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5.4 Mean Kinetic Energy and Its Interaction with Turbulence

Term IV in the TKE budget (5.1) involves the production of TKE by interaction of
turbulence with-the mean-wind. One might expect that the ‘production of TKE i
accompanied by a corresponding loss of kinetic energy from the mean flow.

To study that possibility, start with the prognostic equation for mean wind in turbulen;

flow (3.4.3c), multiply by ﬁl » and use the chain rule to derive the following equation for
mean kinetic energy per unit mass [MKE/m = O.S(U2 + V4 V) =057 2]:
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TermI  represents storage of MKE. ' »

TermIl  describes the advection of MKE by the mean wind.

TermIII  indicates that gravitational acceleration of vertical motions alter the
MKE.

TermIV  shows the effects of the Coriolis force. '

Term V' represents the production of MKE when pressure gradients
accelerate the mean flow. :

Term VI represents the molecular dissipation of mean motions.

TermX  indicates the interaction between the mean flow and turbulence.

When the Coriolis term (IV) is summed over all values of the repeated indices, the

result equals zero. This confirms our observation that Coriolis force can neither create nor

destroy energy; it merely redirects the winds. Using the product rule, the last term (X)
can be rewritten as
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gwmpare the TKE equation (5.1) with the MKE equation (5.4b):
3( TKE/m) — 9U;
———— 2= 1,0,
ot 17 ij
o MKE/m) — 9U;
= = = ..+ u'u'=>
ot iTj ox,

J

see that they both contain a term describing the interaction between th.e mean flmzv and
Webulenc‘:t. The sign of these terms differ. Thus, the energy that is mechanically
;zpduced as turbulence is lost from the mean flow, and vice versa,

5.5 Stability Concepts

Unstable flows become or remain turbulent. Stable flows become or remain laminar. '
There are many factors that can cause laminar flow to become n_1r.b1.11ent, and other factors
that tend to stabilize flows. If the the net effect of all the.destabxhz.mg factors exceeds the
net effect of the stabilizing factors, then turbulence w111_ occur. In many cases, these
factors can be interpreted as terms in the TKE budget ?quauon.' o

To simplify the problem, investigators have historically paired one desta!)mnng facfor
with one stabilizing factor, and expressed these factors as a dm:enswnless ratio.
Examples of these ratios are the Reynolds number, Richardson number, Rossby npmbe;, E
Froude number, and Rayleigh number. Some other stability parameters such as static
stability, however, are not expressed in dimensionless form.

5.5.1 Static Stability and Convection

Static stability is a measure of the capability for buoyant convection. The w'ord
“static” means “having no motion"; hence this type of stability does not depend. on wind,
Air is statically unstable when less-dense air (warmer and/or moister) 1.mder'hes more-
dense air. The flow respopds to this instability by supporting convective circulations
such as thermals that allow buoyant air to rise to the top of the unstable layer, thereby
stabilizing the fluid. Thermals also need some trigger mechanism to get them started. In
the real boundary layer, there are so many triggers (hills, buildings, trees, c'lark fields, or
other perturbations to the mean flow) that convection is usually insured, given the static
instability,

Local Definitions. The traditional definition taught in basic meteorology classes
is local in nature; namely, the static stability is determined by the local lapse rate. The
local definition frequently fails in convective MLs, because the rise of thermals from near
the surface or their descent from cloud top depends on their excess buoyancy and not on
the ambient lapse rate. ’
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Fig. 5.17 _ Static stabilitiy as a function of the 8, profile.

TURBULENCE KINETIC ENERGY 171

=

As an example, in the middle 50% of the convective ML the lapse rate is nearly
;abatic, causing an incorrect classification of neutral stability if the traditional local
Jefinition is used. We must make a clear distinction between the phrases "adiabatic lagse
cate” and "neutral stability". An adiabatic lapse rate (in the virtual potential
{emperature sense) may be statically stable, neutral, or unstable, depending on convection
and the buoyancy flux. Neutral stability implies a very specific situation: adiabatic
Japse Tate AND no convection. The two phrases should NOT be used interchangeably,
and the phrase "neutral lapse rate" should be avoided altogether.
we conclude that measurement of the local lapse rate alone is
INSUFFICIENT to determine the static stability. Either knowledge of the

whole 6: profile is needed (described next), or measurement of the turbulent buoyancy

flux must be made.

