Table 4.1 Molecular thermal properties of natural materials®.

Mass density p Specific heat ¢ Heat capacity C ~ Thermal conductivityk  Thermal diffusivity oy,

Material Condition (kgm™>x 10%) (kg™'K~!x 10 (Im*K~!x 109 (Wm™'K™h (m?s~! x 107¢
Air 20°C, Still 0.0012 1.01 0.0012 0.025 20.5
Water 20°C, Still 1.00 4.18 4.18 0.57 0.14
Ice ~ 0°C,Pure 0.92 2.10 1.93 2.24 1.16
Snow Fresh 0.10 2.09 0.21 0.08 0.38
Snow - Old 0.48 2.09 . 0.84 0.42 0.05
Sandy soil Fresh 1.60 0.80 1.28 0.30 0.24

(40% pore space)  Saturated 2.00 1.48 o 2.96 2.20 0.74
Clay soil Dry 1.60 0.89 . 1.42 0.25 0.18

(40% pore space)  Saturated 2.00 1.55 3.10 1.58 0.51
Peat soil Dry 0.30 1.92 0.58 0.06 0.10

(80% pore space)  Saturated 1.10 3.65 4,02 0.50 0.12
Rock Solid 2.70 075 2.02 2.90 143

“After Oke (1987) and Garratt (1992).



4.4 Theory of Soil Heat Transfer

Here we consider a uniform conducting medium (soil), with heat flowing only in
the vertical direction. Let us consider the energy budget of an elemental volume
consisting of a cylinder of horizontal cross-section area A4 and depth Az,
bounded between the levels z and z + Az, as shown in Figure 4.3.

Heat flow in the volume at depth z = HAA.

Heat flow out of the volume at z + Az = [H-+ (0H/0z) Az]AA.

The net rate of heat flow in the control volume = —(0H/0z)Az AA.

The rate of change of internal energy within the control volume = (8/97) .
- (AAAzC,T), where C;is the volumetric heat capacity of soil. :

According to the law of conservation of energy, if there are no sources or
sinks of energy within the elemental volume, the net rate of heat flowing in the
volume should equal the rate of change of internal energy in the volume, so
that

(8/81)(C.T) = —8H)dz | (42
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Figure 4.3 Schematic of heat transfer in a vertical column of soil below a flat, horizontal
surface.

- Further, assuming that the heat capacity of the medium does not vary with time,

and substituting from Equation (4.1) into (4.2), we obtain Fourier’ s equation of
heat conduction: .

O0T|0t = (0/0z) [(k/Cs)(0T[0z)] = (0/02)[an(0T/02)] 4.3)

The one-dimensional heat conduction equation derived here can easily be
generalized to three dimensions by considering the net rate of heat flow in an
elementary control volume AxAyAz from all the directions. In our applications
involving heat transfer through soils, however, we will be primarily concerned
with the one-dimensional Equation (4.2) or (4.3).

Equation (4.2) can be used to determine the ground heat flux Hgin the energy
balance equation from measurements of soil temperatures as functions of time,
at various depths below the surface. The method is based on the integration of
Equation (4.2) ftomz =0 to D

D’ ) . )
He = Hp + / S e a (a4
0 Bt .

where D is some reference depth where the soil heat flux Hp, is either zero (e.g., if
at z = D, 8T/0z = 0) or can be easily estimated [e.g., using Equation (4.1)]. The
former is preferable whenever feasible, because it does not require a knowledge
of thermal conductivity, which is more difficult to measure than heat capacity.

4.5 Thermal Wave Propagation in Soils

The solution of Equation (4.3), with given initial and boundary conditions, is
used to study theoretically the propagation of thermal waves in soils and other
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substrata. For any arbitrary prescription of surface temperature as a function of
time and soil layers, the solution to Equation (4.3) can be obtained numerically.
Much about the physics of thermal wave propagation can be learned, however,
from a simple analytic solution which is obtained when the surface temperature
is specified as a sinusoidal function of time and the subsurface medium is
assumed to be homogeneous throughout the depth of wave propagation

Ts = Ty + Agsin[(2r/P)(t — t)] 4.5

Here, Ty, is the mean temperature of the surface or submedium, 4 and P are the
amplitude and period of the surface temperature wave, and ¢, is the time when
T, = Ty, as the surface temperature is rising.

The solution of Equation (4.3) satisfying the boundary conditions that at
z=0,T=T(),and as z - o0, T — Ty, is given by

T =Ty + A exp(—z/d) sin[Qn/P)t — tm) — z/d] (4.6)

which the reader may verify by substituting in Equation (4.3). Here, d is the
damping depth of the thermal wave, defined as

d = (Pap/n)'"? 4.7

Note that the period of thermal wave in the soil remains unchanged, while its
amplitude decreases exponentially with depth (4 = 4; exp(—z/d)); at z = d the
wave amplitude is reduced to about 37% of its value at the surface and at z = 3d
the amplitude decreases to about 5% of the surface value. The phase lag relative
to the surface wave increases in proportion to depth (phase lag = z/d), so that
there is a complete reversal of the wave phase at z = nd. The corresponding lag
in the time of maximum or minimum in temperature is also proportional to
depth (time lag = zP/27nd). .

