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12) SITUATION: Daytime boundary layer over land (N. America).
OBSERVATIONS:
Height,z (m) 12 8 2 0l=z, (m)

0 300 301 303 308 X)

U 54 50 34 0 (m/s)

What are the valuesof: a) Cpy  b) Cp
13) For sandy clay with 15% moisture, at what depth below the surface will the diurna}
temperature variations be 1 % of the surface temperature variations?

14) Given a lkm constant thickness boundary layer with initial 8 = 10°C flowing at M=1(
m/s over land, where the land has the same surface temperature as that of the air near
the surface. At some point, the air leaves the land and flows over the ocean, where
the ocean sea surface temperature is 20°C and the pressure is 100 kPa. Assume that
the boundary layer is well mixed. Calculate and plot the heat flux Qg and the
boundary layer temperature as a function of distance from the shoreline,

15) For a pressure gradient of 0.2 kPa / 100 km and a surface roughness length of Z,=2
cm, find:

a) the value of the surface Rossby number
b) the value of the neutral geostrophic drag coefficient
€) Uy , assuming statically neutral conditions

16) Given a drag coefficient of 3 x 102 atR; = -0.4 and z, = 10 m, how would the drag
coefficient change if z = 100 m? ‘

17) What is the roughness length, z,, over the ocean for a wind speed of 40 m/s ?

18) What is the time lag of the diurnal cycle of temperature at a depth of 15 cm in
farmland? What will be the amplitude of the temperature wave at that depth?

19) Use equation (7.5.2b) to calculate and plot sc(T) vs T, and compare your answer
with Fig 7.13. :

20) For a temperature of 20°C, dew point of 10°C, ground surface relative humidity of X,
= 80%, and wind speed of 5 m/s, find Qy and Qg using:
a) Priestley-Taylor method
b) Penman-Monteith method
(Hint: use the result from the previous question.)

21) Verify that the surface energy balance equation is satisfied using the Qg and Qg
parameterizations from:
a) The Bowen ratio method (equations 7.5.1'b & c)
b) The Priestley-Taylor Method (equations 7.5.2¢ & f)
¢) The Penman-Monteith method (equations 7.5.3a & b).
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Spectrum analysis is a statistical tool that we can employ to probe further into the
workings of turbulence. By decomposing a series of measurements into frequency or
wavenumber components, we can discover how eddies of different time and space scales
contribute to the overall turbulence state.

In this chapter we review the computational techniques for the spectrum analysis of
measured data. We also introduce related tools such as the autocorrelation function,
structure function, and periodogram. Also discussed is the concept of a process
spectrum, where mixing processes rather than turbulence states are decomposed into a
spectrum of scales. Theozetical spectral decomposition of the TKE equation is briefly
covered. F) ‘

8.1 Time and Space Series

When measurements are taken at a fixed point over a period of time, the resulting
series of data points is called a time series. Similarly, measurements at a fixed time
over a series of locations in space is called a space series. Both series give
measurements of a dependent variable such as temperature or humidity as a function of an
independent variable, such as time, t, or location, x. Because of this similarity, we will
discuss the two types of series interchangeably, and sometimes will use the generic name,
Series.
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This review will be limited to discrete series; namely, measurements taken at
regularly-spaced intervals that lead to a finite number, N, of data points. ‘A discrete series
represents a sample of the true, continuously-varying signal. Examples of discrete
series include temperature or tracer concentration measurements made-every second durin g
the course of an hour at a fixed location such as an instrumented tower, or measurements
of humidity taken every meter from an aircraft flying on a 25 km flight leg.

If A(t) represents the true signal as a continuous function of time, then we could
sample that signal at evenly-spaced times: t=t,, t=t+At, t=t;+2At t=1t+34At, .
t=t,+(N-1)At, where the total number of data points is N. We will use an index, k, 1o
denote the position within the time series. The k™ data point corresponds to time he=t, +
kAt, where 0 £k < (N-1). Sometimes the value of variable A at time ty, is represented by
A(t,), but usually the shorthand notations A(k) or A, is used. We will assume that the
sampling interval is At, with no missing data and no changes of At within any one
series. The fotal period of measurements is P = NAt, in the sense that each of the N
data points represents a sample within an interval At.

8.2 Autocorrelation

In section 2.4.5 we discussed the covariance and the correlation coefficient, which
quantify the amount of common variation between two different variables. Extending this
idea, we could also ask about the degree of common variation between a variable (A)
sampled at time t and that same variable sampled at a later time, t+L, where L is the time
lag. Such a correlation of a variable with itself is called autocorrelation, R aa(l).

