
pothesis. Indeed, in the case of isotropic turbulence, Sw and Sθ vanish and
Eqs. (21)–(24) reduce to the form given by Eq. (18). In the other limiting
case of very skewed turbulence, the terms with Sw and Sθ dominate over the
other terms and Eqs. (21)–(24) take on the form suggested by the top-hat
mass-flux approach. Then, Eqs. (21)–(24) represent the simplest linear inter-
polation between the two limiting cases, where dimensionless coefficients on
the r.h.s. (3, 1 and 1/3) are chosen in such a way that these limiting cases are
satisfied exactly. It should be emphasised that Eqs. (19) and (20) for the third-
order moments and Eqs. (21)–(24) for the fourth-order moments taken in the
limit of large skewness are in essence the top-hat mass-flux parameterisations
expressed in terms of the ensemble-mean quantities. Analogies between the
ensemble-mean and the mass-flux modelling frameworks are discussed below
in greater depth.

Noteworthy also is that the expressions (21)–(24) for the fourth-order mo-
ments satisfy the realisability constraints [5, 6, 7, 84] regardless of the mag-
nitude of skewness. This is not the case for Eq. (18) that violates realisability
if the magnitude of Sw or of Sθ exceeds 21/2 [84].

Parameterisations (19)–(24) are developed for the temperature-stratified
horizontally-homogeneous CBL, where potential temperature is the only ther-
modynamic variable and all quantities of interest depend on the x3 vertical
co-ordinate only. Their extension to the three-dimensional case is by no means
trivial but seems to be manageable (D. Mironov, A note on the parameterisa-
tion of the third-order transport in skewed convective boundary-layer turbu-
lence, unpublished manuscript; V. Gryanik, personal communication). Such
an extension is highly desirable and should be developed. The same is true
for the extension to the moist atmosphere, where, apart from potential tem-
perature, water in its three phases should be considered.

Dissipation Rates

Finally, the rates of dissipation of the second-order turbulence moments should
be parameterised. It is common practice to assume, following Kolmogorov
[105], local isotropy at small scales, giving εiθ = 0, εiq = 0, and εij = 2

3δijε.
In order to determine the TKE dissipation rate, a prognostic equation for
ε has been used in engineering and geophysics over several decades (e.g.
[49, 118, 168, 58, 10, 46, 37, 202, 16]). The dissipation rates of the scalar
quantities, εθ, εq and εθq, are either related to e and ε through εθ ∝ e−1ε

〈
θ′2
〉

(similarly for εq and εθq), or computed from their own prognostic equa-
tions (e.g. [157]). Once the dissipation rates are determined, the various time
scales, length scales and eddy diffusion coefficients are computed diagnosti-
cally through these dissipation rates and the corresponding variances. For
example, the quantities with respect to the TKE are given by l ∝ ε−1e3/2,
τ ∝ ε−1e and K ∝ ε−1e2. In this way the system of the second-order equations
is closed.
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Apart from the ε equation, prognostic equations have been formulated for
other quantities that determine the turbulence length/time scale. Prognostic
equations for the product e l of the TKE and the turbulence length scale [143],
for the reciprocal of turbulence time scale e−1ε [206, 204], and for the eddy
diffusivity ε−1e2 [214] are examples. These closure ideas were generalised by
Umlauf and Burchard [202] who developed a generic equation for the quan-
tity emln that incorporates the equations mentioned above as particular cases.
These authors proposed a rational way to calibrate their generalised model
in the so-called two-equation second-order modelling framework, where only
the TKE equation and the equation for emln are carried as prognostic equa-
tions whereas the other second-order equations are reduced to the diagnostic
algebraic expressions. The exponents m and n along with the other model
parameters are evaluated by demanding consistency with a number of well-
documented reference cases, such as the logarithmic boundary layer and the
decay of homogeneous turbulence.

The prognostic equations for the dissipation rates of TKE and of scalar
variances are very complex. They contain a number of terms whose physical
nature is not satisfactorily understood. In fact, all terms in the dissipation-
rate equations that describe production, destruction and turbulent transport
of the dissipation rates should be parameterised, and the validity of those pa-
rameterisations is uncertain. It has often been questioned whether prognostic
equations for the dissipation rates are really necessary, or diagnostic expres-
sions may be sufficient, at least in case of a relatively simple flow geometry.
The latter viewpoint is often held in geophysical applications. A simple and
an economical way to determine the dissipation rates of the TKE and of the
scalar variances is to compute them from the following expressions:

ε = Cεe
e3/2

l
, εθ = Cεθ

〈
θ′2
〉
e1/2

l
, (25)

using one or the other formulation for the turbulence length scale l. Here,
Cεe and Cεθ are dimensionless coefficients. The dissipation rates εq and εθq of
the humidity variance and of the potential temperature-humidity covariance,
respectively, are computed similarly to εθ. The above expressions for the dis-
sipation rates can be recast in terms of the turbulence time scale τ = e−1/2l.

There have been numerous proposals for expressions to compute the length
scale l. The simplest of them seems to have been Blackadar’s formula [28],
l−1 = l−1

sfc + l−1
∞ , that interpolates between the two limits, namely, l = lsfc =

κx3, κ being the von Kármán constant, as x3 → 0, and l = l∞ as x3 →∞. This
yields the logarithmic profiles close to the underlying surface and prevents the
turbulence length scale from growing without bound well above the surface.
The free-flow length scale l∞ is either set proportional to the PBL depth, or
simply set to a constant value (typically from one hundred to a few hundred
metres in the atmospheric models). One more formulation is due to Mellor and

Yamada [142] who proposed l∞ = C∞
(∫∞

0 x3e
1/2dx3

)−1 ∫∞
0 e1/2dx3, where

C∞ is a dimensionless coefficient of order 10−1. Other limitations on l have
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also been used. The length scale is taken to be limited by the shear length

scale ls = Cls (SijSij)
−1/2

e1/2 (e.g. [44] and references therein), and, in case
of stable density stratification, by the buoyancy length scale lb = ClbN

−1e1/2,
where N is the buoyancy frequency (e.g. [217, 34, 228]). In rotating flows, the

length scale is taken to be limited by lr = Clr (ΩiΩi)
−1/2

e1/2 (e.g. [87]). This
limitation is of little importance in the atmosphere. It is important in many
geophysical, astrophysical and technical applications. A prominent geophys-
ical example is open-ocean deep convection [138]. Dimensionless constants
Cls, Clb and Clr are evaluated on the basis of empirical and numerical data.
Readers are referred to chapter 4 of this volume for further discussion of the
dissipation rates and of the turbulence length scale.

2.3 Simplifications

The second-order equations closed as discussed above would probably do a
fairly nice job of describing most salient features of turbulence in the lower
troposphere. However, the full set of the (time-dependent, three-dimensional)
second-order equations is still far too complex and expensive computationally.
Further simplifications are necessary in order to obtain a reasonably simple
turbulence parameterisation scheme that can be accommodated by a numer-
ical model of the atmosphere3.

Truncation

A family of second-order closures has been developed by Mellor and Yamada
[142] (see also [143], a comprehensive discussion of the Mellor and Yamada
closures and their numerous derivatives is given in [155]). They utilised the
second invariant A2 = aijaij of the departure-from-isotropy tensor as the
scaling parameter that measures the degree of flow anisotropy. Using the ob-
servation that A2 is small and invoking additional arguments to scale the ad-
vection and the turbulent diffusion terms, they successively discarded terms
of different order in A2 in the second-moment equations. The result proved
to be a hierarchy of truncated turbulence closure schemes, ranging from the
complete second-order closure to a simple algebraic stress model, where all
second-moment equations are reduced to algebraic expressions. That hierar-
chy of closure schemes has found a wide utility in geophysical applications
and is often referred to collectively as the Mellor-Yamada closures ever since.

The scheme termed the level 2.5 Mellor-Yamada scheme has been most
popular in practical applications. The only prognostic equation carried by
that scheme is the TKE equation. The TKE diffusion is usually parameterised
through the simplest down-gradient approximation. All other second-moment

3 The material in sections 2.3, 2.4 and 2.5 is somewhat more technical. Some read-
ers may prefer to proceed directly to section 3 for an outline of the mass-flux
convection schemes.
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equations are reduced to algebraic expressions by neglecting the time-rate-of-
change, the advection and the turbulent diffusion terms. The pressure-velocity
and the pressure-scalar covariances are parameterised through Eqs. (12) and
(13), typically without non-linear terms, or simply through the Rotta-type
return-to-isotropy formulations (10) and (11). Notice that the use of Eqs. (12)
and (13) without non-linear terms instead of Eqs. (10) and (11) does not rad-
ically change the result. Since the linear rapid terms on the r.h.s. of Eqs. (12)
and (13) have the same form as the respective terms in Eqs. (3) and (4), the
only (though not unimportant) effect of their inclusion is to modify dimen-
sionless coefficients in front of various terms in the resulting expressions for
the Reynolds stress and for the scalar fluxes. The dissipation rates of the TKE
and of the scalar variances are parameterised through the algebraic relations
(25). A turbulence model that carries only one prognostic equation, namely,
the TKE equation, is referred to as the one-equation model. In case the trans-
port equation is used for the TKE dissipation rate, or for any quantity emln

(see above), the resulting turbulence model is referred to as the two-equation
model.

Boundary-Layer Approximation

Another simplification typically involved in geophysical applications is the so-
called boundary-layer approximation where the flow is treated as horizontally-
homogeneous. This approximation is fairly accurate for large-scale and meso-
scale NWP models, whose grid-box aspect ratio (the ratio of the horizontal
grid size to the vertical grid size) is large. In the framework of the boundary-
layer approximation, all derivatives in x1 and x2 horizontal directions in the
second-moment equations are neglected and the grid-box mean vertical ve-
locity 〈u3〉 is set to zero (in the second-moment equations, but not in the
equations for the mean fields). The one-equation turbulence closure scheme in
the boundary-layer approximation has been probably the most popular tur-
bulence scheme in NWP. The scheme carries the prognostic TKE equation.
All other second-moment equations are reduced to algebraic relations that
constitute a system of linear equations for variances and fluxes. The solution
to that system yields the expressions for the vertical fluxes of momentum and
scalars in the following down-gradient form:

〈u′3f ′〉 = −Sf le1/2∂ 〈f〉
∂x3

, (26)

where a generic variable f stands for u1, u2, θ or q. The so-called stability
functions Sf depend on the dimensionless buoyancy gradient ε−2e2N2 and

on the dimensionless shear ε−2e2
[
(∂ 〈u1〉 /∂x3)2 + (∂ 〈u2〉 /∂x3)2

]
. They in-

corporate various combinations of dimensionless coefficients that stem from
the parameterisations of the pressure-velocity and pressure-scalar covariances
and of the dissipation rates. The turbulence length scale l is parameterised
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algebraically as discussed above. Examples of one-equation turbulence clo-
sure schemes for NWP purposes are the schemes used operationally in the
limited-area model COSMO (formerly referred to as LM [187, 164, 165]) and
HIRLAM [205].

At the next level of simplification, the time-rate-of-change, the advection
and the turbulent diffusion of the TKE are neglected so that all second-
moment equations are reduced to algebraic relations. The resulting expressions
for fluxes are essentially of the down-gradient form 〈u′3f ′〉 = −Kf∂ 〈f〉/∂x3,
where the diffusion coefficients Kf are functions of the turbulence length scale
and of the vertical gradients of velocity and buoyancy. These diffusion coeffi-
cients are often adjusted in a somewhat ad hoc manner in order to improve the
overall performance of an NWP model (cf. the situation with mixing-length
models in astrophysics discussed in chapter 3 of this volume). The algebraic
turbulence closure schemes are used, for example, in the global NWP mod-
els GME [136] of the German Weather Service (DWD) and IFS (Integrated
Forecasting System) [93] of the European Centre for Medium-Range Weather
Forecasts (ECMWF).