Nonlocal Definitions. It is better to examine the stability of the whole layer, and
make a layer determination of stability such as was done in section 1.6.4. For example, if

w'0, ' at the earth's surface is positive, or if displaced air parcels will rise from the ground
or sink from cloud top as thermals traveling across a BL, then the whole BL is said to be

unstable or convective. If w'8 ' is negative at the surface, or if displaced air parcels

return to their starting point, then the BL is said to be stable.

If, when integrated over the depth of the boundary layer, the mechanical production
term in the TKE equation (5.1) is much larger than the buoyancy term, or if the buoyancy
term is near zero, then the boundary layer is said to be neutral. In some of the older
literature, the boundary layer of this latter case is also sometimes referred to as an
Ekman boundary layer. During fair weather conditions over land, the BL touching
the ground is rarely neutral. Neutral conditions are frequently found in the RL aloft. In
overcast conditions with strong winds but little temperature difference between the air and
the surface, the BL is often close to neutral stability.

In the absence of knowledge of convection or measurements of buoyancy flux, an

&

£ —
alternate determination of static stability is possible if the @  profile over the whole BL is

known, as sketched in Fig 5.17. As is indicated in the figure, if only portions of the
profile are known, then the stability might be indeterminate. Also, it is clear that there are
many situations where the traditional local definition fails.
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5.5.2 Example

Problem. Given the sounding at right, identify the static z(m) G_V(K)
stability of theairatz = 600 m. ' 1000 298
800 299

Solution. Using a local definition in the absence of heat 600 299
fluxes, if we look downward from 600 m until a diabatic layer 400 299
is encountered, we find a stable layer with cooler temperatures ) 200 . 298
at 200 m. Before we reach any hasty conclusions, however, 0 295

we must look up from 600 m. Doing so we find cooler unstable
air at 1000 m. Thus, the static stability is unstable at 600 m.

Discussion. The whole adiabatic layer is unstable, considering the nonlocal
approach of a cool parcel sinking from above. This sounding is characteristic of
stratocumulus. ‘

5.5.3 Dynamic Stability and Kelvin-Helmholtz Waves

The word "dynamic" refers to motion; hence, dynamic stability depends in part on the
winds. Even if the air is statically stable, wind shears may be able to generate turbulence
dynamically. ‘ '

Some laboratory experiments have been performed (Thorpe, 1969, 1973; Woods
1969) using denser fluids underlying less-dense fluids with a velocity shear between the
layers to simulate the stable stratification and shears of the atmosphere. Fig 5.18 is a
sketch of the resulting flow behavior. The typical sequence of events is:

(1) A shear exists across a density interface. Initially, the flow is laminar.

(2) If a critical value of shear is reached (see section 5.6), then the flow becomes
dynamically unstable, and gentle waves begin to form on the interface.. The crests
of these waves are normal to the shear direction

(3) These waves continue to grow in amplitude, eventually reaching a point where
each wave begins to "roll up" or "break". This "breaking" wave is called a
Kelvin-Helmholtz (KH) wave, and is based on different physics than
surface waves that "break" on an ocean beach.

(4) Within each wave, there exists some lighter fluid that has been rolled under denser
fluid, resulting in patches of static instability. On radar, these features appear as
braided ropelike patterns, "cat's eye" patterns or breaking wave patterns.

(5) The static instability, combined with the continued dynamic instability, causes each
wave to become turbulent.

(6) The turbulence then spreads throughout the layer, causing a diffusion or mixing of
the different fluids. During this diffusion process, some momentum is transferred
between the fluids, reducing the shear between the layers. What was formerly a
sharp, well-defined, interface becomes a broader, more diffuse shear layer with
weaker shear and static stability.
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(7) This mixing can reduce the shear below a critical value and eliminate the dynamic
instability. )

(8) In the absence of continued forcing to restore the shears, turbulence decays in the
interface region, and the flow becomes laminar again, .

