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ABSTRACT

We show that the turbulence statistics from our (96)3 large-eddy-simulation (LES) studies of a convective
boundary layer are in excellent agreement with those from the Deardorff-Willis laboratory convection tank.
Using these LES data, we evaluate contemporary parameterizations for turbulent transport and dissipation in
second-order closure models of the convective boundary layer. The gradient-diffusion parameterization for
turbulent transport fares poorly, due in large part to the direct influence of buoyancy. This leads to poor
predictions of the vertical profiles of some turbulence statistics. We also find that the characteristic length scales
for the mechanical and thermal dissipation rates typically used in second-order closure models are a factor of
2-3 too small; this leads to underpredictions of turbulence kinetic energy levels. Finally, we find that the flux
and variance budgets for conservative scalars are substantially different in top-down and bottom-up diffusion.
In order to reproduce these differences accurately, it seems necessary to model the turbulent transport, pressure
covariance, and molecular destruction terms differently in top-down and bottom-up diffusion.

1. Introduction

Steadily increasing computer power now allows
modelers to use the second-order closure technique
with multiple vertical gridpoints to parameterize plan-
etary boundary layer (PBL) turbulence in larger-scale
meteorological models. Second-order closure has been
used in turbulence calculations since at least the early
1970s. Many of its first applications (e.g., Hanjalic and
Launder 1972) were to shear flows; Donaldson (1973)
was one of the first to apply it to PBL modeling. The
works of later users are summarized in Table 1. (Nu-
merous meteorological models, such as the Klemp-
Wilhemson 1978 cloud model, use a simplified version
of second-order closure by solving only the turbulence
kinetic energy equation; these are not included in Table
1.) Reviews of second-order closure modeling have
been done by Mellor and Herring (1973 ), Lumley and
Khajeh-Nouri (1974), Lewellen (1977), Lumley
(1978), Zeman (1981), Wyngaard (1982), and Mellor
and Yamada (1982).

In PBL applications second-order closure is, in prin-
ciple, less restrictive than integral (e.g., mixed-layer)
modeling and it also provides information on the ver-
tical distribution of turbulence statistics. However,
many second-order closures stem from laboratory tur-
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bulence data of uncertain relevance to the convective
PBL; they were developed in the early 1970s before
data from major field programs, laboratory convection
tanks, and large-eddy simulation (LES) became avail-
able.

Part of the motivation for second-order closure is
the hope, expressed by Lumley and Khajeh-Nouri
(1974), that “if a crude assumption for second mo-
ments predicts first moments adequately, perhaps a
crude assumption for third moments will predict sec-
ond moments adequately.” In the mid-1970s, however,
some modelers closed at even higher order, by assuming
that the fourth moments are jointly Gaussian (e.g.,
André et al. 1976; Zeman and Lumley 1976). While
the predictions of third-order closure have shown good
agreement with atmospheric and laboratory tank ob-
servations, such models are too complex for practical
use in typical large-scale meteorological models.

On the other hand, eddy-diffusivity closure (i.e., K-
theory) sometimes gives unrealistic results. Most PBL
modelers have chosen intermediate closures, as shown
in Table 1. More than two-thirds of the models use the
downgradient-diffusion assumption for the third mo-
ments whose divergences appear in the second-moment
equations. About that fraction of the models diagnoses
the turbulent dissipation rates through variances and
a specified turbulent length scale; their closure problem
is to determine the behavior of this length scale. A few
modelers (e.g., Lumley 1970; Wyngaard and Coté
1974) have carried rate equations for the dissipation
rates.

There have been indications that a downgradient-
diffusion approximation for third moments is invalid
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TABLE 1. Second-order closure models for the PBL.
Users Transport closure Dissipation closure v Applications
Donaldscn (1973) Downgradient diffusion Diagnos\tic L* Clear PBL

Lewellen and Teske (1973)
Melior (1973)

Wyngaard and Cote (1974)
Mellor and Yamada (1974)
Wyngaard (1975)

Yamada and Mellor (1975)
Mellor and Durbin (1975)
Zeman and Lumley (1976)
Burk (1977)

Miyakoda and Sirutis (1977)
Oliver et al. (1978)

Brost and Wyngaard (1978)
Sun and Ogura (1980)
Moeng and Arakawa (1980)
Klein and Coantic (1981)
Mailhot and Benoit (1982)
Chen and Cotton (1983)
Therry and Lacarrére (1983)
Finger and Schmidt (1986)

Duynkerke and Driedonks (1987)

Wai (1988)
-Helfand and Labraga (1988)

Diagnostic L
Diagnostic L
Dissipation Eq.
Diagnostic L
Dissipation Eq.
Diagnostic L
Diagnostic L
Dissipation Eq.
Diagnostic L
Diagnostic L
Length-Scale Eq.
Diagnostic L
Diagnostic L
Diagnostic L
Diagnostic L
Prognostic L
Diagnostic L
Diagnostic L
Diagnostic L
Diag. L & e-eg
Diagnostic L
Diagnostic L -

Downgradient diffusion
Downgradient diffusion
Downgradient diffusion
Downgradient diffusion
Downgradient diffusion
Downgradient diffusion
Downgradient diffusion
Buoyancy transport
Downgradient diffusion
Downgradient diffusion
Downgradient diffusion
Ignored

Buoyancy transport
Downgradient diffusion
Downgradient diffusion
Downgradient diffusion
Buoyant transport
Buoyant transport
Downgradient diffusion
Downgradient diffusion
Downgradient diffusion
Downgradient diffusion

Surface layer

Surface layer

Clear convective PBL
Clear PBL

Clear stable PBL
Clear PBL

Ocean boundary layer
Clear convective PBL
Clear PBL

GCM

Stratus-topped PBL
Clear stable PBL
Clear convective PBL
Stratus-topped PBL
Ocean boundary layer
Clear PBL
Stratus-topped PBL
Clear PBL

Clear PBL
Stratus-topped PBL
Stratus-topped PBL
GCM

* L refers to the dissipation length scale defined in (2.3) and (2.9).

in convective turbulence. Wyngaard (1973) indicated
that Kansas data showed positive values of both w?
and dw?/dz in the convective surface layer; hence, the
_ vertical turbulent flux of w? is wupgradient there.
Zeman and Lumley (1976), citing laboratory data,
suggested that the downgradient-diffusion model is also
inadequate for the vertical flux of total kinetic energy.

In this paper,' we will use LES data to get further
insight into the downgradient-diffusion closure for third
moments and length-scale closures for the turbulent
dissipation rates. The LES approach explicitly calcu-
lates the large eddies in a turbulent flow field, thus
providing three-dimensional data that can be used to
study details of the turbulence. Moeng-and Wyngaard
(1986), using (40)3 LES, studied the maintenance of
the scalar-pressure gradient covariance and found that
buoyancy and turbulence effects are equally important;
they proposed a buoyancy correction to Rotta’s (1951)
“return-to-isotropy” closure for this term. We post-
poned the study of turbulent transport and dissipation
closures until now, because the higher moments are
more sensitive to the numerical resolution of LES, as
we show later.