Consider a 12 hour time series that has a simple sinusoidal variation of unit amplitude
with a 4 hour period. The wave equals 1.0 at regular intervals of 1, 5, and 9 h. Also, the
wave equals -1.0 at 3, 7, and 11 h. In fact at ANY time, t, the series is perfectly
correlated with itself (i.e., has the same value) at exactly times t+4 h, t+ 8 h, and t + 12
h, Similarly, we can show that the wave is negatively correlated with itselfat t+2h, t +
6 h, and t + 10 h. We have, in essence, just determined the autocorrelation for this series
atlags 2,4, 6, 8, 10, and 12 h.

If our time series consists of a wave that varies in frequency during the duration of the
series, then a wave at t; might be perfectly correlated with itself at t; + 4 h, but the value
at t; might not be perfectly correlated with the value at t, + 4 h. When averaged over all
possible pairs of data points with 4 h lag in this series, the result might NOT give a large
correlation value at all.

In other words, the autocorrelation measures the persistence of a wave within the
whole duration a time or space series. The capability to determine persistent waves or
oscillations within a series is particularly valuable because the regular variation might be
associated with a physical phenomenon such as an eddy. Alternately, when the
antocorrelation becomes close to zero, it tells us that there is a random process (e.g.
turbulence) occurring with no persistent or regularly-recurring structures.
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8.2.1 Definition

The exact definition for the discrete autocorrelation is:

N-j-1

D [ A B BBy
R, L) = x=0 8.2.1a)

Nejel 12 N 12
[éw@’] [Z <Ak+,-'7\k+,->’]

k=0

where two different mean values are used depending on which portion of the whole series
is being considered:

Nj1 N-j-1

Kk=-ﬁ}'._j kZoAk ~and Kk+j=‘blz__j Z:)Amj

and where lag =L =j At. Notice that each of the square bracket terms in the denominator
acts like a standard deviation over the portion of the data set being used.

We can approximate (8.2.1a) if it is assumed that the data is sufficiently stationary (or
homogeneous for space series) that the mean values over each portion of the series is
equal to the overall series mean, and that the standard deviations from each portion equal
the overall series standard deviation. This results in:

AA o
R, @ =1 (8.2.1b)
approx GA )

This simple approximatiogy works satisfactorily for small lags (i.e., small j) and large N,
but is inadequate otherwiseé.

Autocorrelations are usually calculated for a range of lags, and the result plotted on a
graph of R, 4 vs L. For the special case of zero lag, the autocorrelation is identically equal
to unity [Rp 4(0) = 1.0] for all signals. The autocorrelation of an irregular signal such as
turbulence approaches zero as L approaches infinity, although it may appear as damped
oscillations about zero while L is small. Also, as the lag increases, the percentage of the
time series used to calculate R, (L) decreases. As a result, the statistical significance of
Ry 4 decreases as lag increases, making R, , unrepresentative when j > (N/2).

Sample autocorrelation curves for convective turbulence measured at different heights
in the ML are shown in Fig 8.1 (Deardorff and Willis, 1985).
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Fig. 8.1  Autocorrelation of vertical velocity in a ML as a function of
separation distance r (s%atial Ia’%z and height z, based on the
o

eard

laboratory simulation of and Willis (1985).

8.2.2 Example

Problem: Given the following series of measurements of relative humidity made
every 3 h over a 96 h period (4 days) at a fixed point. Find the autocorrelation for relative
humidity, Ry, (L), for time lags ranging from 0 to 48 hours, and plot the result.

Data:

Relative humidity (percent)
Day 1. 49 46 44 45 52 59 61 57
Day 2: 53 50 50 52 S5 55 54 47
Day 3: 41 36 32 33 36 41 40 37
Day 4: 34 31 29 32 38 45 48 45

As can be seen in a plot of the time series (Fig 8.2a), there are regular diurnal cycle
oscillations superimposed on longer period trends.