Unfortunately, no simplification is possible without the sacrifice of relevant
information and hence of accuracy, and this is particularly true of truncated
second-order closures. Well-calibrated algebraic and one-equation turbulence
closure schemes show a good performance in turbulent flows where the static
stability is close to neutral. However, they are known to have serious problems
in stratified flows, both stable and convective.

Performance of Simplified Closures in Stratified Flows

Turbulence in stably stratified boundary layers is weak and often intermittent
in space and time [77]. The stable boundary layer (SBL) is exposed to various
types of meso-scale motions, such as gravity waves and meanders of cold air, to
horizontal inhomogeneity of the underlying surface, and to the radiation flux
divergence. These and other effects significantly complicate the SBL structure
[135, 134, 62, 219, 183]. Current turbulence schemes do not include many of
these important effects in a physically meaningful way [133] and are not able to
satisfactorily describe the SBL turbulence structure. Most current turbulence
schemes tend to extinguish turbulence in case of strong static stability, when

the gradient Richardson number Ri =
[
(∂ 〈u1〉 /∂x3)2 + (∂ 〈u2〉 /∂x3)2

]−1

N2

exceeds its critical value of order 0.2 (see chapter 4 of this volume for further
discussion of this issue). Then, the schemes are tuned in an ad hoc way to
prevent turbulence from dying out entirely as the static stability increases. A
simple device often applied in NWP models is a “minimum diffusion coeffi-
cient”. That is, the eddy diffusivity for momentum and scalars is limited from
below by a predefined constant value to provide “residual” mixing when the
turbulence parameterisation scheme predicts no turbulence at all. A tuning
device of this sort may have a detrimental effect on the NWP model perfor-
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mance in some important situations. For example, it may destroy a delicate
balance of physical processes (radiative and evaporative cooling, advection by
mean vertical velocity, and turbulent entrainment) near the top of the stable
or neutral PBL capped by stratocumulus clouds, leading to the disappearance
of clouds where they should actually be maintained.

A physically plausible approach to the problem of maintaining turbulence
in case of strong static stability was taken by Raschendorfer [164, 165]. He
surmised that turbulence in the shear-driven SBL would not collapse entirely,
if the underlying surface at the sub-grid scale is horizontally inhomogeneous
with respect to the temperature. Spatial buoyancy differences due to this
temperature inhomogeneity induce horizontal pressure gradients that in turn
set the air in motion. Although these air motions experience friction at the
underlying surface, they may not contribute to the grid-box mean momentum
flux as the flow patterns in different directions may counteract each other
(cf. cell-like motions in the shear-free CBL that efficiently transport heat but
make no contribution to the grid-box momentum flux). However, they do
contribute to the grid-scale mean TKE, preventing the SBL from collapsing
entirely. Having assumed the above mechanism of maintenance of turbulence
in stable stratification, Raschendorfer extended the one-equation turbulence
closure scheme of the NWP model COSMO so that the scheme is guarded
against sharp turbulence cut-off at a critical Richardson number.

Worthy of mention is an attempt to derive eddy viscosity in stably strati-
fied turbulent flows from first principles made by Sukoriansky et al. [192, 190].
Their spectral model is free of the sharp cut-off critical Richardson number
deficiency. It predicts turbulent eddy diffusivities for wind and scalar quanti-
ties in good agreement with observations. The new theoretical findings have
been used in the framework of the two-equation e-ε turbulence closure scheme
to model atmospheric SBL over sea ice [191].

Difficulties of simplified turbulence closure schemes in convective condi-
tions are associated first of all with their inability to adequately account for
non-local transport properties of convective turbulence. This is not particu-
larly surprising, however, considering that in the simplified truncated closures
the third-order terms largely responsible for non-local transport of momen-
tum and scalars are either entirely neglected or parameterised very crudely.
Local turbulence schemes are typically unable to reproduce the well-mixed
character of the CBL with counter-gradient fluxes of scalars often encoun-
tered in the upper part of the boundary layer. They also fail to correctly
represent entrainment at the CBL top, leading to erroneous prediction of the
CBL temperature and humidity and of the CBL height. One way to cope with
these difficulties is to introduce more of the essential physics into the second-
order closure scheme, e.g. by using the skewness-dependent formulations of
third-order transport terms discussed above.

Notice that simplified truncated second-order closure schemes are almost
inevitably non-realisable. In order to prevent such schemes from producing
unphysical solutions, a clipping operation is usually applied. Normal stresses
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and scalar variances are set to zero if they become negative, and Schwarz’
inequalities for the third-order moments are strictly enforced. The clipping
operation has proven to be an effective tool [55] and is considered to be legiti-
mate in engineering and geophysical applications [174]. It should, however, be
avoided whenever possible; that is to say, effort should be mounted to develop
closure schemes where clipping is reduced to a minimum.

The Similarity Approach

An alternative way to describe boundary-layer turbulence and shallow convec-
tion is through the use of the similarity theory for boundary-layer flows. The
approach basically amounts to representing the vertical profiles of turbulent
quantities through the shape functions, using the scales of variables perti-
nent to the mixing regime in question. The scaling ideas should be consistent
with the budget equations for turbulence moments, at least in the integral
sense (cf. the surface-layer flux-profile relationships of the Monin-Obukhov
similarity theory considered in the next section).

Taking the similarity approach, shapes of the vertical profiles of the turbu-
lent diffusion coefficients are prescribed and the magnitudes of diffusion coeffi-
cients and of other turbulence characteristics, such as the fluxes due to entrain-
ment at the boundary layer top, are expressed through the appropriate scales
of length, velocity, temperature and humidity. To this end, the now classical
Deardorff convective scaling [53, 54] is widely used with the CBL depth h as

the bulk length scale, and w∗ = (hBs)
1/3 and θ∗ = 〈u′3θ′〉s /w∗ as the bulk ve-

locity and potential-temperature scales, respectively. Here, Bs = β3 〈u′3θ′v〉s is
the surface buoyancy flux, and 〈u′3θ′〉s and 〈u′3θ′v〉s are the surface fluxes of po-
tential temperature and of virtual potential temperature, respectively. The hu-
midity scale is introduced similarly to the potential-temperature scale. Power-
law functions of dimensionless height x3/h are commonly utilised for the
vertical-profile shape functions. For example, turbulent temperature diffusiv-
ity in shear-free CBL is expressed as Kθ/w∗h = CKθ(x3/h) (1− Centrx3/h)

α
,

where CKθ, Centr and α are disposable parameters, and Centr is chosen so
as to provide the right amount of entrainment at the CBL top. In order to
account for the production of turbulence energy due to mean velocity shear, a
convective velocity scale is modified through the incorporation of the surface

friction velocity u∗ =
(
〈u′3u′1〉2s + 〈u′3u′2〉2s

)1/4

, where the subscript “s” indi-

cates the surface values. Using the similarity approach, momentum and scalar
fluxes are not directly dependent on local gradients; rather they are functions
of the integral scales that characterise the CBL as a whole and thus account
(at least implicitly) for the non-local effects. Such a “non-local” scheme is
proposed in [92], using earlier ideas presented in [201].

An advanced boundary layer mixing scheme based on the similarity ap-
proach was developed by Lock et al. ([128, 139], see also [126, 127]) for use in
the UK Met Office NWP and climate models [48]. The scheme incorporates an
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entrainment parameterisation based on a generalised turbulent velocity scale
that accounts for the generation of turbulence due to the mean velocity shear,
due to the surface heating, due to the cloud-top radiative cooling, and due
to the evaporative cooling of entrained air. The unstable layers are identified
on the basis of the buoyancy of undilute parcels lifted from the surface and
lowered from the cloud top with due regard for latent heat effects. The mixing
regimes considered by the scheme range from dry SBL to a complex configu-
ration, where a layer of stratocumulus clouds is separated from the unstable
surface layer by a cumulus cloud layer. As different mixing parameterisations
are used for different regimes, the scheme includes a sophisticated decision tree
to discriminate between various boundary-layer mixing regimes. It should be
noted that the scheme does not operate throughout the atmosphere. It is
applied to about the lowest 2.5 km [128]. Mixing through the rest of the at-
mosphere, as well as through the cumulus cloud layers diagnosed within the
area of operation of the turbulence scheme, is computed with the convection
scheme [82]. Convection schemes currently used in NWP and climate models
are developed on the basis of the mass-flux approach (section 3).

2.4 The Surface Layer

The layer in the immediate vicinity of the underlying surface, the surface layer,
deserves special attention. The surface layer looms large in meteorology as it is
this layer where the interaction of the atmosphere with the underlying surface
takes place. In NWP and climate models, the surface-layer resistance, heat
and mass transfer laws are used to compute surface fluxes of momentum, heat,
water vapour, and if necessary, of other scalar quantities, and are, therefore,
the key components of the physical parameterisation package.

The now classical Monin-Obukhov similarity theory [156, 152] has been
commonly used for more than half a century to describe the vertical structure
of the atmospheric surface layer. For lack of space, it is impossible to give an
account of the Monin-Obukhov theory in the present paper. Readers are re-
ferred to [63, 218, 153, 184, 67, 95], where various aspects of the surface-layer
similarity are discussed. Here we only present the Monin-Obukhov surface-
layer flux-profile relationships for the wind velocity and for the potential tem-
perature (the formulation for specific humidity is similar to that for potential
temperature). They read

u(z)− us =
u∗
κ

[
ln

z

z0u
+ ψu(z/L)

]
, (27)

θ(z)− θs = −Prn
〈w′θ′〉s
κu∗

[
ln

z

z0θ
+ ψθ(z/L)

]
. (28)

Here, z = x3 is the height above the underlying surface, u = u1 is the compo-
nent of the wind vector along the x1 horizontal axis that is taken to be aligned
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with the surface stress (then the wind component along the x2 axis is zero),
w = u3 is the vertical component of the wind vector (this notation is used to
stress the one-dimensionality of the approach), us and θs are the values of u
and θ, respectively, at the underlying surface (us is zero at the rigid surface),
z0u and z0θ are the roughness lengths with respect to wind velocity and po-
tential temperature, respectively, and Prn is the turbulent Prandtl number at
neutral static stability. The dimensionless functions of the Monin-Obukhov
similarity theory, ψu and ψθ, account for the effect of static stability in the
surface layer. The Obukhov length [156] is defined as L = −u3

∗/(κBs). The
von Kármán constant κ is traditionally included into the definition of L. At
z/L� 1, i.e. in the lower part of the stratified surface layer, or throughout the
surface layer in near-neutral conditions, Eqs. (27)–(28) reduce to the classical
logarithmic profiles, where the roughness lengths are the principal parameters
that describe the interaction of the flow with the underlying surface.

The surface-layer formulations are often presented in terms of the drag
coefficient and the heat and mass transfer coefficients. One more alternative
formulation is through the resistance of the surface layer to the transfer of
momentum, heat and mass. The resistance is a more “physical” parameter,
i.e. the parameter more directly related to the flux and the gradient of the
quantity in question than the roughness length that should be viewed as a
more “derived” parameter [137]. Nonetheless, the majority of the surface-
layer formulations have been given in terms of the roughness lengths and
the Monin-Obukhov similarity functions, perhaps due to their convenience in
representing the profiles.