The results of the above simple theory would be applicable to the propagation
of both the diurnal and annual temperature waves through a homogeneous
submedium, provided that the thermal diffusivity of the medium remains
constant over the whole period, and the surface temperature wave is nearly
sinusoidal. For the diurnal period, the latter condition is usually not satisfied
especially during the nighttime period when the wave is observed to be more
asymmetric around its minimum value (Rosenberg ef al., 1983, Chapter 2).
Also, disturbed weather conditions with clouds and precipitation are likely to
alter the surface temperature wave, as well as thermal diffusivity due to changes
in the soil moisture content. For the annual period, the assumption of constant
thermal diffusivity may be even more questionable, except for bare soils in arid
regions. Note that the damping depth, which is a measure of the extent of
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thermal wave propagation, for the annual wave is expected to be v/365 = 19.1
times the damping depth for the diurnal wave.

Example Problem 1

Calculate the damping depth and the depth of thermally active soil layer where
there is a complete reversal of the phase of the diurnal thermal wave from that at
the surface for the following types of soils: 4
(a) dry sandy soil; (b) saturated sandy soil (40% pore space);

(¢) dry clay soil; (d) dry peat soil. '

What will be the amplitude of the thermal wave at the depth of the phase
reversal relative to that at the surface? '

Solution :

Using the thermal diffusivities given in Table 4.1, Equation (4.7) for damping

depth d, and the depth of phase reversal as nd, one can obtain the following

results:

(a) For dry sandy soil, o = 0.24 x 10~ m?s~ .
Damping depth d = (24 x 3600 x 0.24 x 107%/m)"/> = 0.081 m.
Depth of phase reversal = nd = 0.25 m. ‘

(b) For saturated sandy soil, o, = 0.74 ¥ 10~%m?s™ L
Damping depth 4 = 0.143 m.

Depth of phase reversal = nd = 0.45 m.

(c) For dry clay soil, o, = 0.18 x 107m?s™ .
Damping depth 4 = 0.070 m.

Depth of phase reversal = nd = 0.22 m.

(d) For dry peat soil, o, = 0.10 X 10~ m?
Damping depth d = 0.052 m.

Depth of phase reversal = nd = 0.16 m.

In all the cases the amplitude of the thermal wave at z = nd, relative to that at

the surface, is »

s~

AJA, = exp(—n d/d) = exp(—mn) = 0.042

One can conclude that dry peat soil offers the maximum resistance (minimum d)
and saturated sandy soil the minimum resistance (maximum d) to the propaga-
tion of the diurnal thermal wave. :

The observed temperature waves (Figures 4.1 and 4.2) in bare, dry soils are
found to conform well to the pattern predicted by the theory. In particular, the
observed annual waves show nearly perfect sinusoidal forms. The plots of wave
amplitude (on log scale) and phase or time lag as functions of depth (both on
linear scale) are well represented by straight lines (Figure 4.4) whose slopes
determine the damping depth and, hence, thermal diffusivity of the soil.
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Figure 4.4 Variations of amplitude and time lag of the annual soil temperature waves
with depth in the soil. [From Deacon (1969).]

Example Problem 2

Using the weekly averaged data on soil temperatures at different depths
obtained by West (1952), the amplitude and time lag of thermal waves are
plotted as functions of depth in soil in Figure 4.4. Estimate the damping depth
and thermal diffusivity of the soil from the best-fitted lines through the data
points.

Selution
Note that according to Equation (4. 6) the amplitude of thermal wave decreases
exponentially with depth, i.e.,

A =4 exp(—z/d)

InA4 =In 4 _4_1

Therefore, a plot of In 4 (4 on a log scale) against z should result in a straight
line with a slope of —1/d. The slope of the best-fitted straight line through the
amplitude data in Figure 4.4 can be estimated, from which d = 2.05 m.
Thermal diffusivity o, = 7d?/P ~ 0.42 x 10 m?s~.
Also, according to the thermal wave equation (Equation 4.6),

Time lag = Pz/2nd
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Therefore, a plot of time lag versus z should also result in a straight line with a
slope of P/2nd. The slope of the best-fitted line throughout the time lag data
points in Figure 4.4 can be estimated as 25.6 days m ', from which

d= P/(2r xslope) = 2.27m
ay = nd (P =051 x 107%m?s™!
The two estimates of ¢, based on amplitude and time lag data, are in fairly good
agreement. The agreement between the estimated damping depths based on the

top 0.30 m of the soil temperature data for the diurnal period is found to be
much better (Deacon, 1969).