This paper is based on a finer-mesh LES with (96)3
grid points (Moeng and Wyngaard 1988). With such
turbulence data, as well as data from direct observations
in the lower atmosphere and in laboratory convection
tanks, it is now possible to study these closures more
systematically than ever before. In this paper, we briefly
review the second-order closure technique in section
2. Section 3 presents some second and third-moment
statistics from the (96)° LES, comparisons with the

(40)> LES and with observations, and the LES budgets
of turbulence kinetic energy, buoyancy flux, and tem-
perature variance. Closure evaluations, based on our
LES data, are given in section 4. Section 5 discusses
the implications for second-order closure models.

2. An overview of second-order closure modeling

~ Second-order closure models often include a
prognostic equation for the turbulence kinetic energy

2/2 = u®*+ v2 + w?/2. In the usual notation, the

g*/2 equation for a horizontally homogeneous PBL

/2 _ _wg’/2_(__ 09U __ oV
ot oz 0z 0z
—_ 1 dwp

+ Bgwi ___Bwp_e, 2.1)
po 0z

where U and V are the mean horizontal winds, uw and
vw are the momentum fluxes, Sg is the thermal coef-
ficient, wé is the buoyancy flux, wp is the pressure flux,
¢ is the viscous dissipation rate, and the overbar stands
for the ensemble average. The terms on the right-hand
side represent turbulent transport, shear production,
buoyant production, pressure transport, and viscous
dissipation, respectively. To solve (2.1), given the mean
wind field and the buoyancy and momentum fluxes,
we need closure expressions for the turbulent transport,
pressure transport, and viscous dissipation terms.
The most commonly used closure for the turbulent
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transport term is the downgradient diffusion model
(e.g., Donaldson 1973; Mellor and Yamada 1974),

owg’ /2 _ (. 342
3z az\"M ez )’

where L; and g = (g?)'/? are length and velocity scales,
respectively. The pressure transport term in (2.1) is
typically either neglected or implicitly modeled together
with the turbulent transport. '

Most second-order closure models parameterize vis-
cous dissipation as

(2.2)

e=q’/L,, (2.3)

where L, is another length scale. The basis of this pa-
rameterization is that although viscous dissipation is
carried out by the smallest eddies, its value is deter-
mined by the rate of energy cascade from the energy-
containing eddies; hence, it can be expressed in terms
of large-eddy properties. Equation (2.3) then results
from standard scaling arguments ( Tennekes and Lum-
ley 1972).

In convective turbulence, eddy-diffusivity parame-
terizations for scalar fluxes, e.g., for wé in (2.1), are
not generally valid (e.g., Deardorff 1966). Therefore,
second-order closure models usually also include pa-
rameterized versions of the scalar-flux and -variance
equations; the scalar can be potential temperature 6,
or the mixing ratio of water vapor or another conser-
vative species. The scalar-flux equation reads

owe e —oC . — 1 dp
== W = +fgh - —c—, (24
o oz W e TR en, (29
and the variance equation reads
ac? awe>  ___aC
a—t = - 5z — 2wc oz Xe, (2.5)

where c is the scalar fluctuation, C its mean value, and
X. its molecular destruction rate. The first two terms
on the right-hand sides of (2.4) and (2.5) are the tur-
bulent transport and mean-gradient production. The
third and last terms in (2.4 ) are the buoyant production
and pressure covariance. The turbulent transport,
pressure covariance, and molecular terms need closure
assumptions.

The most common closure for turbulent transport
of scalar flux and variance is again the down-gradient
diffusion model,

v’ ] owe

= = 2.
3z 62( M az)’ (2.6)
awc? 3 ac?
e O B

where L3 and L, are length scales.

The closure for the pressure covariance is typically
an extended version of Rotta’s return-to-isotropy hy-
pothesis (Mellor 1973),
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1 dp wc
——c-==-4q,

po 0z Ls

where Ls is another length scale. The scalar variance
dissipation is modeled as

X, = gc*/Le,

(2.8)

' (2.9)

where L is a length scale.

Since the six length scales in Egs. (2.2), (2.3), and
(2.6)~(2.9) are representative of the energy-containing
turbulence, it might seem reasonable to assume they
are proportional to a master length scale L; i.e., L;
=L, wherec;,i =1, - - -, 6, are constants. A com-
monly used length-scale formula is that of Blackadar
(1962):

_ kz
1+ kz/Lo’

where k is the von Karman constant and L, is an
asymptotic value defined as

abj;'qzdz
Lo=—F%—":
f qdz
0

where ay is an empirical constant set to 0.1 by Mellor
and Yamada (1974), and z; the PBL depth.

The closures (2.2), (2.3), and (2.6)-(2.9) were
originally developed to model turbulent shear flows,
and their adjustable constants were mostly obtained
from laboratory data from such flows (e.g., Mellor
1973). Three major deficiencies of these closures have
been mentioned in the literature. First, the downgra-
dient transport assumption of (2.2), (2.6), and (2.7)
is inadequate in the convective PBL (Wyngaard 1973;
Zeman and Lumley 1976; André et al. 1976). The
second deficiency relates to the length scales; in their
1982 review paper Mellor and Yamada stated that “the
major weakness of all the models probably relates to
the turbulent master length scale, and, most important,
to the fact that one sets all process scales proportional
to a single scale.” The third deficiency is the neglect of
buoyancy effects on the pressure-scalar covariance clo-
sure in (2.8); this was studied by Moeng and Wyngaard
(1986). We will consider the first two points in more
detail in section 4.

L (2.10)

(2.11)

3. Overall statistics from LES

The statistics shown here are from (96 )3, wave-cutoff
filtered simulations over a 5 km X 5 km X 2 km nu-
merical domain (Moeng and Wyngaard 1988). They
are averaged over the horizontal plane and over about
three large-eddy-turnover-times z;/w,, where w,
= (Bgwloz;)'/® = who = w0, is the surface buoyancy
flux. The simulated PBL has w, ~2ms™', u, ~ 0.6
m s~} z; ~ 1000 m, wl, = 0.24 K m s~!. Figure 1
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FIG. 1. Vertical distributions of (a) turbulence kinetic energy and (b) buoyancy flux from the (96)° LES.

shows the resolvable-scale and subgrid—scalé kinetic netic energy and support a negligible amount of buoy-
energy and buoyancy flux. Above the surface layer, the ancy flux.