This sequence of events is suspected to occur during the onset of clear air
turbulence (CAT). These often occur above and below strong wind jets, such as the
nocturnal jet and the planetary-scale jet stream. In these situations, however, cor}ﬁnued
dynamic forcings can allow turbulence to continue for hours to days. These regions of
CAT have large horizontal extent (hundreds of kilometers in some cases), but usually
limited vertical extent (tens to hundred of meters). They can be visualized as large
pancake-shaped regions of turbulence. Aircraft encountering CAT can often climb or
descend into smoother air.

Although KH waves are probably a frequent occurrence within statically stable shear
layers, they are only rarely observed with the naked eye. Occasionally, there is sufficient
moisture in the atmosphere to allow cloud droplets to act as visible tracers. Clouds that
form in the rising portions of the waves often form parallel bands called billow clouds.
The orientation of these bands is perpendicular to the shear vector. One must remember
that the wind SHEAR vector need not necessarily point in the same direction as the mean
wind vector.

For both static and dynamic instabilities, and many other instabilities for that matter, it
is interesting to note that the fluid reacts in a manner to undo the cause of the instability.
This process is strikingly similar to LeChatelier's principle of chemistry, which
states that "if some stress is brought to bear upon a system in equilibrium, a change occurs
such that the equilibrium is displaced in a direction which tends to undo the effect of the

stress”. Thus, turbulence is a mechanism whereby fluid flows tend to undo the cause of -

the instability. In the case of static instabilities, convection occurs that tends to move more
buoyant fluid upward, thereby stabilizing the system. For dynamic instability, turbulence
tends to reduce the wind shears, also stabilizing the system.

With this in mind, it is apparent that turbulence acts to eliminate itself, After the
unstable system has been stabilized, turbulence tends to decay. Given observations of
turbulence occurring for long periods of time within the boundary layer, it is logical to
surmise that there must b«.;,féxtemal forcings tending to destabilize the BL over long time
periods. In the case of stitic instability, the solar heating of the ground by the sun is that
external forcing. In the case of dynamic instabilities, pressure gradients imposed by
synoptic-scale features drive the winds against the dissipative effects of turbulence.

By comparing the relative magnitudes of the shear production and buoyant
consumption terms of the TKE equation, we can hope to estimate when the flow might
become dynamically unstable. The Richardson number, Ri, described in the next
subsection, can be used as just such an indicator.
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Fig. 5.18

Schematic diagram of Kelvin-Helmholtz instability in a laboratory
axperiment whorg shoar flow has been generated. The upper
fayer, watar, flows 10 the right, and the lower more dense fiuid,
dyed bring; lows o the left. The Sgures arg about halt & second
apart, After Thorpe (1969,1973) and Woods (1868).
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5.6 The Richardson Number

5.6.1 Flux Richardson Number

In a statically stable environment, turbulent vertical motions are acting against the
restoring force of gravity. Thus, buoyancy tends to suppress turbulence, while wind
shears tend to generate turbulence mechanically. The buoyant production term (Term ITI)
of the TKE budget equation (5.1b) is negative in this situation, while the mechanical
production term (Term IV)is positive. Although the other terms in the TKE budget are
certainly important, a simplified but nevertheless useful approximation to the physics is
possible by examining the ratio of Term Il to Term IV. This ratio, called the flux
Richardson number, Ry, is given by

P

—— 9U;
| ©) 3
where the negative sign on Term IV is dropped by convention. The Richardson number is
dimensionless. The denominator consists of 9 terms, as implied by the summation
notation.

If we assume horizontal homogeneity and neglect subsidence, then the ahove equation
reduces to the more common form of the flux Richardson number:

R._

.= (5.6.12)

' (eé) CA ) (5.6.1b)
Sy s p—
u'w’) 5 + (v'w") =

For statically unstable flows, Ry is usunally negative (remember that the denominator is
usually negative). For neftral flows, it is zero. For statically stable flows, Ry is positive.