Solution: There are 32 data points, with At = 3 h. We must solve (8.2.1) 17
different times, for j =0 through j = 16. The resultis:

L) Ry L) Rpm L) Rym LM Ry L) Ryy L) Ry
0 1.00 9 035 18 0.49 27 0.34 36 -0.13 45 0.40
3 0.67 12 0.34 21 0.53 30 0.09 39 -0.04 48 0.58
6 047 15 0.40 24 0.50 33 -0.12 42 0.17

Piscussion: Looking at Fig 8.2b, we sce that the autocorrelation starts at 1.0 at zero
lag, and quickly decreases. As is sometimes the case with weather data, the diurnal cycle
shows up as an oscillation in the autocorrelation function with a 24 hour period. We
could have anticipated this, because 12 h from any time, the humidity time series is in the
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opposite side of its oscillation. If the humidity is high in the early morning, then 12 h later
it is drier. If the humidity is low in the afternoon, then 12 h later it is more humid. On the
average, humidity is negatively correlated with itself 12 h later. Over a 24 h period,
powever, like comparing a morning humidity with the next moming's humidity, or the
afternoon humidity with the next afternoon's humidity, we anticipate a positive
correlation.
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Fig. 8.2 a; Pjot of the timeseries of relative humidity over a 4 day period.
b) Plot of the exact autocorrslation, Rpy, au,computed from
8.2.1a) and the apporximate autocorrelation, R approx, cOMputed
rom (8.2.1b). For lags greater than 48h the autocorreiation is not
statistically reliable.

The initial drop off of the autocorrelation from 1.0 to smaller values is a measure of
the accuracy of a persistence forecast. N: amely, if we forecast the humidity 3 or less hours
from now to be the same as the present humidity, we would probably be close to correct
because the autocorrelation is 60% or higher. Longer forecasts would be less accurate.
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8.3.2 Example

Problem: Given the same time series of relative huxﬁidity 1641)) as in example 8.2,
calculate the. structure function for lags from 0 - 48 hours. B

Solution: Using (8.3.1a), the structure function values (in units of relative humidity
percentage squared) are: i

L (h) Dynn L(h) Dyp,en L(h) Dyp,rn L(h) Dyp,ry
0 0 15 153 27 183 39 301
3 78 18 134 30 243 42 303
6 124 21 127 33 299 45 326
9 155 24 142 36 316 48 377
12 162 :

10
Lag (h)

Flg. 8.4 Structure function, D, i, as a function of time lag for the data in
example 8.3.2. (a) Linear graph. (b) Log - log graph.

Discussion: Fig 8.4a shows the resulting variation of the structure function on a
linear scale. A similar plot on log-log graph is given in Fig 8.4b. The straight line on this
latter graph is given by D ah = Cen2 L3, with the structure function for relative humidity

c,o =35(% 20?7,
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g4 Discrete Fourier Transform

From Fourier analysis in calculus we remember that any well-behaved continuous
function can be described by an infinite Fourier series — namely, the sum of an infinite
aumber of sine and cosine terms. In the case of a discrete time series with a finite number
of points, we are required to have only a finite number of sine and cosine terms to fit our

points exactly.
8.4.1 Definition

Using Euler's notation [ exp(ix) = cos(x) + i sin(x), where i is the square root of -1]
a5 a shorthand notation for the sines and cosines, we can write the discrete Fourier series
mprescntaﬁon of A(k) as:

N-1
Inverse Transform: A () = ) F, () & ™™ 8.4.12)
' n=0

where n is the frequency, and Fa(n) is the discrete Fourier transform. We see that

a time series with N data points (indexed from k=0 through N-1) needs no more than N

different frequencies to describe it (actually, it needs less than N, as will be shown later).
There are a number of ways to describe frequency:

n = number of cycles (per time period P),
fi = cycles per second = n/P,
f = radians per second = 2an/P = 2xn/(NAf).

A frequency of zero (n = 0) denotes a mean value. The fundamental frequency,
where n = 1, means that exactly one wave fills the whole time period, P. Higher
frequencies correspond to harmonics of the fundamental frequency. For example, n =
5 means that exactly 5 waves fill the period P.

Fa(n) is a complex nurpy})er, where the real part represents the amplitude of the cosine
waves and the imaginary part is the sine wave amplitude. It is a function of frequency
because the waves of different frequencies must be multiplied by different amplitudes to
reconstruct the original time series. If the original time series A(k) is known, then these
coefficients can be found from: '

-1
Ak)|
Forward Transform: F A(n) = i{'N—} e fzm/N (8.4.1b)

Notice the similarity between (8.4.1a) and (8.4.1b). These two equations are called
F 0ur.ier transform pairs. The second equation performs the forward transform,
Creating a representation of the signal in phase space (another name for the frequency
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or spectral domain). This process is also known as Fourier decomposition. The firg
equation performs the inverse transform, converting from frequencies back in,
physical space.