subgrid scales contribute less than 12% of the total ki- Figure 2 shows the vertical velocity variance; the

shaded area covers all the vertical profiles at each re-
_ corded time, and hence indicates the sampling error
1.0 = inherent in 5 km X 5 km area averaging. Our results
compare well with recent convection tank experiments
of increased aspect ratio (Deardorff and Willis 1985)
and AMTEX observations (Lenschow et al. 1980)
. except near the surface. Our w? also compares well
with Nicholls and LeMone’s (1980) GATE data (not
shown here). The results indicate that many of the
first- and second-moment statistics from the (96)° LES
i are not significantly different from those of the (40)3
simulation. We will show later, however, that the scalar
variance in mid-PBL is about 50% larger in the (96)3
simulations. ‘
The higher-order moments are more sensitive to

the LES resolution, however. Figure 3 displays the
third-order moments w3/w3, wzﬁ/(wie*), and

Z/Z;

) 0.2 0.4 0.6 08 e

-005 o ol o2 o3 [

—2 2 Eon ol ;233:5'. 03 04 OE"':I 2
wo/wy — = —
FIG. 3. Vertical distributions of (a) w?, (b) w26, and (c) wé? from
FIG. 2. Vertical velocity variance from the (96)> LES (solid curve),  the (40)* LES with a Gaussian filter (dashed curves), the (96)* LES
the (40)3 LES (dashed curve), AMTEX (circles) and convection

with a Gaussian filter (dotted curves), and the (96 )* LES with a wave
tank experiments (squares). cutoff filter (solid curves).
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FIG. 4. Vertical distributions of w? from the (96) LES (solid
curve), convection tank experiments (squares), and AMTEX (cir-
cles).

w0? /(w402 ) calculated from the resolvable-scale fields
from these simulations: (1) (40)3, Gaussian filter; (2)
(96)?, Gaussian filter; and (3) (96 )3, wave-cutoff filter.
Moeng and Wyngaard (1988) explained these different
filtering processes. Throughout most of the PBL these
third moments from LES are generally larger with finer
LES grid resolution and with the wave-cutoff filter. The
smaller third moments with the Gaussian filter may
be due to (1) its larger filter width (twice the average
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grid size), and (2) its less sharp transfer function, which
causes some attenuation even well below the cutoff
frequency (Piomelli et al. 1987; Moeng and Wyngaard
1988). The reduced unrealistic negative w*/w3 near
the surface in the (96)3 wave-cutoff LES, compared
with the other two simulations, implies that the wave-
cutoff filter provides more reasonable higher-moment
statistics. Their improved spectral distribution studied
by Moeng and Wyngaard ( 1988) also supports the use
of a wave-cutoff filter.

We compare w? /w3 from our (96 )3 wave-cutoff fil-
tered LES with data from AMTEX (Lenschow et al.
1980) and from the tank experiments ( Deardorff and
Willis 1985) in Fig. 4; the LES result agrees well with
the observations and tank experiments throughout
most of the PBL. Near the surface our w3/ w3 is slight-
ly smaller than the AMTEX data; the subgrid-scale
contribution may account for the difference (Hunt et
al. 1988). The comparison of w?@ and wé? between
our LES and observations will be made in section 4.

Figure 5 shows the kinetic energy budget for the re-
solvable-scale velocity field from the (96)® LES. All
but the dissipation term were computed directly; e was
taken as the residual. Figure Sb shows that our tur-
bulent transport and dissipation terms compare well
with data from AMTEX and from the convection tank
experiments. The pressure transport term also agrees
with the convection-tank result, which Deardorff and
Willis deduced from the imbalance of the measured
terms (Fig. 5¢). Pressure transport represents a loss in
mid-PBL and shows clear indications of being a sub-
stantial source in the surface layer, as inferred from
the 1968 Kansas experiments (Wyngaard et al. 1971).

| (b)

o1-]

2/Z; 06

04

02

-
-

L
08

i
-08 -04 (o]

KINETIC ENERGY BUDGET (normalized by w3/Z;)

FiG. 5 The kinetic energy budge_t from the (96)° LES and comparisons of the turbulent transport, dissipation, and pressure transport
terms with results from the convection tank (squares) and AMTEX (circles). T', S, B, P, and ¢ approximately represent the terms on the

right side of (2.1).
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" The only significant difference between our results
and the tank experiment appears at the PBL top. There
the LES budget shows a gain due to pressure transport,
compensating the losses to buoyancy and dissipation,
but the tank experiment shows a gain by turbulent
transport to compensate the loss. It is not clear what
causes this difference, but our interfacial layer Rich-
ardson number, 8gz; A/ w3 (where A is the inversion
strength), is larger than the tank value by a factor
of 2-3.

Shear production is negligibly small above the sur-
face layer, so that these LES runs are not suitable for
studying the physics of momentum transport.

Figure 6 shows the resolvable-scale buoyancy flux
budget. In this case all terms were directly obtained
from the LES data; the residual is nearly zero, since
the subgrid-scale diffusion is small in this fine-resolu-
tion LES. Turbulent transport is as important as the
buoyancy and pressure terms in mid-PBL. The mean-
gradient term changes sign in mid-PBL where the
buoyancy flux is positive; thus, the eddy-diffusivity as-
sumption for the buoyancy flux becomes invalid there.
This is consistent with Deardorff’s (1966) early analysis

of the countergradient heat flux in the convective PBL. .

The temperature-variance budget is given in Fig. 7.
We computed the transport and mean-gradient pro-
duction from the LES data. Representing the subgrid-
scale diffusivity by K, the subgrid-scale contribution is

d a0 a
6xi ax,-

2
Za—xiK(,)—)Cil?—-ZK 5}:) , (3.1)

......

08 -

06

Z/Z;
T

04

o]
[0 10

BUOYANCY FLUX BUDGET (Normalized by w26,/z;)

FIG. 6. The buoyancy flux budget from the (96)3 LES data. T,
M, B, and P approximately represent the terms on the right side of
(2.4) with ¢ = 6.
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FIG. 7. The temperature variance budget from the (96)° LES data.
T and M represent the turbulent transport and mean-gradient pro-
duction; X and S represent the dissipative and diffusive parts of the
subgrid-scale term. T, M, and X approximately represent terms on
the right side of (2.5) with ¢ = 6.

the sum of diffusion and dissipation. We computed the
dissipation ( X ) using the subgrid-scale eddy diffusivity
from the LES data, and took the diffusion (S) to be
the budget imbalance. The mean-gradient production
term is actually a loss in mid-PBL due to the counter-
gradient temperature flux, but it is much smaller in
magnitude than turbulent transport there. Thus, to a
good approximation the mid-PBL temperature vari-
ance budget is a balance between gain by turbulent
transport from below and loss to molecular destruction.

4. Evaluation of second-order closures
a. Closures for turbulent energy transport

Figure 8 shows good agreement among dimension-
less energy fluxes wg?/2w3 computed from our LES
data and measured in a convection tank (Deardorff
and Willis 1985) and in the convective PBL (Lenschow
et al. 1980). Thus, let us use the LES data to examine
the eddy-diffusion parameterization (2.2) for turbu-
lence kinetic energy transport. We define an eddy dif-
fusivity K, for the energy flux as

2
ko= w7 (%12)
9z

(4.1)

In_evaluating (4.1) with the LES data we smoothed
9(g*/2)/0z. Figure 9 shows the resulting K, profile
from our LES data, and a closure used by Mellor and
Yamada (1974), KMY = 0.38Lg with L given by
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FIG. 8. The vertical flux of energy from the (96 ) LES (solid curve)
compared with the parameterizations of Zeman and Lumley (dash-
dot curve), Sun and Ogura (dash-cross curve), the convection tank
experiment (squares), and AMTEX (circles).