There is a substantial body of literature on the Monin-Obukhov surface-
layer similarity functions. Readers are referred to the review articles [88, 89]
and to the historical surveys [38, 64], where numerous further references can be
found. As to the parameterisation of roughness lengths with respect to wind
and scalar quantities (more generally, the air-land and air-sea interaction),
these are discussed in [103, 35, 24, 67, 166, 106, 137, 68, 99, 225, 8, 33], to
mention a few.

It should be emphasised that the Monin-Obukhov flux-profile relationships
are consistent with the budget equations for the second-order turbulence mo-
ments. In essence, they represent the second-moment budgets that are trun-
cated under the surface-layer similarity-theory assumptions. These are that
(i) turbulence is continuous, stationary and horizontally-homogeneous, (ii)
third-order turbulent transport is negligible, and (iii) the surface layer is a
small portion of the PBL, so that the directional wind turning is negligible
and turbulent fluxes can be considered approximately height-constant, equal
to their surface values (in other words, changes of fluxes over the surface layer
are small as compared to their changes over the entire PBL). For example, the
logarithmic wind profile is readily obtained from the TKE budget equation
where only the shear-production term and the dissipation term are retained.
Using the surface-layer scaling relations, e ∝ u2

∗ and l ∝ z, to express the
TKE dissipation rate through Eq. (25) along with the assumption of height-
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constant momentum flux, 〈u′w′〉 = −u2
∗, yields the flux gradient-relationship

d 〈u〉 /dz ∝ u∗/z (the omitted proportionality constant is the reciprocal of the
von Kármán constant). Its integration over z results in the logarithmic wind
profile. The lower limit of integration is the height z0u where the wind pro-
file extrapolated logarithmically downward approaches its surface value (zero
over the rigid surface). Since the surface-layer flux-profile relationships are
consistent with the (truncated) second-moment budgets, they suffer from the
same shortcoming as the (truncated) second-order closures. They are known
to experience problems in strongly convective and in strongly stable flows.

In conditions of free convection, when the mean wind vanishes, the surface-
layer flux-profile relationships predict zero fluxes. The failure is due to the
neglect of the CBL-scale cell-like coherent motions. As the flow patterns in
different directions effectively counteract each other, these motions make no
contribution to the transfer of mean momentum (mean over a horizontal area
that is large enough to embrace a multitude of convective cells). However,
these motions efficiently transport heat and other scalar quantities. Businger
[39] introduced the concept of “minimum friction velocity”, that is the friction
velocity due to the effect of the CBL-scale motions which do experience friction
at the surface, although mean wind is zero. The minimum friction velocity was
assumed to scale on the Deardorff convective velocity w∗ and to additionally
depend on z0u. Using the above concept, a number of heat and mass transfer
laws have been proposed that are suitable for calculation of surface fluxes in
conditions of free convection [172, 189, 22, 194, 226, 4, 223]. Comprehensive

summaries are given in [226, 223]. Some authors used the classical Nu ∝ Ra1/3

heat transfer law to estimate surface fluxes in free convection. Notice that the
Nusselt number Nu and the Rayleigh number Ra explicitly depend on the
molecular viscosity and on the molecular heat conductivity of the medium in
question. A generalisation of this law to the case of a two-component medium,
e.g. moist air, was proposed in [72, 73]. Examples of its successful application
to the computation of surface fluxes of sensible and latent heat are given in
[78, 9].

Problems of the surface-layer similarity theory in conditions of strong static
stability are associated with the intermittent nature of turbulence and with
many other effects, such as internal gravity waves and horizontal inhomogene-
ity of the underlying surface, that complicate the surface-layer structure (see
e.g. [133, 135, 134, 62, 77, 76]). Traditional log-linear flux-profile relationships
of the Monin-Obukhov theory predict zero fluxes as the static stability in-
creases and the gradient Richardson number approaches its critical value. This
is in conflict with most of the observational data which indicate that turbu-
lence very often survives well above the critical Richardson number threshold
and the surface fluxes of momentum and scalars are weak but non-negligible.
Recall that the Monin-Obukhov flux-profile relationships are derived under
a number of simplifying assumptions which restrict their limits of applica-
bility. Their failure to describe the real-world strongly stable surface layers
is not particularly surprising. Taking a pragmatic approach, the flux-profile
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relationships are adjusted in a somewhat ad hoc manner to enable the fluxes
to be non-zero at sufficiently strong static stability (e.g. [24]). The study of
the stably stratified PBL, including the surface layer, is a very active research
area in which progress is being made and more physically justified remedial
measures are proposed. Mention should be made of a series of publications by
Zilitinkevich and co-authors who examined the effects of static stability at the
SBL outer edge, that is characterised by the buoyancy frequency N , on the
SBL mean and turbulence structure. The exchange of energy, both kinetic and
potential, between the SBL and the overlying stably stratified atmosphere due
to the radiation of internal gravity waves was analysed in [219, 183]. Equa-
tions for the SBL depth, the SBL resistance and heat transfer laws, and the
surface-layer flux-profile relationships were modified to incorporate the depen-
dence on N [229, 224, 221, 220, 222]. The surface-flux calculation algorithms
were modified with due regard for the effect of N and applied to determine
surface fluxes of momentum and heat in numerical models of the atmosphere
[158, 230, 231].

2.5 Extension to Saturated Air

Up to this point the atmospheric air has been treated as unsaturated, char-
acterised by the two thermodynamic variables, θ and q. The thermodynamic
structure of the real atmosphere is strongly complicated by the presence of
clouds. Clouds produce precipitation. They strongly interact with atmospheric
radiation, changing the atmosphere energy budget, the energy budget of the
underlying surface and of the PBL in particular. They also change the buoy-
ancy of air parcels, thus affecting the rate of production/destruction of TKE
by the gravitational force. All these effects related to the presence of clouds
should be accurately represented in numerical models of the atmosphere. As
far as the parameterisations of turbulence and of shallow non-precipitating
convection are concerned, the primary goal is to account for the effect of
clouds on the buoyancy production/destruction of the Reynolds stress, in-
cluding its trace – the TKE, and of the scalar fluxes. The key issue is an
accurate representation of the horizontal fractional cloud coverage of a given
numerical-model grid box and of the amount of cloud condensate it contains
[200].

In order to account for the presence of cloud condensate, turbulence and
shallow-convection parameterisation schemes are formulated in terms of vari-
ables that are approximately conserved for phase changes in the absence of
precipitation. Consider first warm clouds that only contain water in liquid
form. Possible extension to the case of three phases including cloud ice is
briefly discussed at the end of this section. One pair of moist quasi-conservative
variables often used in models of non-precipitating clouds consists of the to-
tal water specific humidity qt and the liquid water potential temperature θl
defined as [25, 56]
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qt = q + ql, θl = θ − θ

T

Lv
cp
ql, (29)

where ql is the liquid water specific humidity, Lv is the latent heat of vapouri-
sation, cp is the specific heat of air at constant pressure, and T is the absolute
temperature related to the potential temperature through T = θ(P/P0)Rd/cp ,
P and P0 being the atmospheric pressure and its reference value, respectively.
No supersaturation is assumed, so that ql = qt − qs if qt > qs, where qs is the
saturation specific humidity, and ql = 0 otherwise. Clearly, qt and θl reduce
to the dry variables q and θ, respectively, in unsaturated conditions.

Using the above moist quasi-conservative variables, the second-moment
equations (3)–(9) remain the same to within the substitution of θl and qt for
θ and q, respectively. However, the buoyancy terms (the terms with βi) in
Eqs. (3), (9), (4) and (5) should be modified with due regard for the presence
of cloud condensate. This problem amounts to modelling the virtual potential
temperature flux 〈u′iθ′v〉 and the scalar-virtual potential temperature covari-
ances 〈θ′lθ′v〉 and 〈q′tθ′v〉 in terms of fluctuations of θl and qt. Using Eq. (29)
and a generalised virtual potential temperature that accounts for the water
loading effect [125, 15],

θv = θ [1 + (R− 1) q − ql] , (30)

the above covariances are given by

〈f ′θ′v〉 = [1 + (R− 1) 〈qt〉 −R 〈ql〉] 〈f ′θ′l〉+ (R− 1) 〈θ〉 〈f ′q′t〉

+

{ 〈θ〉
〈T 〉

Lv
cp

[1 + (R − 1) 〈qt〉 −R 〈ql〉]−R 〈θ〉
}
〈f ′q′l〉 , (31)

where R = Rv/Rd, and a generic variable f stands for ui, θl or qt. In order to
arrive at Eq. (31), the third-order covariances and the pressure fluctuations

are neglected (the latter assumption yields θl = θ − 〈θ〉〈T 〉 Lvcp ql).
In the “dry” limit, where a given numerical-model grid box is cloud free,

Eq. (31) reduces to

〈f ′θ′v〉d = [1 + (R− 1) 〈qt〉] 〈f ′θ′l〉+ (R− 1) 〈θ〉 〈f ′q′t〉 , (32)

where θl and qt coincide with θ and q, respectively, as ql = 0. In the “wet”
limit, where a given grid box is uniformly saturated, 〈f ′q′l〉 can be expressed,
to a good approximation, in terms of 〈f ′θ′l〉 and 〈f ′q′t〉 as follows:

〈f ′θ′v〉w =

[
1 + (R− 1) 〈qt〉 −R 〈ql〉 −

AP
Q

]
〈f ′θ′l〉

+

[
(R− 1) 〈θ〉+

A
Q

]
〈f ′q′t〉 , (33)

where A = 〈θ〉
〈T 〉

Lv
cp

[1 + (R− 1) 〈qt〉 −R 〈ql〉]−R 〈θ〉, P = 〈T 〉
〈θ〉 〈qsl,T 〉, Q = 1 +

Lv
cp
〈qsl,T 〉, and 〈qsl,T 〉 ≡ ∂qs

∂T

∣∣∣
T=〈Tl〉

is computed from the Clausius-Clapeyron
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equation, ∂qs∂T = Lvqs
RvT 2 . A first-order Taylor expansion of the saturation specific

humidity qs(T ) about T = 〈Tl〉 is used to derive Eq. (33).
The simplest way to determine 〈f ′θ′v〉 is to use either Eq. (32) or Eq. (33),

assuming that a given numerical-model grid box is either all clear or all cloudy,
respectively. This “all-or-nothing” approach may be used in cloud-resolving
models (although some caution is still required). Since it essentially assumes
no sub-grid scale fluctuations of cloud water related variables, it is not ap-
plicable in the framework of the NWP and climate models whose horizontal
resolution is too coarse to resolve cloud-scale motions. As sizable SGS fluc-
tuations of cloud water related variables exist, an expression is needed that
is valid not only in the dry and wet limits, but also in the general case of
fractional cloudiness. To this end, an interpolation formula is used,

〈f ′θ′v〉 = (1− R̂) 〈f ′θ′v〉d + R̂ 〈f ′θ′v〉w , (34)

where R̂ is the interpolation variable satisfying 0 ≤ R̂ ≤ 1. In case the PDFs
of SGS fluctuations of θl, qt and u3 (vertical velocity) are Gaussian and the
fluctuations of u3 and ql are uncorrelated, R̂ is identical to the fractional cloud
cover Ĉ. In case the fluctuations of u3 and ql are correlated, the PDFs can
differ significantly from the Gaussians, and R̂ can deviate widely from Ĉ. This
is the case for shallow cumuli, where the fractional cloud cover is small, u3

and ql are strongly correlated, the PDFs of cloud related variables are highly
skewed, and R̂ can be several times larger than Ĉ [122]. In order to account for
both Gaussian and non-Gaussian cases, Eq. (34) can be conveniently recast
as follows:

〈f ′θ′v〉 = (1− Ĉ) 〈f ′θ′v〉d + Ĉ 〈f ′θ′v〉w + FNGĈ(1− Ĉ) 〈f ′θ′v〉w , (35)

where a correct behaviour in the dry Ĉ = 0 and the wet Ĉ = 1 limits is
ensured. The deviations from the Gaussian limit are accounted for through
the correction function FNG. It is a complicated function of various cloud
related quantities, such as the mean saturation deficit, variances of θl, qt and
u3, and their skewness. In practice, simplified formulations of FNG are utilised
that ignore the dependencies on some of these quantities. Usable formulations
that provide a smooth transition between the Gaussian state and the non-
Gaussian skewed state are presented in e.g. [123, 19, 47, 20, 122].