8.4.2 Example

time:

Problem: Given the following 8 data points of specific humidity, q, as a function of
Index (k): O 1 2 3 4 5 6 7

Time (UTC): 1200 1215 1230 1245 1300 1315 1330 1345
q (g/kg): 8 9 9 6 10 3 5 6

Perform a forward Fourier transform to find the 8 coefficients, Fo(n). To check yoyr
results, perform an inverse transform to confirm that the original time series is recreated.
Remember that the Fy(n) coefficients are complex, each having a real and an imaginary
part: Fgy(n) = Freal(n) + i Fimag(n).

Solution: N =8 and At = 15 min. Thus, the total period is P = NAt = 2 b,
Equation (8.4.1b) must be used to find Fg(n). For those computer languages that accept
complex numbers, (8.4.1b) can be programmed directly, where each of the A(k) data
points has a real part equal to the value listed in the table, and an imaginary part of zero,

For hand calculation, we can use Euler's formula to translate (8.4.1b) back into sines
and cosines:

A . N-
F, @) = %ﬁ AQ) cos@muk/N) - %2 A() sin(2mnk/N)
k=0 k=0

As an example, for n = 0, all of the cosines of zero are unity and all of the sines are
zero. This leaves:

1 N:1

F\0 = 5 ) A®
k=0

which is just the mean of A. For our case: F(0)=7.0 - 00i. Forn=1we can't

- make such a simplification, so we are forced to sum over all k for both the real and

imaginary parts. This gives us F; (1) = 0.28 - 1.03i. Continuing this procedure for all
other n yields:

n Fq(n) n Fq(n)

0 70 4 1.0

1 0.28 - 1.03i 5 -0.78 + 0.031i
2 0.5 6 0.5

3 -0.78 - 0.031 7 0.28 + 1.03i
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This is the answer to the first part of the problem. Note that for frequencies greater than
4 the Fourier transform is just the complex conjugate of the frequencies less than 4.

" As a check of our transform, we can perform the inverse transform using (8.4.1a)
directly in a computer program. Otherwise, we can use Euler's formula to write it as:

N-1 N-1
Alk) = ; F(‘(g?pm)-cos(ank/N) ) _ ; F(igla)g.pm)-sin(Q.nnk/N)

In actuality, there are four sums, not just the two listed above. The remaining sums
consist of the real part of F times the imaginary factor i-sin(...), and the imaginary part of
F times the real factor cos(...). Because the last half of the Fourier transforms are the
complex conjugates of the first half (not counting the mean), these two sums identically
cancel, leaving the two listed above. Upon performing the calculations for A(k), we do
indeed reproduce the original time series.

Discussion: To graphically demonstrate that the sum of these sines and cosines does
indeed equal our original series, Fig 8.5 shows each individual wave multiplied by its
appropriate amplitude. As can be seen, the reconstructed time series fits perfectly the eight
original data points. In between these points, however, the sum oscillates in 2 manner that
is not necessarily realistic, but which is irrelevant because it occurs below the
discretization resolution specified by the original data points.

smum Cos for N2
man  cos for ned
i cos for n=6

mn  cos for N=?
>k

3 3 3 7
A T T sin for nut
E Y " sin for ne3

o sin for n=5
% sin for n=7

m  Original Data

5 3 7 3 >k
Fig. 8.5 (a-c) Superposition of sine and cosine waves that recreate (d)
the original timeseries.
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have "canned” FFT algorithms that users can access without having to write their owy

Some of the early FFT packages were restricted to data sets with N = 2™, where m wag
any integer. This meant that data sets slightly too long were truncated to the Proper size
or data sets slightly too short we lengthened by adding bogus-data-(often zeros or the:
mean value). Both of these data mutilation tricks are not recommended. Modern FFTs
factor the series into a variety of prime numbers in addition to the prime number 3
resulting in very little truncation of the time series, ’
One problem with all discrete Fourier transforms including FFTs, is that the input
must consist of equally-spaced data points. No missing data is allowed. If the data set
has gaps caused by instrument failures or by spurious data spikes that were removed, thep
artificial data points must be inserted to fill the gap. One is not allowed simply to close the
gap by bringing the remaining parts of the data set together, because this alters the periods
or wavelengths present in the original signal. The artificial data points must be chosen
with care, otherwise this "fudge" can destroy an otherwise unbiased data set. Data with
significant gaps can be analyzed with periodogram methods instead (see Section 8.9).