(2.10). The results show that the eddy diffusivity ob-
tained from this closure are much smaller than implied
by the LES results, so that the energy flux wg?/2 is
substantially underpredicted by Mellor and Yamada’s
closure.

However, the Mellor-Yamada eddy diffusivity does

not seem small; its maximum value, about 0.02w,z;
in mid-PBL, is of the order of the 0.05w,z; estimated
by Wyngaard (1983) for the eddy diffusivity of mo-
mentum in the baroclinic, convective boundary layer.
Rather, the diffusivity of order 1.0w,z; implied by the
LES results seems unphysically large. We also com-
puted the eddy diffusivity for the total transport (tur-
bulent plus pressure); it is also of the order of 1.0w,z;
and positive throughout most of the PBL except near
the surface.
__We can gain some insight into this issue from the
wg? budget. Hanjalic and Launder (1972) used this
equation to develop a closure for turbulence—kinetic-
energy transport in shear flow, Lumley et al. (1978)
used it in their buoyant transport model, and Brost et
al. (1980) used it for the stratus-topped PBL. The
budget of wg?/2 in a horizontally homogeneous
boundary layer is

W2 50U OV g O
ot 0z 0z a9z
__w ow? g2 aw? 1 owg?
tow W+ L o
Y ez 9z ' 2 0z 2 oz

0 —
+ ﬁg(—z—- + wze) +P+ M. (4.2)
Here P and M represent the pressure and molecular
terms, whose specific roles here are not entirely clear.
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However, for third-moment budgets in general, there
is evidence that such terms can be quite important.
For example, the budget of 8° in the convective bound-
ary layer is balanced by molecular destruction (Wyn-
gaard and Sundararajan 1979); the sum of the pressure
and molecular terms in the budget for w?c in homo-
geneous turbulence is a strong loss term (Deardorff
1978); and the sum of the pressure and molecular terms
in the budget of w* in the unstable surface layer is a
net gain (Wyngaard 1980).

If we apply the quasi-normal approximation to the
fourth-moment term, (4.2) becomes

g2 _ 5V 5oV
a uw 0z ow 0z (a)
__duw ___ dow
—uw Py w Y (b)
w? 9g2
2 oz ()
— ow?
2
—w? T d
v 9z (d)
-
+,8g(qT‘9 + w26) (e)
+P+ M ()
(4.3)

The terms on the right-hand side of (4.3) represent
the effects of (a) the mean shear, (b) the stress gradient,

iT T T T ] T T 1 T
- | -
L |
ool ! 1
Lo 4
|
os L 110xKX7Z;w, |
|
~ N -
N i
04 - : LES -
]
| -
|
02} | _
]
I
" 4 7]
0 1 1 L 1 1 1 1 t t
(e} I 2
Ke/Z| Wy

FiG. 9. Profiles of the eddy diffusivity for energy flux, defined in
(4.1), from the (96)3 LES (solid curve) and that implied by Mellor
and Yamada’s parameterization (dashed curve). The latter is mag-
nified by a factor of ten.
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(c) the g gradient, (d) the w? gradient, (&) buoyancy,
and (f') pressure and molecular diffusivity: In the con-
vective boundary layer terms (a) and (b) are normally
much smaller than the rest, so we will not consider
them further. A comparison ofterms (¢), (d), and (e),
Fig. 10, indicates that (e) (buoyancy) is the largest,
and that (d) (the w?-gradient term) is also generally
larger in magnitude than (c), the ¢*-gradient term.

If term (f) is of order —wgq?/7, where 7 is a time
scale (Hanjalic and Launder 1972; Lumley 1975), then
(4.3) shows that the conventional downgradient closure

(2.2) applied to the convective boundary layer is

equivalent to ignoring the dominance of the w2-gra-
dient and buoyancy and writing under stationary con-
ditions

2 9z - T iz’
(4.4)

In parameterizing the turbulent transport as (4.4),
however, we are forced to use an unrealistically large
value of K, (i.e., w?7) in order to achieve the LES-
observed ratio of wg? and —dg?/dz, as shown by Fig.
9. In other words, the presence of the dominant terms
(d) and (e) in (4.3) not proportional to dg*/dz means
that a downgradient diffusion closure for wg? is not
appropriate.

In modeling turbulent transport in the convective
boundary layer, it is therefore necessary to include
buoyancy effects. Zeman and Lumley (1976) and
Lumley et al. (1978) carried diagnostic equations for
third-moment quantities. Their model thus explicitly
includes the buoyancy effects on third moments, but
since buoyancy makes the third moments interdepen-
dent no simple flux-gradient relationship of the form

1.0 T T A\ / T T T
08— -
_ 0.6 — —1
N i .
N
. o4l _
5 2w’
o2~ W 5y -
- (G
0 1 | 1 1 . L
-0.8 -04 0 04 08

F1G._10. Profiles of terms (c), (d), and (¢e) in the
wq?/2 budget (4.3) from the (96)° LES.
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of (4.4) exists. Figure 8 indicates that Zeman and
Lumley’s model predicts wg? behavior that agrees
fairly well with the observational and LES data. Using
Zeman and Lumley’s buoyancy transport closure in
the Mellor-Yamada model, Sun and Ogura (1980) im-
proved the energy flux somewhat, as also shown in Fig.
8. In their eddy-kinetic-energy model, Therry and La-
carrére (1983) also modified the downgradient-flux
formulation by using a simple empirical closure, de-
rived from a third-order closure model, for the buoy-
ancy term.

b. Closures for scalar-flux and -variance transports
1) TOP-DOWN, BOTTOM-UP DECOMPOSITION

We can get some insight into the gradient-diffusion
assumption for scalar transport by representing a con-
servative scalar field ¢ as the sum of “top-down” and
“bottom-up” components, a technique applied by
Wryngaard and Brost (1984) and Moeng and Wyn-

gaard(1984). Thus, if ¢ = ¢, + c;, we write w?c as

“wlc = wle + wie,. (4.5)
Similarly, we write we? as
we? = we? + wey® + 2WE,Cp. (4.6)

We now examine the adequacy of the usual second-
order closure for these third moments, which we write
as

a_.

wie, = — ,U’—g, (4.72)
; o G

Wiy = —Kp 2, (4.7b)

and

a'_i

we? = —K,® %, (4.82)
R . 2

e,k = —Kp® %", (4.8b)
.

we, ey = —KP —;tzﬁ . (4.8¢)

!