The fractional cloud cover Ĉ should now be determined. Cloud-cover pa-
rameterisation schemes proposed to date vary in terms of their complexity
and physical realism. Comprehensive reviews are given in [199, 200], where
further references can be found. Here, only the very basic ideas are briefly
outlined.

The commonly used relative humidity schemes are termed so since they
employ the grid-scale mean relative humidity 〈RH〉 as the chief predictor of
the cloud cover. The sub-grid scale fluctuations of temperature and humidity
enable clouds to form even though a numerical-model grid box in question is
unsaturated on the average, 〈RH〉 < 1. A critical relative humidity 〈RH〉cr,
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below which Ĉ = 0, is introduced, and the fractional cloud cover Ĉ is assumed
to increase monotonically with increasing 〈RH〉 until Ĉ = 1 when 〈RH〉 = 1.
Additional predictors, such as the grid-scale mean vertical velocity, are used
in some schemes. Although the SGS variability of temperature and humid-
ity is implicit in the relative humidity schemes, the connection between the
fractional cloud cover and the SGS dynamics is rather loose.

The schemes referred to as the SGS statistical cloud schemes, pioneered
by Sommeria and Deardorff [182] and Mellor [141], make use of PDFs of
the SGS humidity (and temperature) fluctuations. Once the PDF is speci-
fied, the fractional cloud cover is simply the integral over a saturated part
of the PDF. Since clouds can result both from the humidity fluctuations and
from the temperature fluctuations, the latter ones change the local saturation
vapour pressure, it is convenient to introduce, following Mellor [141], a vari-
able s = Q−1 (〈qt〉 − 〈qsl〉+ q′t −Pθ′l), where 〈qsl〉 = qs(〈Tl〉) (s here should
not be confused with the dry static energy used in section 3.1). The variable
s represents the local value of the liquid water specific humidity computed
with respect to the linearised saturation specific humidity curve. This quan-
tity has already been used above to express 〈f ′q′l〉 through 〈f ′q′t〉 and 〈f ′θ′l〉 in
Eq. (31), leading to Eq. (33). Assuming that no supersaturation occurs, the
fractional cloud cover and the grid-box mean liquid water specific humidity
are given by

Ĉ =

∫ ∞

0

G(s)ds, 〈ql〉 =

∫ ∞

0

sG(s)ds, (36)

where G(s) is the PDF of s. If a Gaussian PDF is assumed, then Ĉ =
1
2

[
1 + erf

(
〈s〉√
2σs

)]
and 〈ql〉 = Ĉ 〈s〉 + σs√

2π
exp

(
〈s〉2
2σ2
s

)
, where erf is the error

function, 〈s〉 = Q−1 (〈qt〉 − 〈qsl〉) is the mean value of s, and σs ≡
〈
s′2
〉1/2

=

Q−1
[〈
q′2t
〉

+ P2
〈
θ′2l
〉
− 2P 〈q′tθ′l〉

]1/2
is its standard deviation. Notice that σs

depends on the variances of qt and of θl and on their covariance. This provides
an important link between the cloud cover and the dynamics of SGS motions.
Apart from the Gaussian PDFs, various other PDFs have been proposed. A
number of them are non-symmetric. Besides the first and the second moment
of the distribution (i.e. the mean and the variance), they require higher-order
moments, e.g. skewness, as an input. Tompkins [199, 200] presented a com-
prehensive review of the PDFs proposed by various authors and discussed
several consistency issues, such as the use of statistical cloud schemes in the
atmospheric models that carry a prognostic equation for 〈ql〉. He also showed
that there is no clear distinction between the statistical schemes and the rel-
ative humidity schemes. If the PDF moments are kept constant in space and
time, the statistical cloud-cover formulations can be recast in terms of relative
humidity.

Although prognostic equations may be (and often are) used to compute
the PDF moments, the fractional cloud cover is determined diagnostically in
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the framework of statistical cloud schemes. Some other schemes, exemplified
by the Tiedtke scheme [198], take a different approach – they determine Ĉ
from its own prognostic equation. Merits and shortcomings of such schemes
are discussed in [81, 207, 40, 116, 200].

The qt-θl system outlined above can be extended to the case of three
phases including cloud ice [56]. To this end, the total water specific humidity
is generalised to account for the presence of ice, qt = q + ql + qi, where qi is
the “solid water specific humidity” (the mass of cloud ice per unit mass of
moist air), and the ice-liquid water potential temperature is introduced, θil =
θ− θ

T
Lv
cp
ql− θ

T
Li
cp
qi, where Li is the specific heat of sublimation. The saturation

specific humidity requires a generalised definition, the simplest of which is
qs = (1−Fi)qsl +Fiqsi, where Fi = qi/(ql+qi) is the cloud-ice fraction of the
total cloud condensate, and qsl and qsi are the saturation specific humidity for
the vapour-liquid equilibrium and for the vapour-ice equilibrium, respectively.
If ice and liquid water are allowed to co-exist over a certain temperature range
with a finite rate of liquid-ice transformation of one into the other, a simple
function of temperature can be used to determine Fi. Alternatively, a rate
equation for Fi can be employed [56]. The use of the qt-θil system raises
various issues, such as allowance for supersaturation and consistency with
the prognostic equations for 〈qi〉 and its precipitating components that are
carried by many atmospheric models. Theses issues necessitate an extensive
discussion that is beyond the scope of the present paper.

In closing this section it should be emphasised that an accurate predic-
tion of the fractional cloud cover and of the amount of cloud condensate is
of great importance for radiation calculations. The SGS cloud scheme is thus
an essential component of the physical parameterisation package of an atmo-
spheric model that provides a tight coupling between various parameterisation
schemes.

3 Mass-Flux Convection Schemes

This section discusses the mass-flux modelling framework that is widely
used to parameterise convection, both deep precipitating and shallow non-
precipitating, in numerical models of the atmosphere. First, the most salient
features of the mass-flux convection schemes, as they are currently used in
NWP and related applications, are recollected. Then, the analogy between
budget equations for the second-order moments of fluctuating fields derived
within the mass-flux modelling framework and within the ensemble-mean
second-order modelling framework are examined. These exercises help to elu-
cidate the physical meaning of some closure assumptions and disposable pa-
rameters of mass-flux schemes. They also demonstrate the similarities and the
differences between the two approaches and suggest how the mass-flux param-
eterisations can be formulated in terms of the ensemble-mean second-order
closures and vice versa. The analysis of the second-order moment budgets
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is performed using the simplest “two-delta-function” mass-flux framework.
Most currently used mass-flux schemes are (formally) based on a slightly more
complex “three-delta-function” framework. However, the use of a simplified
two-delta-function framework does not affect the principal results from the
analysis.

3.1 Outline of Basic Features

In this section, the basic features of the mass-flux convection schemes are out-
lined. Attention is focused on the scheme developed by Tiedtke [197] (hereafter
T89). That scheme is taken as an example as it was the first comprehensive
mass-flux scheme that found a wide utility in NWP and climate modelling.
Other mass-flux convection schemes have been developed to date, as for in-
stance, the Kain-Fritsch scheme [97, 98, 96], the Gregory and Rowntree scheme
[82], and the scheme used in the IFS of ECMWF [93, 18]. Further examples are
the schemes proposed by Emanuel [59] and by Bechtold et al. [17]. Although
various mass-flux schemes differ from the T89 scheme in many details, they
rest on the same basic assumptions. Early ideas regarding the parameterisa-
tion of convection in atmospheric models, including the moisture convergence
schemes (e.g. [107, 108]), convective adjustment schemes (e.g. [26, 27]), and
mass-flux schemes (e.g. [13, 32]), are discussed in [65, 196, 12]. A comparative
analysis of several cumulus parameterisation schemes is given in [186].

The T89 scheme, as well as its derivatives, utilises a triple top-hat decom-
position. A fluctuating quantity in question is represented as

f = aufu + adfd + aefe, (37)

where a generic variable f refers to the vertical velocity w, the dry static en-
ergy per unit mass s = cpT+gz, the specific humidity q, the specific cloud wa-
ter content ql, or to any other quantity treated by a parameterisation scheme.
We focus attention on the mass-flux parameterisation of scalar transport. Mo-
mentum transport by convection and its parameterisation through the mass-
flux approach are considered in e.g. [102, 80]. The notation with w = u3,
z = x3 and g = g3 is used in this section to stress the one-dimensionality of
the approach, where only vertical convective transport is considered. An over-
bar denotes a horizontal mean, and the subscripts “u”, “d” and “e” refer to the
contribution from convective updraughts, from convective downdraughts, and
from the environmental air, respectively. The fractional areas of updraughts,
au, of downdraughts, ad, and of environmental air, ae, satisfy au+ad+ae = 1.

Notice that a coherent top-hat part of the quantity in question does not
contain residual “sub-plume” fluctuations. Hence, the moments of fluctuating
fields in the mass-flux approximation do not generally coincide with the mo-
ments in the ensemble framework (although they may by close to each other
if the coherent part dominates). An overbar is used to denote quantities in
the mass-flux approximation.
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Although the T89 scheme is formally based on the triple decomposition
(37), the properties of environmental air do not appear in the governing equa-
tions. The reason is that a mean over the environment is taken to be equal
to a horizontal mean. For scalar quantities, this means se = s, qe = q and
qle = ql. Assuming further that updraughts and downdraughts are in a steady
state, the T89 scheme solves a number of ordinary differential equations (in
the vertical co-ordinate) for the mass fluxes and for the fluxes of scalar quan-
tities in convective updraughts and convective downdraughts. The equations
for convective updraughts read

∂Mu

∂z
= Eu −Du, (38)

∂

∂z
MuXu = EuX −DuXu + ρauFxu, (39)

where Mu is the updraught mass flux defined as

Mu = ρau(wu − w), (40)

ρ is the density, and Eu and Du are the rates of mass entrainment and detrain-
ment per unit length. In order to closely follow the nomenclature traditionally
used in the description of mass-flux schemes, the density appears explicitly in
the equations of this section. A scalarX stands for s, q or ql, and Fx stands for
the source of the scalar X due to condensation/evaporation and precipitation
fall-out. Similar equations are formulated for convective downdraughts, except
that liquid water flux is zero. The problem is closed through the use of several
parameterisation rules to specify the vertical extent of convection, the fluxes
through the cloud base and the cloud top, the type of convection (penetrative,
mid-level or shallow), and the rates of entrainment and detrainment.