8.6 Energy Spectrum
8.6.1 Discrete Energy Spectrum

In meteorology we are frequently curious about how much of the variance of a time
series is associated with a particular frequency, without regard to the precise phase of the
waves. Indeed for turbulence, we anticipate that the original signal is not physically like
waves at all, but we still find it useful to break the signal into components of different
frequencies that we like to associate with different eddy sizes.

The square of the norm of the complex Fourier transform for any frequency n is:

IFp@? = [Freal part@]? + [Fimag, pare(n)] (8.6.1a)

When IF A(n)l2 is summed over frequencies n = 1 to N-1, the result equals the total biased
variance of the original time series:

N-1 ‘ -1
2 1 —
G, = ﬁ-éo (Ak-A)z = El |1=A(n)!2 (8.6.1b)

Thus, we can interpret IF,(n)I2 as the portion of variance explained by waves of

frequency n. Notice that the sum over frequencies does not include n=0, because [F4(0)!
is the mean value and does not contribute any information about the variation of the signal

about the mean. To simplify the notation for later use, define: G A@ =IF A(n)l2 . The
ratio G,(n) / 6,2 represents the fraction of variance explained by component n, and is
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very much like the correlation coefficient squared, 2.
For frequencies greater than the Nyquist frequency the [F,(n) 2 values are identically
ual to those at the corresponding folded lower frequencies, because the Fourier
sforms of high frequencies are the same as those for the low frequencit:,s, except fora
sign change in front of the imaginary part. Also, since frequencies higher than the
Nyquist cannot be resolved anyway, the [F A(n)l2 values at high frequencies should be

folded back and added to those at the lower frequencies.
Thus, discrete spectral intensity (or energy), E,(n), is defined as

B,(m) = 2F5 (), for n =1 to ng, with N = odd. For N = even, E,(n) = 2, @)1 is

used for frequencies from n = 1 to (n; -1), along with E,(n) =IF A(n)l2 (not times 2) at
the Nyquist frequency. This presentation is called the discrete van:am:e (or e.nfrgy)
spectrum. Tt can be used for any variable such as temperature, velqcny, or hurmd1t¥ to
separate the total variance into the components, E,(n), related to different frequencies.
For variables such as temperature and humidity, however, we must not associate the
resulting spectrum with concepts of eddy motions, because variations in these variables
can persist in the atmosphere in nonturbulent flow as the "footprints” of formerly active
turbulence.

The variance of velocity fluctuations, u', has the same units as turbulence kinetic
energy per unit mass. Thus, the spectrum of velocity is called the discrete energy
spectrum. As defined above, the name "energy spectrum” is sometimes used for all
variance spectra.

8.6.2 Spectral Density

Although this chapter has dealt with discrete spectra, a number of theoretical concepts
such as the spectral similarity discussed in the next chapter use continuous spectral
representations. Namely, instead of summing the discrete spectral energy over all n to
yield the total variance, these theories assume that there is a spectral energy density,
Sa(n) that can be integrated over n to yield the total variance.

P

iy

o = fs L@ dn (8.6.22)

The spectral energy density has units of A squared per unit frequency.
We can approximate the spectral energy density by

E,®

AL (8.6.2b)

S, =
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where An is the difference between neighboring frequencies. When n is used to Tepresen

frequency, An =1. For other representations of frequency such as £, we will find that Af
is not necessarily equal to unity.

The S, (n) points estimated from (8.6.2b) can then be connected with a smooth Curve
to represent the shape of the spectrum. An example of this was shown in Chapter 2, Fig,
2.2, Thus, even with discrete meteorological data, we can estimate spectral densities thy
can be compared to theories.

8.6.3 Example

Problem: Use the results from the N = 8 data point example of section 8.4.2 to
calculate the discrete spectral energies for all frequencies. Plot the result in the usy)
presentation format for discrete spectra. Show an additional graph of the estimate of
spectral density. ’

Solution:
n Fq(n) [Fq(n)j2 Eq4(n) Sq(n)
0 7.0 (=mean)
1 0.28 - 1.031i 1.14 2.28 2.28
2 0.5 : ‘ 0.25 0.5 0.5
3 -0.78 -0.03 i 0.61 1.22 1.22
4=n¢ 1.0 1.0 1.0 1.0
5 -0.78 + 0.03 i 0.61
6 0.5 0.25
7 0.28 + 1.031i 1.14

Sum = 5.0 = 5.0

]

Fig. 8.8 (a) Discrete spectrurn and (b) spectral density graphs for
example 8.6.3.
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here Eq(n) has units of specific humidity squared, and Sg(n) has units of specific
:umidity squared per unit frequency. Finally, the discrete spectrum is plotted in Fig 8.8a,
and the spectral energy density is plotted in Fig 8.8b.

piscussion. The sum of the spectral energies equals the biased variance of the
original signal, qu =35.0. This is always a good check of the FFT for you to perform.

