

Figure 3.4 Observed radiation budget over a 0.2 m stand of native grass at Matador, Saskatchewan, on 30 July 1971. [From Oke (1987); after Ripley and Redmann (1976).]

Problems and Exercises

1. The following measurements were made over a short grass surface on a winter night when no evaporation or condensation occurred:

Outgoing longwave radiation from the surface = 365 W m^{-2} .

Incoming longwave radiation from the atmosphere = 295 W m^{-2} .

Ground heat flux from the soil = 45 W m^{-2} .

- (a) Calculate the apparent (equivalent blackbody) temperature of the surface. (b) Calculate the actual surface temperature if surface emissivity is 0.92.
- (c) Estimate the sensible heat flux to or from air.

2.

(a) Estimate the combined sensible and latent heat fluxes from the surface to the atmosphere, given the following observations:

Incoming shortwave radiation = 800 W m^{-2} .

Heat flux to the submedium = 150 W m^{-2} .

Albedo of the surface = 0.35.

- (b) What would be the result if the surface albedo were to drop to 0.07 after irrigation?
- 3. The following measurements or estimates were made of the radiative fluxes over a short grass surface during a clear sunny day:

Incoming shortwave radiation = 675 W m^{-2} .

Incoming longwave radiation = 390 W m^{-2} .

Ground surface temperature = 35°C.

Albedo of the surface = 0.20.

Emissivity of the surface = 0.92.

- (a) From the radiation balance equation, calculate the net radiation at the surface.
- (b) What would be the net radiation after the surface is thoroughly watered so that its albedo drops to 0.10 and its effective surface temperature reduces to 25°C?
- (c) Qualitatively discuss the effect of watering on other energy fluxes to or from the surface.

- 4. Show that the variation of about 28% in terrestrial radiation in Figure 3.4 is consistent with the observed range of 10–30°C in surface temperatures.
- 5. Explain the nature and causes of depletion of the solar radiation in passing through the atmosphere.
- **6.** Discuss the consequences of the absorption of longwave radiation by atmospheric gases and the so-called greenhouse effect.
- 7. Discuss the merits of the proposition that net radiation R_N can be deduced from measurements of solar radiation $R_{S\downarrow}$ during the daylight hours, using the empirical expression

$$R_{\rm N} = AR_{\rm S} + B$$

where A and B are constants. On what factors are A and B expected to depend?

- 8.(a) Discuss the importance and consequences of the radiative flux divergence at night above a grass surface.
- (b) If the net longwave radiation fluxes at 1 and 10 m above the surface are −135 and −150 W m⁻², respectively, calculate the rate of cooling or warming in °C h⁻¹ due to radiation alone.
- 9. The following measurements were made at night from a meteorological tower:

Net radiation at the 2 m level = -125 W m^{-2} . Net radiation at the 100 m level = -165 W m^{-2} .

Sensible heat flux at the surface = -75 W m^{-2} .

Planetary boundary layer height = 80 m.

- Calculate the average rate of cooling in the PBL due to the following:
- (a) the radiative flux divergence;(b) the sensible heat flux divergence.