Richardson proposed that R¢ = +1 is a critical value, because the mechanical
production rate balances the buoyant consumption of TKE. At any value of R; less than
+1, static stability is insufficiently strong to prevent the mechanical generation of
turbulence. For negative values of Ry, the numerator even contributes to the generation of
turbulence. Therefore, he expected that

Flow IS turbulent (dynamically unstable) when Re< +1

Flow BECOMES laminar (dynamically stable) when R¢> +1
We recognize that statically unstable flow is, by definition, always dynamically unstable.
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5.6.2 Gradient Richardson Number
A peculiar problem arises in the use of R;; namely, wé can caléulﬁte its value only for

turbulent flow because it contains factors involving turbulent correlations like w 9, In

other words, we can use it to determine whether turbulent flow will become laminar, but
not whether laminar flow will become turbulent.

Using the reasoning of section 2.7 and Fig 2.13, it is logical to suggest that the valye

of the turbulent correlation - w'6 ' might be proportional to the lapse rate ae“v/az_

Similarly, we might suggest that -u'w’ is proportional to 9U/dz, and that -v'w' is

proportional to dV/0z. These arguments form the basis of a theory known as K-theory or
eddy diffusivity theory, which will be discussed in much more detail in chapter 6. For
now, we will just assume that the proportionalities are possible, and substitute those in
(5.6.1b) to give a new ratio called the gradient Richardson number, Ri :

g 9,
Ri = 8, o (5.6.2)
2 _r\2
a0\ [ov
2z} t\oz

When investigators refer to a "Richardson number" without specifying which one, they
usually mean the gradient Richardson number.

Theoretical and laboratory research suggest that laminar flow becomes unstable to
KH-wave formation and the ONSET of turbulence when Ri is smaller than the critical
Richardson number, R_ . Another value, Ry, indicates the termination of turbulence.
The dynamic stability criteria can be stated as follows:

Laminar flow becomes turbulent when Ri <R..

Turbulent flow becomes laminar when Ri> Rr.
Although there is still some debate on the cotrect values of R and Ry, it appears that R, =
0.21 t0 0.25 and Rt = 1.0 work fairly well. Thus, there appears to be a hysteresis
effect because Ry is greater than R,

One hypothesis for the apparent hysteresis is as follows. Two conditions are needed
for turbulence: instability, and some trigger mechanism. Suppose that dynamic instability
occurs whenever Ri < Ry. If one trigger mechanism is existing turbulence in or adjacent
to the unstable fluid, then turbulence can continue as long as Ri < Ry because of the
presence of both the instability and the trigger. If KH waves are another trigger
mechanism, then in the absence of existing turbulence one finds that Ri must get well
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pelow Ry before KH waves can form. Laboratory and theoretical work have shown th‘at
he criterion for KH wave formation is Ri <R.. This leads to the apparent hysteresis,
pecause the Richardson number of nonturbulent flow must be lowet.'ed to Rc before
rarbulence will start, but once turbulent, the turbulence can continue until the Richardson

number is raised above Rr.
5.6.3 Bulk Richardson Number

The theoretical work yielding R. = 0.25 is based on local measurements of the wind
shear and temperature gradient. Meteorologists rarely know the actual local gradients, but
can approximate the gradients using observations made at a series of discrete height

intervals. If we approximate 83;/82 by Ae_v/Az, and approximate 9U/0z and 9V/dz by

AU/Az and AV/Az respectively, then we can define a new ratio known as the bulk
Richardson number, Rp :
R, = — g A6 Az
8, [(ATY + (AW

It is this form of the Richardson number that is used most frequently in meteorology,
because rawinsonde data and numerical weather forecasts supply wind and temperature
measurements at discrete points in space. The sign of the finite differences are defined,

(5.6.3)

for example, by AU = U(z,,p) - UlZpouom)-

Unfortunately, the critical value of 0.25 applies only for local gradients, not for finite
differences across thick layers. In fact, the thicker the layer is, the more likely we are to
average out large gradients that occur within small subregions of the layer of interest. The
net result is (1) we introduce uncertainty into our prediction of the occurrence of
turbulence, and (2) we must use an artificially large (theoretically unjustified) value of the
critical Richardson number that gives reasonable results using our smoothed gradients.
The thinner the layer, the closer the critical Richardson number will likely be to 0.25.
Since data points in s§undings are sometimes spaced far apart in the vertical,
approximations such as shown in the graph and table in Fig 5.19 can be used to estimate
the probability and intensity of turbulence (Lee, et al., 1979).