The vertical extent of convection is specified using the parcel method (see
e.g. [175]). The fluxes through the cloud base are related to the moisture
convergence in the sub-cloud layer (convergence of moisture fluxes due to
both resolved-scale and sub-grid scale motions), as is the case in the original
T89 scheme. An alternative formulation is through the convective available
potential energy (CAPE), as, for example, in the ECMWF IFS convection
scheme [93] in case of deep convection. The entrainment and detrainment
rates are split into two parts, turbulent entrainment/detrainment through
the cloud edges (lateral boundaries) and organised entrainment/detrainment
through the cloud edges and through the cloud base and the cloud top. The
organised entrainment through the updraught edges is set proportional to
the large-scale moisture convergence. It is only considered for penetrative and
mid-level convection and for the layer from the cloud base up to the level
of strongest vertical ascent. The organised detrainment of updraughts occurs
at the cloud top. The organised detrainment of downdraughts occurs in the
sub-cloud layer. The rates of turbulent entrainment and detrainment are set
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proportional to the mass flux, that is Eu = εuMu and Du = δuMu for the
updraughts (similar for the downdraughts), where εu and δu are simply taken
to be constant (different for different types of convection).

The simplifying assumptions of the T89 scheme, as well as of other mass-
flux convection schemes, are many and varied. The two crucial assumptions
have already been mentioned above: (i) convection is in a quasi-steady state
and (ii) the mean over the environment is equal to the mean over a grid box.
Several other points should be emphasised at once. First, although convective
motions are driven by buoyancy, the buoyancy term is not explicitly present
in Eq. (38). Second, neither Eq. (38) for the mass flux nor Eq. (39) for the
flux of a scalar contains pressure terms. In ensemble-mean second-order closure
models, the pressure-velocity and pressure-scalar correlations appear explicitly
(see section 2). The fact that these terms do not appear explicitly in mass-flux
equations suggests that the other terms serve to perform their function. This
issue is discussed below. The third point to note is that the updraught fraction
au and the updraught vertical velocity wu are not estimated separately – only
their combination, namely, the updraught mass flux Mu, is computed through
Eqs. (38) and (40).

Some mass-flux convection schemes make use of an equation for the up-
draught kinetic energy. It reads (see e.g. [93])

1

2

∂w2
u

∂z
=

1

Ck1(1 + Ck2)
g
Tvu − T

T
− µu
Mu

(1 + Ck3Ck4)w2
u, (41)

where Tv is the virtual temperature, and Ck1, Ck2, Ck3 and Ck4 are empirical
dimensionless constants. The “mixing coefficient” µu is set equal to either Eu
or Du, whichever is larger. The vertical acceleration on the left-hand side of
Eq. (41) is a difference between a buoyancy force and a drag force represented
by the first term and the second term on the r.h.s. of Eq. (41), respectively.
Equation (41) originates from the work of Simpson et al. ([178], see also [179,
79]). It is meant to describe the vertical acceleration of a cumulus tower that
is treated as an idealised jet, a buoyant rising thermal, or a “thermal” with
vortical internal circulation. The tower kinetic energy is given by 1

2w
2
u. In

this respect, it is not clear if Eq. (41) is a good approximation to the budget
equation for the kinetic energy of convective motions averaged over a grid box
of a numerical model.

3.2 The Two-Delta-Function Mass-Flux Framework

In this section, the conventional two-delta-function mass-flux framework that
has been widely used to parameterise atmospheric convection, shallow cumu-
lus convection in particular, is briefly described. A more detailed account of
the mass-flux framework is given in [163, 52, 111, 112, 83].

In the two-delta-function mass-flux framework, a fluctuating quantity in
question is represented as



Turbulence in Lower Troposphere 33

f = aufu + adfd, (42)

where the subscripts “u” and “d” refer to contributions from convective up-
draughts and convective downdraughts, respectively. The fractional areas of
updraughts, au, and downdraughts, ad, satisfy au + ad = 1. The decomposi-
tion (42) can be formulated in terms of the probabilities of convective motions
to be either updraughts, Pu, or downdraughts, Pd, so that Pu + Pd = 1 (e.g.
[210, 227, 147]). The downdraught in the two-delta-function mass-flux frame-
work should not be confused with the downdraught in the three-delta-function
framework. Equation (37) reduces to Eq. (42) if the downdraught and the en-
vironment in the triple decomposition are treated together.

All moments of fluctuating fields in the mass-flux approximation are com-
puted through the following averaging rule:

w′nX ′m = a(wu − w)n(Xu −X)m + (1− a)(wd − w)n(Xd −X)m

= a(1− a)
[
(1− a)m+n−1 − (−a)m+n−1

]
(wu − wd)n(Xu −Xd)

m, (43)

where a = au and 1−a = ad. According to Eq. (43), the flux of a quantity X
is given by

w′X ′ = a(wu − w)(Xu −X) + (1− a)(wd − w)(Xd −X)

= a(1− a)(wu − wd)(Xu −Xd) =
Mc

ρ
(Xu −Xd), (44)

where Mc is the convective mass flux introduced in [163],

Mc = ρa(1− a)(wu − wd). (45)

The vertical-velocity variance and the scalar variance are given by

w′2 = a(1− a)(wu − wd)2, X ′2 = a(1− a)(Xu −Xd)
2, (46)

and the third-order moments are given by

w′3 = a(1− a)(1− 2a)(wu − wd)3, (47)

X ′3 = a(1− a)(1− 2a)(Xu −Xd)
3, (48)

w′2X ′ = a(1− a)(1− 2a)(wu − wd)2(Xu −Xd), (49)

w′X ′2 = a(1− a)(1− 2a)(wu − wd)(Xu −Xd)
2. (50)
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The following distinctive features of Eqs. (44)–(50) should be emphasised.
All second-order and third-order moments vanish in the limiting cases of a = 0
and of a = 1. The former case is merely the case of no convection. The case
a = 1 corresponds to a convective updraught that covers the entire horizontal
area in question, e.g. the entire grid box of a numerical model. Then, the
updraught is no longer a sub-grid scale feature. With a = 1 it becomes a
grid scale feature that should be described by the evolution equations for the
resolved fields. Notice that this is not the case for the T89 and similar mass-
flux convection schemes. Due to their implicit assumption that a � 1, those
convection schemes remain active no matter how large/small the horizontal
size of a grid box of a numerical model as compared to the size of an updraught.
The lack of sensitivity to the grid size becomes a serious problem as the
resolution of numerical models is increased.

The r.h.s. of Eqs. (47)–(50) contain a factor 1−2a, i.e. the third-order mo-
ments vanish as a = 1/2. The value of a = 1/2 corresponds to zero skewness.
It is readily shown using Eqs. (46) and (47) that the vertical-velocity skewness

is given by Sw = [a(1− a)]
−1/2

(1− 2a). Notice that in the framework of the
simplest mass-flux approach considered here the magnitude of the skewness
Sx of a scalar field X is the same as the magnitude of Sw. An extended two-
scale mass-flux framework [83] enables Sx to be different in magnitude from
Sw. The fact that the third-order moments vanish if the sub-grid scale velocity
and scalar fields are not skewed is accounted for by the expressions (19) and
(20) discussed in section 2.2. In this regard, Eqs. (19) and (20) are nothing
but the mass-flux Eqs. (49) and (50) recast in terms of the ensemble-mean
quantities used in the second-order closure approach.

The budget equations for the updraught and for the downdraught are (see
e.g. [52, 111])

∂

∂t
ρaXu +

∂

∂z
ρawuXu = EXd −DXu + ρaFxu, (51)

∂

∂t
ρ(1− a)Xd +

∂

∂z
ρ(1− a)wdXd = DXu −EXd + ρ(1− a)Fxd, (52)

where E (D) is the lateral mass exchange rate from the sinking (rising) fluid
into the rising (sinking) fluid.

Setting Xu = Xd = 1 and Fxu = Fxd = 0 in Eqs. (51) and (52) yields

∂

∂t
ρa+

∂

∂z
ρawu = E −D, (53)

∂

∂t
ρ(1− a) +

∂

∂z
ρ(1− a)wd = D −E. (54)

Adding Eqs. (53) and (54) gives the continuity equation for the mean flow,
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∂ρ

∂t
+

∂

∂z
ρ w = 0. (55)

Multiplying Eq. (54) by a and subtracting the result from Eq. (53) times 1−a
yields the equation that relates the fractional area of the updraught with the
mass-flux divergence and with the entrainment and detrainment rates. It reads

ρ

(
∂

∂t
+ w

∂

∂z

)
a = − ∂

∂z
ρa(1− a)(wu − wd) +E −D

= −∂Mc

∂z
+E −D. (56)

Notice an essential difference to Eq. (38) where the substantial derivative
of a is neglected. This neglect deprives the mass-flux convection schemes of
memory, making the vertical profile of mass flux to adjust instantaneously to
the current state of the atmosphere.

Adding Eqs. (51) and (52) and rearranging gives the equation for X in the
mass-flux approximation,

ρ

(
∂

∂t
+ w

∂

∂z

)
X = − ∂

∂z
Mc(Xu −Xd) + ρFx. (57)

A direct analogy to the ensemble-mean equation for mean scalar concentration
is immediately recognised. The first term on the r.h.s. of Eq. (57) is the mass-
flux analogue of the turbulent scalar flux divergence term in the ensemble-
mean equation.

3.3 Analogies between the Mass-Flux and the Ensemble-Mean
Second-Moment Budgets

In this section, analogies between the mass-flux and the ensemble-mean budget
equations for the second-order moments are examined. The budgets of the
scalar variance, of the vertical-velocity variance and of the vertical scalar flux
are considered. It should be mentioned that these budget equations are not
explicitly carried by most of the mass-flux models developed to date. Their
consideration is, however, required in order to elucidate the physical meaning
of the various terms in the mass-flux model equations. An analysis of the
scalar-variance equations has been previously performed by de Roode et al.
[52] and Lappen and Randall [111]. They found, among other things, that
the sum of the lateral entrainment and detrainment rates in the mass-flux
equation corresponds to the inverse scalar-variance dissipation time scale in
the ensemble-mean equation. For the sake of clarity and completeness, the
treatment of the scalar-variance budget is repeated here. We then extend the
analysis of de Rode et al. and of Lappen and Randall to examine the budgets of
the vertical-velocity variance and of the vertical scalar flux, giving particular
attention to the role of the pressure-velocity and pressure-scalar covariances.
The two-delta-function framework is used for the analysis. The use of the
three-delta-function framework would make derivations more cumbersome,
but would not affect the results in a principal way.
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Scalar Variance

Subtracting Eq. (52) times a from Eq. (51) times 1− a, then multiplying the
result by Xu −Xd and rearranging yields the budget equation for the scalar
variance in the mass-flux approximation. Omitting algebraic manipulations,
we obtain

1

2

(
∂

∂t
+ w

∂

∂z

)
a(1− a)(Xu −Xd)

2 =

−Mc

ρ
(Xu −Xd)

∂X

∂z
− 1

2ρ

∂

∂z
(1− 2a)Mc(Xu −Xd)

2

−E +D

2ρ
(Xu −Xd)

2 + a(1− a)(Xu −Xd)(Fxu − Fxd). (58)

This equation should be compared with the ensemble-mean budget equation
for the scalar variance,

1

2

(
∂

∂t
+ 〈w〉 ∂

∂z

)〈
X ′2

〉
=

−〈w′X ′〉 ∂ 〈X〉
∂z

− 1

2

∂

∂z

〈
w′X ′2

〉
− εx + 〈X ′F ′x〉 . (59)

The terms on the r.h.s. of Eq. (59) represent the mean-gradient produc-
tion/destruction, turbulent transport, the dissipation rate of the scalar vari-
ance, and the source term. Except for the source term, Eq. (59) is simply a
one-dimensional form of Eqs. (6) and (7).