8.6.4 Graphical Presentation of Atmospheric Spectra

A wide range of intensities are present in atmospheric turbulence spectra over an even
Jarger range of frequencies. Atmospheric turbulence spectral energies characteristically
peak at the lowest frequencies, namely at about 1 to 10 cycles per hour. At higher
frequencies, the spectral energy decreases. For example, at frequencies of 10# cycles per
hour the energy is one to two orders of magnitude smaller than at the peak.

We are often concerned about the full range of the spectrum: the peak is associated
with the production of turbulence and usually the largest eddy sizes; the middle
frequencies are associated with the inertial subrange, which is important for estimated
dissipation rates; and the highest frequencies are associated with the dissipation of TKE
into heat by viscous effects. Hence, we need a way to graphically present the spectral data
in a form that not only highlights the important peaks and other characteristics, but which
shows all portions of the wide range of data.

In the discussions that follow, a single idealized spectrum is presented in a variety of
formats in Fig 8.9. The data for these plots is listed in Table 8-1.

Linear-linear presentation. When S,(f) is plotted vs. f on a linear-linear graph,
the result has the desirable characteristic that the area under the curve between any pair of
frequencies is proportional to the portion of variance explained by that range of
frequencies. Unfortunately, the plot is useless to view because the wide range in values
results in a compression of the data onto the coordinate axes (see Fig 8.9a). Alternatives
include expanding the low frequency portion of the spectrum (Fig 8.9b) and plotting
£:3(f) instead of just S(f) on the ordinate (Fig 8.9¢c). Both techniques focus on the
spectral peak at the expense of losing information at the higher frequencies. :

Note that the f-S(f) plot causes the apparent peak to shift from the low frequency end
of the spectrum towards the middle of the spectrum. Since £.8(f) is also used in a number
of the other formats listed below, we should not be deceived into thinking that the middle
frequencies are the ones with the most spectral energy.

Semi-log presentation. By plotting .S A(D vs. log £, the low frequency portions
of the spectra are expanded along the abscissa. Also, the ordinate for the high frequency
portions are enhanced because the spectral density is multiplied by frequency (see Fig
8.9d). Another excellent quality is that the area under any portion of the curve continues
o be proportional to the variance. '
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a. table 8-1. Artificial data and spreadsheet calculations used to demonstrate
° various ways to present spectra.

T obd ohe 088 o1 Variable Value
! This is assumed to be the spectrum of a Zi (m) 1000
time series of velocity measurements. U (m/s) 5