The superscripts (f) and (v) on K refer to the scalar
flux and scalar-scalar covariance, respectively. We write
the K’s as the product of length and velocity scales,

KV =LY, K9 =LY, (4.9)
and
K® =LY, K“=L"q K§=L{q.
(4.10)

We included three passive, conservative scalars in
our large-eddy simulation; one represents top-down
diffusion, while the other two have both surface- and
entrainment-induced fluxes and therefore represent the
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general case with combined top-down and bottom-up
diffusion. Using the technique described in Moeng and
Wyngaard (1984), we retrieved the bottom-up, top-
down, and joint statistics from these three scalar fields.
We compare the gradient functions g, and g, from our
(40)3 and (96)3 simulations in Fig. 11. They are defined
by

ac, _  ow,

Py w*z,-g' (4.11a)
aCy TWo

_—= - : 4.11
3z WaZi 8bs ( b)

where cw is the flux of ¢ at the top of the mixed layer
and ¢w, the flux of ¢ at the surface. The difference
between the (96)° and (40)3 results is generally not
large, but does tend to increase the dissimilarity of the
top-down and bottom-up functions. Figure 12 shows
the variance functions f;, f,, and f;;, defined by

. 2
o= (CW‘) 1, (4.12a)
Wi
— TWo \
cpt = ( )ﬁ,, (4.12b)
Wy
R CW;CW
ey = —— fiby (4.12c)
*
2=¢c2+ ¢+ 2G0,. (4.12d)

The top-down and bottom-up variance functions f; and
fp are somewhat larger than those found by Moeng and
Wyngaard (1984) with a (40)? grid. Since the com-
puted variances include only the resolvable-scale con-
tribution, this reflects the increased resolution of the
(96) LES. In Fig. 12 we also give new curve fits to f,
and f; based on the (96)3 LES.

Although the covariance function f; is also larger
than in the (40)? simulation, its scaled value v = f,;/
(f.f»)'/? remained about the same, 0.5, in the mixed
layer. One can show from (4.12) that the correlation
coefficient between the ¢, and ¢, fields, r = ¢,/
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FIG. 11. The top-down and bottom-up gradient functions from
the (40)> LES (open triangles) and the (96)° LES (solid triangles),
and the curve fits of Moeng and Wyngaard (1984).
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FG. 12. The variance functions of (a) a top-down scalar, (b) a
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and bottom-up scalars; the data are from the (40)> LES (open tri-
angles) and the (96 ) LES (solid triangles). The solid curves are new
curve fits based on the (96)? results, and based on surface layer ob-
servations for the curve fit of f;, below 0.1 z;. Open circles are the
Minnesota data.
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F1G. 13. The temperature variance computed from (4.12) using
the curve fits shown in Fig. 12. R is the ratio of entrainment and
surface fluxes. Circles, AMTEX data; X, convection tank data.

(¢ ¢s?)""? has magnitude v; since f;; is positive, the
sign of r is the sign of the product of cwg and cw;. It
follows that if, for example, cwy is positive (i.e., there
is an upward flux of ¢, through the surface) and cw,
is negative (a downward entrainment flux of ¢,) then
within the mixed layer r ~ —0.5. This suggests the
coexistence of positive ¢, fluctuations and negative ¢,
fluctuations in updrafts under these conditions. The
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substantial correlation between ¢, and ¢, means that in
general the cross-correlation contribution to the total
variance, Eq. (4.12d), is not negligible.

Our calculation of the temperature variance profile,

using (4.12) and the variance functions from the (96)3
simulations, is shown in Fig. 13. It is about 50% larger
than the profile from the (40)? results and also agrees
better with atmospheric data. It agrees particularly well
with the Deardorff-Willis (1985) convection tank re-
sults.
__We show _the LES results for the components of
w?c and we? in Fig. 14. Here the cross component,
WC,Cp, is quite small in the mixed layer and we will
neglect it. (The sudden sign change of wc,? near the
top is probably spurious and due to the finite-difference
error resulting from the sharp gradient of the top-down -
scalar.) We used these data to compute the length scales
LY, LY, L,", and L, in (4.7)-(4.10), shown
in Fig. 15. We used linear profiles of scalar flux; i.e.,
cw =cw, z/z;and W = cwo(l — z/z;)in(4.7). We
used the analytical curve fits for the variance functions
in (4.8) in order to facilitate the z-differentiation.

The results in Fig. 15b indicate that the length scale
(and the eddy diffusivity) for bottom-up variance is
larger than for the top-down variance. This is also the
case for the more familiar eddy diffusivity for scalar

_flux (Wyngaard and Brost 1984). Figure 15a_shows

that L, and, hence, the eddy diffusivity for w2c,, is
negative, meaning that a downgradient diffusion as-
sumption is inappropriate here. We can interpret this
negative eddy diffusivity physically as follows. Consider
the top-down diffusion of a scalar introduced from

2/,

wc? w,

1 | | 1
° 04 0.6 :

wlc

we?

FIG. 14. The top-down, bottom-up, and joint contributions to W2 and we?.



15 JuLy 1989 CHIN-HOH MOENG AND JOHN C. WYNGAARD 2321
10 T T T
' (a) ' . (b)
08 - — —
Bottom-Up B
o Bottom-Up
o6 |- - -
N 3 -
N |
N
04 - - -
02 - = —
L L i {
-1.0 0.5 1.00 0.4 06 08 1.0
) L(”/Zi L(V)/zi
FIG. 15. The downgradient-diffusion length scales, defined in (4.7)—(4.10), for (a) w’ and (b) wc?.
above, say, so that w¢, and dwc,/dz are negative. Both —— L (— dC 5 OWC
updrafts with low scalar concentrations and downdrafts c=- q iy +2 3
with high concentrations contribute to the negative ( b
value of wc,. Since the w-field is positively skewed, a) (_)
however, the updraft processes make the dominant _ ow? -
contributions to w?¢, and cause it to be negative, so + we . 2Bgwhe ) . (4.14)
that its eddy diffusivity is also negative. This is consis-

tent with both potential temperature (#) and humidity
(m) observations from AMTEX (Lenschow et al.
1980), as we will show in section 4.b.3. _
__Next, we will analyze the budgets of wc,?, wcy?,
w?c,, and w? ¢, to get more insight into the applicability
of the gradient-diffusion assumption for each.

2) BUDGETS OF we,%, we,?, w?c,, AND w2¢,

The budget of wicis

wlc  —dC  __ ow? — dwc
o W e Tt
aw’ec — 1 dp
- + ~2—we— . (4.
5+ 28gwic 2powc62+M (4.13)

Here M represents the molecular terms, which are dif-
fusive and possibly also dissipative. If we drop the time-
rate-of-change term, apply the quasi-normal approxi-
mation to the fourth-moment term, and assume that
the sum of the pressure and molecular terms is pro-
portional to —w?c/r, where + ~ L/q is an energy-
containing-range time scale (e.g., André et al. 1982),
(4.13) becomes

(c) (d)

"The terms on the right side of (4.14) represent the

effects of (a) the mean gradient, (b) the flux gradient,
(c) the w? gradient, and (d) buoyancy.