A comparison shows that there is a direct analogy between the first, the
second and the fourth terms on the r.h.s. of the mass-flux and of the ensemble-
mean equations. The third term on the r.h.s. of the mass-flux equation (58)
is negative definite. It acts to decrease the scalar difference between the up-
draught and the downdraught and can, by analogy with the third term on the
r.h.s. of the ensemble-mean equation (59), be interpreted as the scalar-variance
dissipation. Then, the quantity 2a(1− a)ρ/(E+D) in the mass-flux equation
corresponds to the scalar-variance dissipation time scale τεx ≡

〈
X ′2

〉
/εx in

the ensemble-mean equation. It is worth noting [52, 111] that the mass-flux
“dissipation” term does not originate directly from the molecular diffusion
term in the scalar equation. This term originates from the lateral exchange
terms in the updraught-downdraught model and from their parameterisation
through the entrainment-detrainment concept. The above analogy is useful
as it guides the way to set the rates of entrainment and detrainment in the
mass-flux models. These quantities should be parameterised so as to provide
the most realistic scalar-variance dissipation rate. Further requirements are
imposed by the budgets of the vertical-velocity variance and of the vertical
scalar flux.
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Vertical-Velocity Variance

The budget equations for the vertical velocity in the updraught and in the
downdraught are

∂

∂t
ρawu +

∂

∂z
ρawuwu =

−a(∂p/∂z)u − ρag
θr − θu
θr

+Ewd −Dwu, (60)

∂

∂t
ρ(1− a)wd +

∂

∂z
ρ(1− a)wdwd =

−(1− a)(∂p/∂z)d − ρ(1− a)g
θr − θd
θr

+Dwu −Ewd, (61)

where p is the deviation of pressure (here not divided by density) from its
reference value in hydrostatic equilibrium. To simplify notation, θ is used in
the buoyancy terms instead of θv .

Adding Eqs. (60) and (61), using Eqs. (42), (55) and (56) and rearranging
gives the equation for w,

ρ

(
∂

∂t
+ w

∂

∂z

)
w = −∂p/∂z − ρg θr − θ

θr
− ∂

∂z
Mc(wu − wd), (62)

where the third term on the r.h.s. is the mass-flux analogue of the Reynolds
stress divergence term in the ensemble-mean equation.

Equations (60), (61), and (62) for the vertical velocity are similar to
Eqs. (51), (52), and (57) for a scalar except that the equations for w con-
tain the pressure-gradient and the buoyancy terms, the first and the second
terms on the r.h.s. of Eqs. (60), (61), and (62), respectively.4 The updraught-
downdraught decomposition of the buoyancy term presents no difficulties.
The treatment of the pressure terms in the mass-flux framework is tricky and
requires special consideration.

First and foremost we emphasise that the updraught-downdraught decom-
position cannot be applied to the pressure itself. A straightforward decompo-
sition of p through Eq. (42) assumes a zero-order pressure jump across the
updraught-downdraught interface that would result in a spurious source term
in the equation for the vertical-velocity variance. A rigorous way to go is to
take the divergence of the momentum equation and to solve the resulting

4 In our formulation, there is no source term in the vertical momentum equation.
A more rigorous formulation, including momentum changes due to the presence
of hydrometeors (e.g. rain and snow), is given in [14].
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Poisson equation for the fluctuating pressure in terms of the Green’s function
(see section 2.2). The pressure field so obtained would be consistent with the
governing momentum and scalar equations.

We take a different approach. It is based on the observation that the
pressure terms are actually not explicitly considered at all in the mass-flux
models.5 For example, the updraught mass flux and the updraught fluxes of
scalar quantities in the T89 scheme are computed on the basis of Eqs. (38)
and (39), where the scalar source terms account for the effects of condensa-
tion/evaporation and of precipitation fall-out. In this way no pressure effects
are explicitly accounted for. This is apparently because the mass continuity
within the mass-flux framework is assumed to be satisfied exactly from the
very outset. Even so, the pressure effects should be implicitly accounted for in
the mass-flux second-moment budgets, and it remains to be seen which terms
in the budgets serve this function. From the above line of reasoning, the pres-
sure terms in Eqs. (60), (61) and (62) should be set to zero so that they do
not appear in their explicit form in the mass-flux second-moment budgets.

The equation for the vertical-velocity variance is derived in the same way
as the equation for the scalar variance. Subtracting Eq. (61) times a from
Eq. (60) times 1−a, then multiplying the result by wu−wd and rearranging,
we obtain the budget equation for the vertical-velocity variance in the mass-
flux approximation. It reads

1

2

(
∂

∂t
+ w

∂

∂z

)
a(1− a)(wu − wd)2 = −Mc

ρ
(wu − wd)

∂w

∂z
+

g

θr

Mc

ρ
(θu − θd)

− 1

2ρ

∂

∂z
(1− 2a)Mc(wu − wd)2 − E +D

2ρ
(wu − wd)2. (63)

We have omitted algebraic manipulations leading to Eq. (63) as they are fairly
straightforward. Equation (63) should be compared with the ensemble-mean
budget equation for the vertical-velocity variance [cf. Eq. (3)],

1

2

(
∂

∂t
+ 〈w〉 ∂

∂z

)〈
w′2
〉

= −
〈
w′2
〉 ∂ 〈w〉

∂z
+

g

θr
〈w′θ′〉

−1

2

∂

∂z

〈
w′3
〉
− 1

ρ
〈w′∂p′/∂z〉 − εw, (64)

5 Strictly speaking, the pressure terms are not present in the overwhelming ma-
jority of the mass-flux models developed to date. An exception is the mass-flux
model ADHOC developed by Lappen and Randall [111, 112, 113]. However, the
parameterisation of the pressure terms in ADHOC is based on the ensemble-mean
second-order closure ideas. A new version of ADHOC, ADHOC2 [114], incorpo-
rates a representation of the pressure terms that is consistent with the mass-flux
framework [115]. Earlier attempts to account for the effect of perturbation pres-
sure on cumulus convection are reported in e.g. [90, 213, 208].
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where the terms on the r.h.s. represent the mean-gradient production/destruc-
tion, the buoyancy production/destruction, turbulent transport, the vertical
velocity-pressure gradient covariance, and the dissipation rate of the vertical-
velocity variance.

Comparing Eqs. (63) and (64), we conclude that there is a direct analogy
between the first, the second and the third terms on the r.h.s. of the mass-flux
and the ensemble-mean equations. As to the last term on the r.h.s. of Eq. (63),
two interpretations can be suggested.

We recall (see section 2.1) that it is common practice within the ensemble-
mean second-order modelling framework to separate out the pressure trans-
port from the pressure gradient-velocity correlation [represented by the fourth
term on the r.h.s. of Eq. (64)] and to model pressure transport together with
the turbulent transport [the divergence of the third-order velocity correlation
represented by the third term on the r.h.s. of Eq. (64)]. The rest of the pressure
term (pressure redistribution) is modelled separately. It is usually decomposed
into the rapid part and the slow part, where the slow part is believed to return
turbulence toward isotropy (section 2.2). Numerous studies have revealed the
importance of pressure terms in maintaining the second-moment budgets in
turbulent flows. Inadequate modelling of pressure terms, the pressure redis-
tribution in particular, most often results in inaccurate prediction of fluxes
and variances and consequently of the mean fields.

Assume that no account whatsoever is taken of the pressure effects in the
mass-flux framework. Then the last term on the r.h.s. of the mass-flux equation
(63) can be interpreted as the dissipation of the vertical-velocity variance. This
term acts to decrease the vertical-velocity difference between the updraught
and the downdraught and is negative definite. With no pressure terms in
the mass-flux budget, the transport of variance is solely due to the third-
order velocity correlation, and the pressure redistribution is not accounted for.
In convective flows, both pressure transport and pressure redistribution are
known to be substantial. Their neglect results in a deficient vertical-velocity
variance budget.

Another possible interpretation of the last term on the r.h.s. of Eq. (63) can
be offered by assuming that, although the pressure term is not explicitly con-
sidered in the mass-flux budget, the pressure effects are implicitly accounted
for. Then, the last term on the r.h.s. of (63) should describe the combined effect
of the dissipation and of the pressure redistribution. In most convective flows,
the pressure redistribution acts to reduce the vertical-velocity variance. This
is explained from the following simple reasoning. The major source of energy
in convection is the buoyancy that directly feeds the vertical component of the
fluctuating velocity. The horizontal components of the fluctuating velocity are
not fed directly. They grow at the expense of the vertical velocity component.
By this means turbulence is driven toward isotropy. It is the traceless part
of the pressure gradient-velocity correlation, i.e. the pressure redistribution
term, that accounts for the inter-component energy exchange. Since both the
dissipation and the pressure redistribution tend to reduce the vertical-velocity
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variance, it is reasonable to assume that the last term on the r.h.s. of Eq. (63)
accounts for their combined effect. A problem, however, arises if we attempt to
reconcile the last term in the vertical-velocity variance budget (63) with a sim-
ilar term in the scalar variance budget (58). The term with E+D in the scalar
variance budget describes the scalar variance dissipation, whereas a similar
term in the vertical-velocity variance budget describes the combined effect of
the dissipation and of the pressure redistribution. Putting it differently, the
same quantity 2a(1−a)ρ/(E+D) should characterise both the scalar-variance
relaxation time scale due to dissipation and the velocity-variance relaxation
time scale due to both dissipation and pressure redistribution. Further diffi-
culties are encountered with the mass-flux budget equation for the vertical
scalar flux.

Scalar Flux

Subtracting Eq. (52) times a from Eq. (51) times 1− a and rearranging gives
the equation for the updraught-downdraught scalar differenceXu−Xd. Similar
manipulations with Eq. (61) and (60) (recall that there are no explicit pres-
sure terms in the mass-flux equations) gives the equation for the updraught-
downdraught vertical-velocity difference wu −wd. Then, adding the equation
for Xu −Xd multiplied by wu − wd and the equation for wu − wd multiplied
by Xu −Xd and rearranging, we obtain the budget equation for the vertical
scalar flux in the mass-flux approximation. Omitting algebraic manipulations,
we obtain

(
∂

∂t
+ w

∂

∂z

)
a(1− a)(wu − wd)(Xu −Xd) =

−Mc

ρ
(wu − wd)

∂X

∂z
− Mc

ρ
(Xu −Xd)

∂w

∂z

+a(1− a)
g

θr
(θu − θd)(Xu −Xd)−

1

ρ

∂

∂z
(1− 2a)Mc(wu − wd)(Xu −Xd)

−E +D

ρ
(wu − wd)(Xu −Xd) + a(1− a)(wu − wd)(Fxu − Fxd). (65)

Equation (65) should be compared with the ensemble-mean budget equation
for the vertical scalar flux [cf. Eqs. (4) and (5)],

(
∂

∂t
+ 〈w〉 ∂

∂z

)
〈w′X ′〉 = −

〈
w′2
〉 ∂ 〈X〉

∂z
− 〈w′X ′〉 ∂ 〈w〉

∂z
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+
g

θr
〈θ′X ′〉 − ∂

∂z

〈
w′2X ′

〉
− 1

ρ
〈X ′∂p′/∂z〉+ 〈w′F ′x〉 , (66)

where the terms on the r.h.s. represent the mean-gradient production/destruc-
tion (the first two terms on the r.h.s.), the buoyancy production/destruction,
turbulent transport, the pressure gradient-scalar covariance, and the source
term.