Table 5-1 shows a portion of a rawinsonde sounding, together with the corresponding
values of bulk Richardson number. The resulting turbulence diagnosis is given in the
rightmost column of Table 5-1. Note that the Richardson number itself says nothing
about the intensity of turbulence, only about the yes/no presence of turbulence.
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Fig. 5.19

(a) Relationship between the
butk Richardson number, Ri,
over a layer and the probability
of turbulence within that layer.
This curve was developed
empirically. (b) Empirically
dernived relationship between
turbulence intensity and the
wind speed and shear. "N"
indicates none, "L" is light, "M"
Is moderate, "S" is severe, and e
"X" is extreme turbulence.
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Fig 5.20 show examples of the evolution of the Richardson number during some
nighttime case studies. Regions where the Richardson number is small are sometimes
used as an indicator of the depth of the turbulent SBL. Here we see low Richardson
numbers close to the ground, in addition to patches of low Richardson number aloft.

Height (m)

%8

[
Time (h)

Fig. 5.20 Example of the evolution of local Richardson number with height and
time during one night. Regions with Richardson number less than -
1.0 are shaded, and are likely to be turbulent. After Mahrt (1981).
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able 5-1. Example of a nighttime rawinsonde sounding analyzed to g.i\.Je stability, shear,
Richardson number, and the probability and intensity of turbulence. Probabilities are expressed
as a percent, and intensities are abbreviated by X i ]
N = no turbulence, L=light(05G), M=moderate(1G), S=severe(2G)
These intensity levels correspond to the turbulence reporting re'commendatlons us?d I.n
aviation, where the vertical acceleration measured in Gs (number of times the [.)l.1|| of gravity) is
relative 1o the center of gravity of the aircraft. For practical purposes, a probability greater than
50% AND an intensity greater than L were required before a CAT forecast would be issued.

z Wind Speed T 0 Lapse Shear Rp CAT CAT
(m) Dir{°) (m/s) (K) (K) (K/m) - (s°1) Prob(%) Inten.
1591 154 9.8 281 2944 0.0021 0.0034  6.19 41 N
1219 150 107 - - 0.0021 0.0045  3.43 68 N
914 144 9.7 - - 0.0021 0.0091  0.86 94 NL
702 - - 287.8 2925 0.0020 0.0091  0.81 94 NL
610 134 7.4 - -.0.0020 0.0170 0.23 100 LM
393 - - 290.2 2919 0.0204 0.0170  2.37 79 LM
305 95 3.5 - - 0.0204 0.0137 = 3.64 66 N
222 79 2.7 288.4 288.4 0.0133 0.0071  8.92 13 N

4 45 25 2876 2855 - - - - -

M .
5.6.4 Examples

Problem A: Given the same data from problem 5.2.8, calculate the flux Richardson
number and comment on the dynamic stability.

Solution. Since the flux Richardson number is defined as the ratio of the buoyancy
term to the negative of the shear term, we can use the values for these terms already

calculated in example 5.2.8: f

_ l;uoyancy term _ 0.00493 164
R = Shearterm 00003 6.

Discussion. A negative Richardson number is without question less than +1, and
thus indicates dynamic instability and turbulence. This is a trivial conclusion, because any
flow that is statically unstable is also dyngmically unstable by definition.
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Problem B: Given a fictitious SBL where (gle_v) = 0.033, Bﬁlaz =u,/ (kz), u

. =
0.4, and where the lapse rate, c,, is constant with height such that there is 6°C E increase
with each 200 m of altitude gained. How deep is the turbulence?