We compare these four terms (normalized by w,,
wc,, and z;) for the top-down case in Fig. 16a. We plot
only the quantities inside the bracket on (4.14); thus,

negatives are source terms for the normalized w?c and
positives are sinks. The conventional downgradient-
diffusion assumption (4.7a) is equivalent to retaining
only the flux-gradient effect, term (b) on the right side
of (4.14). Figure 16a shows that (b) is actually one of
the smaller terms in the budget, and that retaining only
it gives a negative length scale and negative eddy dif-
fusivity ). The mean-gradient term is much larger than
the flux-gradient term and together with the buoyancy
term accounts for the sign of w?c,. _
The budget of the bottom-up component, w?c,, is
shown in Fig. 16b after normalization by w,, ¢y, and
z;. Both the flux-gradient and buoyancy terms are
sources (which are shown as negative in the figure)
throughout the PBL. This explains why the downgra-
dient diffusion approximation gives a positive length
scale. However, Fig. 16b shows that the buoyancy effect
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dominates, which also explains why downgradient
transport models with a length scale L adjusted for
neutral flows greatly underestimate the transport.

The budget for wc? is
owe? - 8C  ___ owe
at

6p

3
+Bg0 2—c 6_+M2’ (4.15)

0z

where M, represents the molecular terms. Applying
the quasi-normal approximation to the fourth-moment
term, assuming that the sum of the pressure and
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molecular terms is proportional to —wc? /(L/q), and
dropping the time-rate-of-change term gives

— L ¢ = ac?
WC2=——q-(2 w2c 02 W2—5;
(a) (b)
+ 27 % _ petic? ) . (4.16)
0z
(c) (d)

The normalized top-down results are shown in Fig.
17a. Term (b) is larger than the others by at least a
factor of 2 and is a sink (shown in the figure as positive)
for negatlve wc,?; thus, L defined by retammg only
term (b) in (4.16) is positive.
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FIG. 17. The mean-gradient (labeled a), E&-gradient (b), Wi
gradient (c), and buoyancy (d) terms in the wc? budgets (4.16) for
top-down and bottom-up cases. The abscissa in Fig. 17a is a linear-
logarithmic scale transformation of y = (x/| x|) In(1 + | x]|/Xo0).
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The normalized budget for wc,? is given in Fig. 17b.
In the lower half of the PBL all four terms are sources;
hence, retaining only the variance-gradient term (b)
[as used in (4.8b)] leads to a positive length scale, as
shown in Fig. 15.

3) COMPARISON WITH OBSERVATIONS

__In Fig. 18 we compare our predictions of w24 and
w82, calculated from the top-down and bottom-up re-
sults given in Fig. 14, with direct measurements from
AMTEX (Lenschow et al. 1980) and Minnesota (Kai-
mal et al. 1976). Our calculation assumes w,/0wg
= —(.2. The large scatter of the observations, probably
due in part to the inadequate averaging time (Wyn-
gaard 1973), indicates the great difficulty in using direct
PBL measurements for studying closures. There is also
a suggestion of a systematic difference between the two
sets of measurements and indications of the predicted
sign change of both w28 and wé? near the PBL top due
to entrainment effects.

For the moisture field we assumed the entrainment-
surface moisture flux ratio wm/wmiy = 0.5 and 1, as
typically observed in AMTEX (Lenschow et al. 1980)
and GATE (Nicholls and LeMone 1980). Figure 19
compares the predicted w?m and wm? with data ob-
tained from AMTEX and GATE (M. A. LeMone 1988,
personal communication). The GATE data have an
entrainment-surface flux ratio of about 1, while the
AMTEX data have a ratio of about 0.5; thus, we predict
the GATE data to have larger dimensionless w?m in
the upper PBL, and the results are consistent with this.
We also predict the dimensionless wm? data from
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GATE to have the larger negative values near PBL top,
shown in Fig. 19, although for unknown reasons the
AMTEX data fail to show any negative values.

4) EVALUATION OF CURRENTLY USED CLOSURES

Mellor and Yamada (1974) use the parameteriza-
tions

_ owo
w9 = —0.23qL 2 (4.17)
0z
and
—_ 302
w2 = —0.23gL — (4.18)

9z’

where L is calculated from (2.10) with constants ad-
justed for neutral flows. Figure 20 shows that these
closures greatly underestimate w2 and wé?, simply
because they neglect the dominant effects of buoyancy.

The model of Zeman and Lumley (1976), which
includes buoyancy but neglects_the mean gradient
terms in (4.14) and (4.16), gives w?0 and w6? in good
agreement with our LES data, as also shown in Fig.
20. This is consistent with the dominance of buoyancy
effects in the w?c, and wc,? budgets. It remains to be
seen whether their model can predict the profile of
w?m, which has a significant top-down component and
thus a dominant mean-gradient effect in the upper
PBL. Sun and Ogura ( 1980) modified the Mellor-Ya-
mada model to incorporate Zeman and Lumley’s
buoyancy transport closure; this yields some improve-
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F1G. 18. Comparisons of w8 and wo? computed from our results for top-down and bottom-up cases (solid curves)
with the Minnesota data (crosses) and the AMTEX data (circles).
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FIG. 19. Comparisons of w?*m and wm? computed from our results for top-down and bottom-up cases (solid curves)
with the GATE data (crosses, courtesy of M. A. LeMone ) and the AMTEX data (circles).

ment over the Mellor-Yamada model in predicting
these third-moment quantities, according to Fig. 20.
Sun and Ogura’s model differs from Zeman and Lum-
ley’s mainly in the length (or time) scale used for com-
puting these fluxes; their length scale is smaller than

that of Zeman and Lumley, as we will show in sections .

4.c and d.

¢. Closures for mechanical dissipation rate

Using the LES data on ¢?/2 and ¢ in Figs. 1 and 5,
we calculated the dissipation length scale L, = ¢g3/e.
Figure 21 compares the results with the often used (e.g.,
Mellor and Yamada 1974; Sun and Ogura 1980) clo-
sure L, = 15L, with L from (2.10). The LES results
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F1G. 20. The profiles of w26 and wo? from the (96)* LES (solid curves) compared with the parameterizations of Zeman
and Lumley (dash-circle curves), Sun and Ogura (dash-cross curves), and Mellor and Yamada (dotted curves).
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FiG. 21. Characteristic length scale for dissipation rate obtained
from our (96)° LES kinetic-energy budget (solid curve) compared
with the closures of Mellor and Yamada (dotted curve), and Sun
and Ogura (dash-cross curve).

indicate that L, ~ 2. 52, in mid-PBL, about 3 times
the value given by this closure.