jﬁn Dissip.(m2s-3)  0.002
9 Size 21

ame——

Logarithm of____
r\]:r;nalized Normalized Normalized Normalized f S 8
Frequency Spectrum Frequency Spectrum (1/s) {m2/s3) (m2/s2)
4.0 -1.3010 0.1000  0.0500 0.0005 158.7401 0.0794
} .08  -1.2412 0.1580  0.0574 0.0008 1153005  0.0811
ooy, 0.6  -1.1807 0.2510 ~ 0.0660 0.0013  83.4308  0.1047
odor ot or 04  -1.1204 0.3980  0.0758 0.0020 60.4486  0.1203
/i 02  -1.0602 0.6310  0.0871 0.0032  43.8016  0.1382
s 0.0  -1.0000 1.0000  0.1000 0.0050 31.7480 - 0.1587
1 0.2 -1.0000 1.5850 0.1000 0.0079  20.0303 0.1587
i 04  -1.0000 25120  0.1000 0.0126  12.6385  0.1587
0.6  -1.0827 © 89810  0.0827 0.0199  6.5914  0.1312
g 0.8  -1.2175 6.3100  0.0606 0.0316  3.0495  0.0962
1.0 -1.3521 10.0000  0.0445 0.0500  1.4112  0.0706
1.2 -1.4868 15.8490  0.0326 0.0792  0.6530  0.0517
Fig. 8.9  Different presentations of the same spactrum {sea text for detalils). 1.4 -1.6215 25.1180 0.0239 0.1256 0.3022 0.0379
e R 186 -1.7562 39.8110  0.0175 0.1991 0.1308  0.0278
: Log-log presentation. When log[S,(f)] vs. log f is plotted, the result allows a 1.8 -1.8909 63.0860  0.0129 0.3155  0.0847  0.0204
. . i . 20  -2.0255 100.0000  0.0094 0.5000  0.0299  0.0150
- wide range of frequencies and spectral densities to be displayed. Also, any powerlaw | 22 -2.1602 7 158.4800  0.0069 07924  0.0139  0.0110
| relationships between S,(f) and f appear as straight lines on this graph. Aswillbe | 24 22040 |f 2511800  0.0051 12550  0.0064  0.0080
¢ discussed in more detail in the next chapter, S,(f) is proportional to £5” in the inertial 26 24208 308.1070  0.0037 18905 00030 00059
A subrange portion of the spectrum, which will appear as a straight line with -5/3 slope ona 28  -2.5643 630.9570  0.0027 3.1548  0.0014  0.0043
i log-log graph (see Fig. 8.9¢). Unfortunately, the area under the curve is no longer : 3.0  -2.6090 1000.0000  0.0020 5.0000  0.0006  0.0032

proportional to the variance.

Log f SA (D) vs. log f. A plot of log[f-SA()] vs. log f, has all of the desirable
characteristics of the log-log presentation described above. In addition, the quanfity
£-SA(f) has the same units as the variance of A, making scaling or normalization easier.
Unfortunately, the area under the curve is also not proportional to variance (see Fig. 8.9
Regardless of this problem, this presentation is the most used in the literature.
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As will be discussed in the next chapter, both the abscissa and ordinate are often mage
dimensionless by normalizing with respect to scaling variables (see Fig 8.9g), Tp,e
scaling variables used in this example are listed in Table 8-1.

8.7 Spectral Characterlstlcs

Instead of discussing spectral behavior theoretically, this section demonstrates spectra]
behavior for a single variable through a series of examples with synthetic data. In each of
the following cases, an artificial time series of 20 data points is plotted, along with the
spectrum computed with an FFT program. The spectrum shows E(n) normalized by the
total biased variance, and shows the fraction of the total variance explained by each
frequency. The Nyquist frequency is n=10 for all cases.

Case A (Fig 8.10a): Simple waves of one frequency. All of these
examples show a wave having four cycles per time period. The first four examples in thig
case show that the spectrum is independent of the phase of the original time series. A
single simple wave in physical space produces a single spike in the spectrum at n=4 that
explains all the variance. The fifth example shows that if the spectrum is normalized by
the total variance, we still have a single spike that explains 100% of the variance. If the
spectrum had not been normalized, the spike for this fifth case would have been twice as
large as the spikes for the other four cases, because the time series for the fifth case
consisted of a wave with twice the amplitude.

Case B (Fig 8.10b): Simple waves of different frequencies, The first
example shows a time series filled by one wave, resulting in a spectrum with a spike at
n = 1. The next three examples show waves with 4, 8, and 10 cycles per period in the
time series, resulting in spectra with frequency spikes at n = 4, 8, and 10 respectively.
The fifth example shows a time series with a wave having 12 cycles per period, but the
aliasing problem causes this signal to be folded back to n = 8, where it appears as a spike
on the spectrum,

Case C (Fig 8.10c): Frequencies between resolvable frequencies. The
FFT consists of waves of the fundamental frequency (n = 1) and only the exact harmonics
(n=2, 3, 4,..). But what happens if the real signal has a frequency of n = 4.2 or 4.5?
These examples show that a wave of n = 4.5 appears as two large spikes at n = 4 and
n=5. The closer the signal is to an exact harmonic, the greater the spectral energy at that
harmonic and the smaller the energy at the next nearest neighbor. Notice that for a signal
with n = 4.5, the spectrum not only has the two large spikes described above, but there
is also a leakage of some small amount of spectral energy to all the other frequencies. We
might expect that a real turbulence signal consisting of a multitude of frequencies, many of
which are not exact harmonics of the fundamental frequency, will result in a spectrum
with a lot of leakage, making it difficult to separate the true signals from the underlying
noise.
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Fig. 8.10a Simple waves.
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