There is a direct analogy between all terms in the mass-flux and the
ensemble-mean budgets, except the previous last terms. The previous last
term on the r.h.s. of the mass-flux equation (65) is purely destructive. It acts
to decrease the magnitude of the vertical scalar flux. Its counterpart in the
ensemble-mean equation (66) is, however, not the dissipation term, but the
pressure gradient-scalar covariance. In high Reynolds number flows (with local
isotropy at small scales, see section 2.2), molecular dissipation of scalar fluxes
is negligible, and it is the pressure gradient-scalar covariance that destroys the
scalar flux. The term with E +D in the mass-flux budget (65) should, there-
fore, be interpreted as the term that describes the pressure effects. This is in
apparent contradiction with the interpretation of similar terms in the scalar
variance budget (58) and in the vertical-velocity variance budget (63), where
the terms with E + D describe the dissipation and the combined effect of
dissipation and pressure redistribution, respectively. Since the scalar-variance
dissipation, the velocity-variance dissipation, the pressure redistribution and
the pressure gradient-scalar covariance depend on the flow variables in differ-
ent ways, it is not easy to describe all the above effects in terms of only two
quantities, viz., the rates of lateral entrainment and detrainment (cf. [193, 51]).

A positive outcome of the above analysis of the second-moment budgets
is that it suggests an extended formulation for the rates of turbulent entrain-
ment E and detrainment D. Recall that the traditional formulation sets E and
D proportional to the mass flux Mc through the constant fractional entrain-
ment and detrainment rates, ε and δ, respectively (their dimensions is m−1;
ε here should not be confused with the TKE dissipation rate). An extended
formulation is proposed in [149]. It reads

(E,D) = Mc

[
(ε, δ) + CBa

2(1− a)2 g

θr

θu − θd
(Mc/ρ)2

]

= Mc

[
(ε, δ) + CB

g

θr

θu − θd
(wu − wd)2

]
, (67)

where CB is a dimensionless constant.
The flow of arguments leading to Eq. (67) is as follows. First, the pressure

redistribution term in Eq. (64) and the pressure gradient-scalar covariance
term in Eq. (66) are parameterised through Eqs. (12) and (13), respectively,
where only the first and the third terms on the r.h.s. are retained. These
are return-to-isotropy and the buoyancy parts of the pressure terms that are
typically the dominant contributions in convective flows [150, 145]. Next, it
is assumed that all pressure relaxation (return-to-isotropy) time scales and
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the dissipation time scales are proportional to each other and to the “master”
relaxation time scale τm = e−1/2lm, lm being the “master” length scale, and
that the vertical-velocity variance

〈
w′2
〉

is proportional to the TKE e. Then,
the above analogies between the mass-flux and the ensemble-mean second-
moment budgets are exploited to infer that (E + D)/ρ ∝ a(1 − a)/τm =
a(1− a)e1/2/lm. Finally, using the definition of the convective mass flux (45)

and recalling that (wu − wd) is the mass-flux analogue of
〈
w′2
〉1/2

which
is assumed to scale on e, we obtain (E,D) = (ε, δ)Mc with (ε, δ) ∝ l−1

m .
Then, setting lm = const yields (ε, δ) = const. It is easy to verify that the
second term in brackets on the r.h.s. of Eq. (67) stems from the buoyancy
contributions to the pressure terms in the budgets of the vertical-velocity
variance and of the scalar flux.

Notice that the traditional formulation for E and D, i.e. Eq. (67) without
the second term in brackets on the r.h.s., can be obtained from the above
reasoning if the simplest Rotta-type formulations (10) and (11) are used in-
stead of (12) and (13), respectively, to parameterise the pressure terms in the
second-moment budgets. It should also be mentioned that the above analysis
of the second-moment budgets does not allow to discriminate between E and
D. That is, it provides no guidance as to whether the buoyancy correction
term in Eq. (67) should be applied to E, to D, or to both E and D.

A formulation for the fractional entrainment rate ε that is very similar to
the second term in brackets on the r.h.s. of Eq. (67) was proposed by Gregory
[79] from different physical considerations.

4 Towards a Unified Description of Boundary-Layer
Turbulence and Shallow Convection

Having discussed the second-order closure and the mass-flux modelling frame-
works in some detail, it is appropriate to return to the question raised in the
Introduction. That is, whether regime-dependent parameterisation schemes
should be developed to describe various types of fluctuating motions, or some
unification of different parameterisation frameworks could be achieved. Al-
though a definitive answer to this question does not seem to exist at present,
there is a growing interest in unifying various parameterisation ideas (see dis-
cussions in [12, 188, 146]). Considering the cumulus parameterisation problem,
Arakawa [12] states:

It is rather obvious that for future climate models the scope of the
problem must be drastically expanded from “cumulus parameteriza-
tion” to “unified cloud parameterization” or even to “unified model
physics”. This is an extremely challenging task, both intellectually and
computationally, and the use of multiple approaches is crucial even for
a moderate success.
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The tasks of developing a “unified cloud parameterization” and eventually a
“unified model physics” are very ambitious. Most NWP and climate models
will unlikely enjoy the use of such general parameterisation frameworks for
some, perhaps many, years to come. However, a less ambitious task, namely,
a unified description of boundary-layer turbulence and shallow convection,
seems to be feasible. There are several ways to do so, but it is not a pri-
ory clear which way should be preferred. A number of attempts have been
made to develop a more unified turbulence-shallow convection parameterisa-
tion schemes. They can be classified, rather loosely, into three groups.

Extended mass-flux schemes are built around the top-hat updraught-
downdraught representation of fluctuating quantities. As discussed above, the
simplest top-hat mass-flux representation is equivalent to assuming a two-
delta-function PDF, where the motions can be either updraughts or down-
draughts and the sum of the probabilities of the two admissible states is
one. Since the variety of motions is not exhausted by quasi-organised up-
draughts and downdraughts, the mass-flux equations are extended by adding
the “sub-plume scale” motions. These motions are thought to be small-scale
and chaotic, so that they can be parameterised on the basis of the second-
order closure ideas the simplest of which is the down-gradient approximation
of fluxes. Lappen and Randall [111, 112, 113] developed an extended mass-
flux scheme ADHOC (Assumed-Distribution Higher-Order Closure) that pa-
rameterises boundary-layer turbulence and shallow convection in a unified
framework. As the heart of the scheme is the two-delta-function mass-flux
representation, ADHOC is attractive for describing non-local convective trans-
port. Missing components, namely, parameterisations of the sub-plume scale
fluxes, of the pressure terms, and, to some extent, of the dissipation terms, are
borrowed from the ensemble-mean second-order modelling framework. An up-
dated version of ADHOC, ADHOC2 [114, 115], includes parameterisations of
pressure terms and of momentum fluxes consistent with the mass-flux frame-
work (more specifically, with the assumed spatial distribution based on the
two types of idealised coherent structures – plumes and rolls).

Parameterisation schemes where the mass-flux closure ideas and the en-
semble-mean second-order closure ideas have roughly equal standing can be
labelled as hybrid schemes. These are exemplified by the EDMF (Eddy-
Diffusivity/Mass-Flux) scheme proposed by Soares et al. [181] based on ear-
lier work of Siebesma and Teixeira [177]. In the framework of the EDMF
scheme, the vertical flux of a fluctuating quantity f is represented as a
sum of two contributions [176], one is assumed to stem from the small-scale
chaotic eddies and is described with the eddy-diffusivity down-gradient for-
mulation, and the other is assumed to stem from the convective-layer-scale
quasi-organised plumes and is described with the mass-flux formulation. That
is, 〈w′f ′〉 = −Kf∂ 〈f〉 /∂z+(Mu/ρ)(fu−〈f〉), where Mu is the convective up-
draught mass flux, fu is the value of f in the updraught, and 〈f〉 is the value
of f averaged over a grid box of a host numerical model. The eddy diffusivity
Kf is estimated on the basis of the TKE, for which a prognostic equation is
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carried, and of a diagnostic formulation for the turbulence length scale [181].
A simple entraining parcel model is used to determine Mu and fu. The EDMF
scheme operates throughout the convective layer, from the (near vicinity of
the) surface up to the top of shallow cumuli, and does not require switching
between turbulence and convection schemes (until deep convection is triggered
that still requires a separate parameterisation scheme). The scheme is formu-
lated in terms of moist quasi-conservative variables, the liquid water potential
temperature θl and the total water specific humidity qt, and an SGS statistical
cloud scheme (section 2.5) is used to predict fractional cloud cover and the
amount of cloud condensate.

Some features of the EDMF scheme deserve critical consideration. A parcel
model used to determine Mu and fu assumes that the updraughts fractional
area coverage au is small as compared to the horizontal grid size of a host
atmospheric model. Then, the mass-flux component of the EDMF scheme
inherits all shortcomings of the “traditional” mass-flux schemes (section 3).
In particular, there is no resolution dependency – the mass-flux component
remains active irrespective of the ratio of the horizontal size of numerical
grid to the size of the updraught. Furthermore, there is no dependency on
the skewness of fluctuating fields – the skewness is always large by virtue
of a small au. This is an important difference to the ADHOC scheme which
guarantees that au approaches 1/2 as skewness approaches zero.

Variances
〈
f ′2
〉

of scalar quantities in the EDMF scheme are diagnosed on
the basis of a truncated scalar-variance equation, see Eqs. (6) and (7), where
only the dissipation term and the mean-gradient term are retained, that is
εf = −〈w′f ′〉 ∂ 〈f〉 /∂z. Then, parameterising the dissipation rate through
the dissipation time scale, εf =

〈
f ′2
〉
/τf , and using the above EDMF formu-

lation for the flux 〈w′f ′〉, yields the expression for
〈
f ′2
〉
. Notice that using

the mass-flux formulation for the flux and at the same time neglecting the
third-order transport term in the scalar-variance equation is not quite consis-
tent. Numerous analyses of observational and LES data (e.g. [119, 151, 148])
indicate the importance of the turbulent transport term − 1

2∂
〈
w′f ′2

〉
/∂z in

maintaining the scalar variance budget in the well-mixed CBL core, where
the mean-gradient term is small. Furthermore, as discussed in sections 2.2
and 3.2, it is the third-order transport term in the scalar-variance equation
that accounts for the non-local transport by skewed convective turbulence.
Neglecting this term is inconsistent with the assumption of large skewness
(small au). Notice also that the formulation for

〈
f ′2
〉

neglecting the third-
order transport term should not allow for the counter-gradient scalar flux
(when 〈w′f ′〉 and ∂ 〈f〉 /∂z have the same sign) that is known to often oc-
cur in convective flows. A counter-gradient scalar flux would lead to totally
spurious negative values of the temperature-variance dissipation and hence of
the temperature variance. In the EDMF scheme of Soares et al. [181], this
situation is avoided by applying a clipping operation – the mass-flux contri-
bution to the scalar-variance is set to zero whenever it becomes negative. As
discussed in section 2.5, variances of θl and of qt are the key input parameters
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for statistical parameterisations of fractional cloudiness. They should be ac-
curately predicted. This may not be achieved without an accurate treatment
of the third-order transport terms in the scalar-variance equations.

Notwithstanding their shortcomings, the EDMF-like hybrid schemes are
attractive for they are simple and computationally efficient. They enjoy grow-
ing popularity in atmospheric modelling (e.g. [104, 11]).

Non-local second-order closure schemes represent one more alternative to
describe boundary-layer turbulence and shallow convection in a unified frame-
work. In pursuing this aim, a number of schemes based on the ensemble-mean
equations for the statistical moments of fluctuating fields have been devel-
oped. These range from low-order turbulence closures, where the only prog-
nostic equation is the TKE equation (e.g. [21, 19]), to high-order closures,
where transport equations are carried for all second-order and third-order
moments involved (e.g. [29, 30, 31]). These schemes proved to do a fair job of
describing turbulence and shallow convection. Using moist quasi-conservative
variables and well-tuned statistical parameterisations of fractional cloudiness,
these schemes appeared to be capable of describing cumuliform and stratiform
boundary-layer clouds in a unified framework.