In their third-order closure model, André et al.
(1978) used a dissipation length scale which is com-
parable to our value. They parameterized dissipation
rate as 0.07(g>/2)3/?/L with L from (2.10). Since
(g%/2)3? =~ 0.35¢3, this is equivalent to adopting a
length scale L, = L/(0.35 X 0.07), about three times
larger than that of Mellor and Yamada; this is more
consistent with our results. This agreement with André
et al. (1978) is not surprising, since they determined
their empirical constant for the dissipation rate from
Deardorftf’s (1974) LES data for the convective
boundary layer. Therry and Lacarrére (1983) and Chen
and Cotton (1983 ) also used the André et al. dissipation
parameterization.

More recently, Mellor and Yamada (1982) suggested
using a prognostic equation for gL, and their results
suggest a larger value of «;, = 0.2 (rather than 0.1) in
(2.11) (Mellor 1989, personal communication).

Since g*?/2 =~ 0.4w3 in the mid-PBL, the LES
produces the time scale 7 = L,/q =~ 2.8z;/w, in mid-
PBL. This agrees well with observations of g*/¢ by
Isaka and Guillemet (1983). The integral scale 2.5z;
is about the size of the largest wave resolvable in our
LES model; this may suggest that a horizontal domain
of 5 km X 5 km is marginal for resolving the largest
turbulent eddies.

d. Closures for scalar-variance dissipation rate

We show the dissipation time scale 7, defined as
2
c
=—-—, 4.19
T X, (4.19)
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in Fig. 22. The dissipation time scale for top-down
variance is on the order of 1.0z;/w,, about the same
as that from our (40)3 simulation (Moeng and Wyn-
gaard 1984). The time scale for bottom-up variance,
however, is smaller by about 50% compared with the
previous (40)3 simulation. This increases the dissim-
ilarity of the top-down and bottom-up fields.

The length scale Lg used to model the molecular
destruction rate of scalar variance, X., is usually as-
sumed to be proportional to that used for e. Equations
(2.3) and (2.9) give us the ratio of these two length
scales,

Lg _ ¢ 26

L ¢°x,
We evaluated the right-hand side of (4.20) for potential
temperature and for the top-down and bottom-up sca-
lar fields. The results shown in Fig. 23 indicate that L
for the top-down variance is about a factor of 2 larger
than for the bottom-up variance in mid-PBL. This
length scale for the top-down component decreases
with height while that for the bottom-up one stays con-
stant.

The ratio L¢/ L, computed from the potentlal tem-
perature field is smaller everywhere than that for the
bottom-up scalar. This is apparently due to the con-
tribution from the correlation of the top-down and
bottom-up fields. Figure 24 compares Lg/ L, retrieved
from the top-down and bottom-up fields for different
entrainment-surface flux ratios. The profile for R
= —(.2 agrees well with that from the potential tem-
perature field.

To first approximation, in mid-PBL L¢/L; =~ 0.2
for the bottom-up variance and ~ 0.4 for the top-down

(4.20)
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FIG. 22. The dissipation time scales of top-down (solid curves)

and bottom-up (dashed curves) scalar fields from our (40)® and (96)°
LES.
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variance. Based on a large collection of data from the
convective boundary layer, Isaka and Guillemet (1983)
reported that » o

i =0.19, me

qzxe ‘ qzxm

=0.28, (4.21)

where m is water vapor mixing ratio. Their value of
Lg/ L, = 0.19 for temperature agrees well with our value
of ~0.2; their value of Ls/L, = 0.28 for water vapor
lies between our bottom-up and top-down values, con-
sistent with the observation that water vapor typically
has positive fluxes at PBL top and bottom. For a scalar
field with an equal amount of entrainment and surface
fluxes, Fig. 24 predicts that L/ L, = 0.36. Mellor and
Yamada (1982) used L¢/ L, ~ 0.3[B»/(2B,) in their
notation}, which falls within the range of our results.
Since their L, seems small by a factor of 3, their Lg
may also be small by that factor.

5. Implications for second-order closure models

Because a second-order closure model is a compli-
cated, nonlinear system with feedback, its response to
parameterization changes can be difficult to predict.
However, we can make some broad statements about
the effects of the parameterization errors we have dis-
cussed.

a. Velocity statistics

The buoyant' production rate, the principal source
of turbulence in the convective boundary layer, is pro-

portional to the vertical flux of temperature wé. If the
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mean lapse rate 90/dz is independent of time, the
wh profile is linear because its second derivative van-
ishes:

p00_ &
ot 9z 4z?

Most observational and model studies show that in the
absence of abrupt changes in boundary conditions, the
wé profile is indeed essentially linear in the mixed layer,
with some curvature appearing near the capping in-
version layer. )

Thus, given the proper boundary conditions, second-
order models will tend to have the correct vertical pro-
file of buoyant production rate within the mixed layer,
regardless of the fidelity of their closure parameteriza- -
tions. If we integrate the turbulence kinetic energy
equation (2.1) across the convective PBL, neglecting
the shear production term, we find, to a good approx-
imation, under steady conditions

wh.

(5.1)

hy hy
f «z)dz =~ Bgf wh(z)dz ~ 0.48gwby, (5.2)
0 0

where h, is the turbulent layer top. The_constant
0.4 results from assuming that wf, = —0.2w#,. Clo-

sure approximations can affect the wé profile near the

_mixed-layer top, but the overall effect is simply to vary

the constant in (5.2) over the the range 0.4 to about
0.5. Thus, we conclude that the layer-integrated ¢ value
is nearly independent of closure approximations. This
is illustrated in Fig. 25, which compares ¢ profiles from
the LES and those from the second-order models of
Zeman and Lumley (1976), Sun and Ogura (1980),
and Yamada and Mellor (1975). For the latter, we use
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FIG. 24. Ratio of the scalar-variance dissipation length scale to the
mechanical dissipation length scale predicted from the top-down and
bottom-up results and varying entrainment-surface flux ratio.
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FIG. 25. The dissipation rate from our (96)* LES (solid curve)
compared with the model predictions of Zeman and Lumley (dash-
dot curve), Sun and Ogura (dash-cross curve), and Yamada and
Mellor (dotted curve).

z;= 1100 m and w, = 2.2 m s~ with a surface buoy-
ancy flux 0.3 m K s™! obtained by linearly extrapolating
the mid-layer buoyant production profile in their tur-
bulence kinetic energy budget. Each integrates over the
PBL to roughly the same value, despite the fact that
the Mellor and Yamada model uses a dissipation length
scale that is small by a factor of 3.

Because of incorrect turbulent and pressure transport
parameterizations, however, the errors in the local en-
ergy budget in the Mellor and Yamada model can be
substantial, as suggested in Fig. 25. This error also
causes the entrainment flux w#, to be underestimated,
which in turn increases the constant in (5.2) to about
0.5 and increases the layer-averaged dissipation rate
by 25%.