Solution. We can use the gradient Richardson number as an indicator of dynamjc
stability and turbulence. Using the prescribed gradients, we find that:

= % o 033)-(0.03 ‘
Ri = % = 8 - .u_zz 2 (0.00099 m?) 22
3o\ u,) (0.4/0.4)
(E) &

If we use R, = 0.25, then we can use this critical value in place of Ri above and solve for

z at the critical height above which there is no turbulence:

z = /(1010 m} R, =+/2525m° = 159m

Discussion. If we has used a critical termination value of Ry = 1.0, then we would
have found a critical height of 31.8 m. Thus, below 15.9 m we expect turbulence, while
above 31.8 m we expect laminar flow. Between these heights the turbulent state depends
on the past history of the flow at that height. If previously turbulent, it is turbulent now,

5.7 The Obukhov Length

The Obukhov length (L) is a scaling parameter that is useful in the surface layer. To
show how this parameter is related to the TKE equation, first recall that one definition of
the surface layer is that region where turbulent fluxes vary by less that 10% of their
magnitude with height. By making the constant flux (with height) approximation, one
can use surface values of heat and momentum flux to define turbulence scales and
nondimensionalize the TKE equation.

Start with the TKE equation (5.1a), multiply the whole equation by (-k z/u.>), assume

all turbulent fluxes equal their respective surface values, and focus on just terms ITI, IV,
and VII:

o kzg (w'ev')s . kz (ui"u;-)s . ) kz g (5.78)
9,, uf uf ul

I v v

_E
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ach of these terms is now dimensionless. The last term, a dimensionless dissipation
i h ) o, »
v ?agvuzie‘iciu::::zt,e: is a dimensionless number incl!:ded by tradxqon.
rtance in the log wind profile in the surface layer is discussefl in the next s.ecuox:;
ators have yet to pin down its precise value, alt'hough prehmm% ::;ﬂe;r:;nof
that it is between about 0.35 and 0.42. We wx!l use a value oed. o
although some of the figures adopted from the literature are based on k=0.35.

Term 11 is usnally assigned the symbol, {, and is further defined as { = z/L, where L
is the Obukhov length. Thus,

ro 2o X2E®O), (5.7b)
-

Vut

The Obukhov length is given by:

C =3
Lot (5.7¢)

kgw'e,),

Fig. 5.21

12 18
Local Time (h)

Typical ranges of Obukhov length (L) evolution over a diumnal cycle. -
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_ kz 3, _ (04)(10)
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P»SL""' - 0.4) (0.2) - 667
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5.10 Combined Stability Tables

Static and dynamic stability concepts are intertwined, as sketched in Fig 5.24a,
Negative Richardson numbers always correspond to statically and dynamically unstable
flow. This flow will definitely become turbulent. Positive Richardson numbers are
always statically stable, but there is the small range of 0 < Ri < 1 where positive
Richardson numbers are dynamically unstable, and may be turbulent depending on the
past history of the flow. Namely, nonturbulent flow will become turbulent at about Rj =
0.25, while flow that is presently turbulent will stay turbulent if Ri < 1.

R SR AT BN Y
Statically . Unct;blc I '.;tnble '
Dynamicaily Unstable (ﬂ“;&) Stable
Flow \\jﬂ:ﬁﬁ?ﬁm\ (EEE&) Laminar

®) 5

Always Laminar
(stability)

Characteristics
of both ———

Laminar If Rt » 1 previously

Turb. If Rl < 0.28 previously

025 - Always
Laminar
0k (Viscosity)

Turbulence onlr
If large eddies with
Re >10 3 are also
present

ways
Turhulent

102 = 1 1 - = | Il
10 10+ 10 107 Re 103 105 107

Fig. 5.24  Stability parameter relationships (see text). (After Woods, 1869).
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The effects of viscosity and stability in suppressing turbulence are also intertwined, as
sketched in Fig 5.24b. In Section 3.5.1 we defined the Reynolds number as the ratio of
inertial to viscous forces, with no mention about buoyancy. In section 5.5.3, we defined
a Richardson number as the ratio of buoyant to inertial or mechanical forces, with no™
mention of viscosity. In the atmosphere, the Reynolds number is usually so large that it
corresponds to the rightmost edge of Fig 5.24b. Thus, we can essentially ignore viscous
effects on stability in the atmosphere, and focus on the static and dynamic stability instead.

In conclusion, we see that the TKE equation is critical for determining the nature of
flow in the BL. The relative contributions of various turbulence production and loss terms
can be compared when rewritten as dimensionless scaling parameters. These parameters
can be used to define layers within the BL where the physics is simplified, and where a
variety of similarity scaling arguments can be made (see chapter 9 for details of similarity

theory).
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