Turbulence closure schemes based on the ensemble-mean equations are
often blamed for their inability to describe non-local transport due to quasi-
organised convective motions. Both heavily truncated second-order closures
and sophisticated high-order closures suffer from this drawback. The incorpo-
ration of additional transport equations for third-order and possibly higher-
order moments makes the schemes very complex and computationally expen-
sive. The gain in terms of accuracy of their performance is, however, not as
tangible as one would expect in the hope that making crude assumptions
on the high-order moments would still yield an accurate prediction of low-
order moments of interest, viz., of fluxes and variances and of the mean fields.
What is most likely to be at fault is the assumption, which is either explicit or
implicit in most turbulence closures based on the ensemble-mean equations,
that the PDF of fluctuating fields is approximately Gaussian. For example, a
third-order closure that makes use of the Millionshchikov hypothesis (quasi-
Gaussian approximation, section 2.2) to parameterise fourth-order moments
is fairly sophisticated, and yet it fails to properly account for non-local nature
of convective turbulence.

As the analysis in sections 2.2 and 3.2 suggests, the inability of traditional
ensemble-mean closures to describe non-local convective transport may well
be apparent rather than real. In the second-order modelling framework, one of
the key points is the parameterisation of the third-order transport moments
in the second-moment equations. It is these terms that are largely responsi-
ble for non-local transport properties of convective motions. Recall that the
third-order terms are usually parameterised through the simple down-gradient
diffusive approximations, or through the use of their own transport equations
where the fourth-order moments are taken to be Gaussian. In order to account
for non-local transport properties of convection, additional terms should be
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added to the formulations for the third-order moments, namely, the terms
dependent on the skewness of fluctuating fields. Such additional terms for the
third-order moments in the temperature-flux equation and in the temperature-
variance equation are given by Eqs. (19) and (20), respectively. It must be
stressed that Eqs. (19) and (20) are simply the mass-flux Eqs. (49) and (50)
recast in terms of the ensemble-mean quantities. Since the mass-flux formu-
lations are advective rather than diffusive in character and are intrinsically
non-local [111], their ensemble-mean counterparts should also be able to prop-
erly account for non-local convective transport. The skewness of fluctuating
fields (may be different for different quantities, e.g. [147, 83]) should be de-
termined from transport equations for the third-order moments, where the
fourth-order moments are represented through skewness-dependent formula-
tions (21)–(24) (the generalised Millionshchikov hypothesis) which again are
consistent with the mass-flux formulations in the non-Gaussian limit. In some
situations, simplified algebraic formulations for skewness may appear to be
sufficient [19] (see also chapter 4 of this volume).

Notice that extended non-local second-order closure schemes with skew-
ness-dependent formulations for the third-order transport terms are likely to
be more stable numerically as they would not violate realisability in case of
large skewness. They are also more consistent with statistical parameterisa-
tions of fractional cloudiness many of which utilise a skewed PDF to describe
cumuliform clouds (see section 2.5).

The above classification of unified turbulence-shallow convection schemes
is rather arbitrary. For example, the “assumed PDF scheme” of Golaz et al.
[70, 71] can be viewed as an extension of the ADHOC scheme of Lappen and
Randall, where a two-delta-function PDF is replaced with a two-Gaussian-
function PDF. Alternatively, it can be viewed as an extended ensemble-mean
high-order closure based on a rather flexible two-Gaussian PDF. Generally
speaking, any of the three approaches outlined above should yield the same
result if parameterisations are formulated and implemented clearly and con-
sistently. Putting it differently, it should not matter much which conceptual
framework is used as a basis, i.e. whether a unified scheme is built within the
mass-flux modelling framework and the missing components (e.g. parameter-
isation of the sub-plume scale fluxes) are borrowed from the ensemble-mean
framework, or whether it is built within the ensemble-mean modelling frame-
work and the missing components (e.g. parameterisation of the third-order
transport) are borrowed from the mass-flux framework. However, a clear and
consistent formulation requires certain level of complexity, and that level is
likely to be higher than most NWP and climate models can afford. In view of
stringent requirements of computational economy, simpler schemes are called
for that are based on a (heavily) truncated set of equations for statistical mo-
ments of fluctuating fields. Mass-flux schemes (or hybrid schemes) are likely
to be preferred for some years to come in situations where non-local transport
properties of fluctuating fields is a major concern. In a long-term perspective,
however, unified schemes built around the ensemble-mean second-order clo-
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sures seem to be more appealing. The following arguments in favour of this
viewpoint can be adduced. Due to a rapid development of computers, the res-
olution of numerical models of the atmosphere is continuously refined. As the
mesh size becomes small, increasingly more quasi-organised flow structures,
that are chiefly responsible for non-local transport, are resolved. Then, the
focus of SGS parameterisations is shifted towards motions at smaller scales,
which are (presumably) more chaotic, and towards other issues, such as the
anisotropy of turbulence near the surface and in stably stratified regions of the
flow and an accurate parameterisation of pressure redistribution and pressure
transport. The second-order closures are attractive for describing these very
features.

Now we outline the next step that, in the author’s opinion, should be
made to go beyond the level of one-equation closure schemes (the level 2.5
schemes in the Mellor-Yamada nomenclature) that have been and still are the
draft horses of atmospheric turbulence modelling in NWP, climate studies,
and related applications. Closure schemes that presently carry only one prog-
nostic equation, viz., the TKE equation, should be extended to incorporate
prognostic equations for the scalar variances. This suggestion is almost triv-
ial as may be inferred from the following arguments. The key to successful
modelling of any turbulent flow is an adequate description of the flow energy.
In neutrally stratified flows, the kinetic energy of turbulence is a major (or
the only) concern. This explains why the one-equation closure schemes have
been used to advantage in simulating neutral flows. The situation is essen-
tially different in flows where the density (buoyancy) stratification is different
from neutral. In such flows, the turbulence potential energy (TPE) plays an
important part along with the TKE. The TKE is spent to work against the
gravity and is converted into the TPE in stably stratified flows. In convective
flows, the TKE grows at the expense of the TPE. The rate of TKE↔TPE
conversion is represented by the buoyancy-flux term βi 〈u′iθ′v〉 that enters the
TKE equation (9) as a source (sink) term. Since the atmospheric flows are vir-
tually never hydrostatically neutral, and the TKE and the TPE in stratified
flows are equally important, it is difficult to adduce plausible arguments in
favour of one form of energy over the other. Both energies should be treated
in a similar way. In the dry atmospheric CBL, the potential temperature is
the only thermodynamic variable that affects the distribution of buoyancy.
The TPE is proportional to the temperature variance [173] that should be de-
termined from Eq. (6), where the representation of the third-order transport
term should account for the non-local character of skewed convective motions.
In case of moist atmosphere, the TPE depends on the variances

〈
θ′2l
〉

and
〈
q′2t
〉

of moist quasi-conservative variables and on their correlation 〈θ′lq′t〉. A para-
meterisation of fractional cloudiness is additionally required to determine the
buoyancy terms.

Closure schemes for atmospheric applications, that carry transport equa-
tions for both the TKE and for the scalar variances, have been developed by
e.g. Kenjereš and Hanjalić [100] and Nakanishi and Niino [154]. Curiously, it
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was noticed already by Mellor and Yamada in their classical 1974 paper [142]
that the scheme (level 3 in their nomenclature) that carries two prognostic
equations, for the TKE and for the potential-temperature variance, is partic-
ularly attractive. Three closure schemes of various complexity were applied to
simulate a PBL subject to a diurnally varying surface heat flux. The level 3
scheme proved to outperform an algebraic closure scheme. Little was gained
if the most complex of the three schemes, that carries transport equations for
all second-order moments involved, was used. Thus, the level 3 scheme was
found to be the best compromise between physical realism and computational
economy. The message does not seem to have been got by the geophysical
turbulence-modelling community. Most users of the Mellor-Yamada closures
gave preference to the level 2.5 scheme in spite of its obvious shortcomings.

In closing this section, yet another way of representing convection and tur-
bulence in numerical models of the atmosphere should be mentioned. Two- or
even three-dimensional models capable of resolving cloud scales are embedded
into grid-boxes of coarse-resolution atmospheric models. This way to tackle
the sub-grid scale parameterisation problem was unthinkable a decade ago,
but a drastically increased computer power has made it possible nowadays.
Consideration of this innovative approach called “cloud-resolving convective
parameterisation” [74, 75] or “super-parameterisation” [162] is beyond the
scope of the present paper.

5 Conclusions

Modelling (parameterising) turbulence and shallow convection in the lower
troposphere as it is practised in NWP and related applications is discussed.
Although turbulence and convection are both unresolved, sub-grid scale mo-
tions and a distinction between the two is quite ambiguous, different concepts
are typically used to parameterise them in numerical models of the atmo-
sphere. The ensemble-mean second-order closure approach is taken to describe
turbulence, deemed to represent quasi-random small-scale motions, whereas
the mass-flux closure approach is taken to describe convection, deemed to
represent quasi-organised motions of larger scales.

The ensemble-mean second-order closure framework is outlined with the
emphasis on the parameterisation of the pressure redistribution and of the
third-order transport. A rather lengthy treatment appeared to be necessary
to demonstrate how simplified turbulence parameterisation schemes are ob-
tained and what is lost on the way. As we have seen, only a small fraction of
what is available nowadays is actually used in applications. This “keep it sim-
ple” strategy is justified in view of stringent requirements of computational
economy that parameterisation schemes for NWP, climate modelling and sim-
ilar applications should necessarily meet. Nonetheless, incorporating more of
the essential physics into the existing turbulence schemes is highly desirable.
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The mass-flux closure framework is outlined with reference to its simpli-
fying assumptions and to its limits of applicability. The analogies between
the second-moment budgets derived in the mass-flux and in the ensemble-
mean second-order modelling frameworks are analysed. The analysis shows
that the two modelling frameworks have very much in common and that the
parameterisation ideas developed in one framework can be translated into the
language of the other. Further outcome of the analysis is an extended formu-
lation for the rates of turbulent entrainment and detrainment, Eq. (67), the
key parameters in the mass-flux convection schemes.

As the artificial separation of processes and scales in numerical models
of the atmosphere causes many conceptual and practical problems [12] (the
turbulence-convection separation being an example), there is a growing need
for a more consistent description of turbulence and shallow non-precipitating
convection within a unified parameterisation framework. Several alternative
ways to achieve such a description are considered and their pros and cons are
discussed. A non-local second-order closure scheme, that carries prognostic
equations for both kinetic energy and potential energy of sub-grid scale fluc-
tuating motions and incorporates skewness-dependent formulations for the
third-order moments, seems to be an attractive alternative.

In a long-term perspective, deep precipitating convection should also be
incorporated into a unified turbulence-convection scheme. This task is very dif-
ficult and intellectually challenging, and quick success is by no means guaran-
teed. Except for very high resolution atmospheric models capable of resolving
deep convective motions, separate parameterisation schemes for deep precipi-
tating convection will be used over some, perhaps many, years to come. Then,
these schemes should be adjusted to adequately respond to an increasing res-
olution of host atmospheric models and to work in harmony with improved
turbulence-shallow convection schemes. To this end, some restrictive assump-
tions of deep convection schemes may need to be relaxed, e.g. the assumptions
of steady-state and of small fractional area coverage of convective updraughts.
Steps forward in this direction are described in [69, 159, 212].
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88. Högström, U.: Non-dimensional wind and temperature profiles in the atmo-
spheric surface layer: A re-evaluation. Boundary-Layer Meteorol. 42, 55–78
(1988)
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