If a second-order closure model uses a parameter-
ization of the form e = g>/ L, then since e is essentially
fixed incorrect prescriptions of the length scale L, will
result in incorrect g* values. This is illustrated in Fig.
26, which compares g2 values from Yamada and Mel-
lor (1975) and the LES. Our arguments predict that
the error in their length scale gives the layer-integrated
g values small by a factor of 32/ ~ 2, in good agree-
ment with Fig. 26. Finger and Schmidt (1986 ) used «,
= 0.2 in the Mellor-Yamada model and predicted
much reasonable vertical energy levels.

b. Scalar statistics

1) MOLECULAR DISSIPATION

If we integrate the scalar variance bﬁdget (2.5) over
the boundary layer we find, in steady conditions,

by a hy
-2 f 73 4 = f X.dz. (5.3)
0 0z 0
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While as we stated the vertical profile of wc is inde-
pendent of closure parameterizations, dC/dz is deter-
mined principally by the wc equation; as a result, it is
sensitive to the closure. Thus, from (5.3) the layer-
integrated value of X, from a closure model, unlike the
layer-integrated ¢, depends on the closure.

We can separate the first integral in (5.3) into two
parts, the first over the surface and mixed layers and
the second over the interfacial layer, defined as the re-
gion of negative entrainment flux of temperature near
the PBL top (Deardorff 1979). Ah = hy — hy, where
h, and hg are the top and bottom of the interfacial
layer. The interfacial layer integral is, from the results
of Wyngaard and LeMone (1980),

(AC)*w,Ah
Z; Ri ’
(5.4)
where Ri = Bgz;A0/w? is the interfacial layer Rich-
ardson number defined in Section 3 and AC = C(h,)
— C(hyp). Thus, X, near the boundary-layer top depends

on Ri. In the case of temperature (5.4) is (Wyngaard
and LeMone 1980) .

ha 2 Ri2w,Ah

which again contains Ri. This Ri dependence compli-
cates comparisons of model predictions, since it is not
one of the usual mixed-layer scaling parameters.

ha by
—2f W_CEJZNJ‘ X.dz ~ 1.4
ho 9z ko

(5.5)

Z/Z;

0.4
a%/2w?

0.8

FIG. 26. The kinetic energy from our (96)° LES compared with
the model predictions of Yamada and Mellor (dashed curves).
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Nonetheless, in low- to mid-PBL the X, values of
Sun and Ogura (1980) and Yamada and Mellor (1975)
compare well with our LES results. The details of their
62 budgets do not agree as well; however; both models
underpredict the turbulent transport term which, as
we show in Fig. 7, essentially balances X, in mid-PBL.
The downgradient-diffusion closure in Mellor and Ya-
mada’s model results in (a) no sign change of 90/9z
in mid-layer and (b) a significant underestimate of X,,
hence the temperature structure parameter C%, in up-
per regions of the PBL (Fairall 1987).

2. TOP-DOWN/BOTTOM-UP ASYMMETRY

There are substantial differences between the scalar
flux budgets in top-down and bottom-up diffusion. In
this study we showed that the transport terms behave
quite differently in the two cases. The bottom-up third
moment w?c, behaves as in gradient diffusion (i.e., it
is down the gradient of w¢;), while w?¢, is upgradient.
Thus, a single parameterization for scalar flux transport
(as used in most second-order models) does not capture
the differences in transport in the bottom-up and top-

" down cases.

Earlier we pomted out analogous dlﬁ‘erences in the
pressure covariances (Moeng and Wyngaard 1986).
The pressure covariance in the scalar flux equation is
often parameterized as

o _we

oz T’

where T is an energy-containing-range time scale. We
found that T is substantially different for top-down and
bottom-up processes. We also decomposed the tur-
bulent kinematic pressure field into components rep-
resenting turbulence-turbulence interactions, mean
shear, buoyancy, Coriolis forces, and subgrid-scale ef-
fects:

(5.6)

P =pr+ps+ps+pc+ pse. (5.7)

Using Rotta’s parameterization for the turbulence-tur-
bulence part of pressure gives .

“anr _
az 7’

we (5:8)

and we found that the time scale 7 was different in the
top-down and bottom-up cases.

If we assume that two different top-down fields are
well correlated, and that two different bottom-up fields
are also well correlated, then we can write

wh, . wh,
0=0+0~—c+—c
WCo

(5.9)
wC,

(Moeng and Wyngaard 1984 ). Thus, the buoyant pro-

duction term in the scalar flux budget (2.4 ) for the top-
down and bottom-up cases becomes

6gc_ﬂ~(ﬁg-—)ct (ﬁg—a)c,cb, (5.10a)
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and
— WBO
Bgcp ~ (5g :) cy? (ﬁ’g )c,c;,, (5.10b)
WCy

respectively. Since we showed earlier that the variance
functions of ¢,> and c,? are different, we conclude
from (5.10) that the buoyant production terms in the
scalar flux budgets also differ in bottom-up and top-
down cases. '

It follows that since the turbulent transport, pressure
covariance, and buoyant production terms all differ in
the top-down and bottom-up scalar flux budgets in the
convective boundary layer, the usual second-order clo-
sures for these budgets are not uniformly valid for an
arbitrary scalar flux profile; i.e., second-order closures
for, say, temperature and moisture flux budgets should
be different. Contrary to the assertion of Lewellen et
al. (1985), the asymmetry in top-down and bottom-
up diffusion is not due to the presence of turbulent
transport, but to the different physics of diffusion in
the two cases. This seems to be a result of the skewed
vertical velocny field and could be a general property
of diffusion in skewed turbulence.

3) CORRECTIONS TO THE FLUX-GRADIENT RELA-
TIONSHIP

A simplified version of second-order closure mod-
eling carries only the turbulence kinetic energy equa-
tion and relates heat and momentum fluxes to mean
gradients through eddy diffusivities. As mentioned in
sections 2 and 3, this eddy-diffusivity assumption can
be invalid because of countergradient diffusion. Some
models (e.g., Mailhot and Benoit 1982; Therry and
Lacarrére, 1983), following Deardorff (1972), try to
compensate in the case of temperature through a cor-
rection term v, -

— a0
6= Ky — —
‘ h(aZ 'Yo),

N

(5.11)

where K, oc w?and v, = Bg6?%/w?. Deardorff derived
this formula from (2.4 ) by ignoring turbulent transport
and using the Rotta closure (2.8) on the pressure co-
variance. This formula has two discrepancies for the
convective PBL because (a) the turbulent transport is
important, as shown in Fig. 6, and (b) a buoyancy
correction is needed for the pressure-covariance term
(Moeng and Wyngaard 1986).

Nevertheless, if a closure model uses (5.11), for
consistency it should use a similar formula for other
scalar fluxes, such as moisture flux:

— aC
we = Kh( 9z ‘YC) H

where vy, = 6g0c/w . From (5.10) and Figs. 2 and 12
we can estimate v, for any scalar. It should vary with

(5.12)

- the entrainment-surface flux ratio, however.
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