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neutral conditions (L = +) . The problem is further complicated over the ocean, where z0 and zT 
depend on u*.  A popular simplification is to use a computationally efficient approximation to the 
iterative solution, e.g. Louis 1979, Bound. Layer Meteor., 17, 187-202. 

Scaling for the entire boundary layer- the turbulent Ekman layer (Garratt, 3.2) 

 In general, the BL depth h and turbulence profile depend on many factors, including history, 
stability, baroclinicity, clouds, presence of a capping inversion, etc.  Hence universal formulas 
for the velocity and thermodynamic profiles above the surface layer (i. e. where transports are 
primarily by the large, BL-filling eddies) are rarely applicable.  
 However, a couple of special cases are illuminating to consider. The first is a well-mixed BL 
(homework), in which the fluxes adjust to ensure that the tendency of #, q, and velocity remain 
the same at all levels.  Well mixed BLs are usually either strongly convective, or strongly driven 
stable BLs capped by a strong inversion.  As will be furher discussed in later lectures, mixed 
layer models incorporating an entrainment closure for determining the rate at which BL 
turbulence incorporates above-BL air into the mixed layer are widely used. 
 The other interesting (though rarely observable) case is a steady-state, neutral, barotropic BL. 
This is the turbulent analogue to a laminar Ekman layer. Here, the fundamental scaling 
parameters are G = |ug|,  f, and z0. Out of these one can form one independent nondimensional 
parameter, the surface Rossby number Ros = G/ fz0 (which is typically 104 -108).  The friction 
velocity (which measures surface stress) must have the form 
 u*/G  =  F(Ros) (6.23) 

Hence, one can also regard u*/G (which has a typical value of 0.01-0.1) as a proxy  
nondimensional control parameter in place of Ros.  The steady-state BL momentum equations are 

 f (u ! ug ) = !
d
dz

"v "w , (6.24) 

 f (v ! vg ) =
d
dz

"u "w . (6.25) 

On the next page are velocity and momentum flux profiles from a  direct numerical simulation 
(384-384-85 gridpoints) in which u*/G = 0.053 (Coleman 1999, J.  Atmos. Sci, 56, 891-900). 
The geostrophic wind is oriented in the x direction, and is independent of height (the barotropic 
assumption). Height is nondimensionalized by . = u*/f.    In the thin surface layer, extending up 
to z = 0.02., the wind increases logarithmically with height without appreciable turning (this is 
most clearly seen on the wind hodograph), and is turned at 20° from geostrophic (this angle is an 
increasing function of u*/G)   The neutral BL depth, defined as the top of the region of 
significantly ageostrophic mean wind, is  
 hN  = 0.8u*/f . (6.26) 
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Fig.  6.5:  Wind and stress profiles in a numerically simulated turbulent barotropic Ekman layer
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For u* = 0.3 m s-1 and f = 10-4 s-1, HN = 2.4 km.  Real ABLs are rarely this deep because of 
stratification aloft, but fair approximations to the idealized turbulent Ekman layer can occur in 
strong winds over the midlatitude oceans.  The wind profile qualitatively resembles an  Ekman 
layer with a thickness 0.12u*/f, except much more of the wind shear is compressed into the 
surface layer. 
The profiles of ageostrophic wind and momentum flux depend only very weakly on Ros above 
the surface layer. Below we  show a scaling using u* and f that collapses these into universal 
profiles.   These wind and stress profiles can be matched onto a z0-dependent surface log-layer; 
the matching height (i. e. the top of the surface layer) and the implied surface wind turning angle 
depend upon z0; in this way the profiles can apply to arbitrary Ros. 

 
Fig. 6.6:  Scaled ageostrophic wind (solid: LES; triangles: lab expt.) for a turbulent Ekman layer.  

A log-profile in the surface layer (z/. < 0.02 ) matches onto universal profiles above. 

As we go up through the boundary layer, the magnitude of the momentum flux will decrease 
from u*

2 in  the surface layer to near zero at the BL top, so throughout the BL, the momentum 
flux will be O(u*

2), and the turbulent velocity perturbations u/, w/ should scale with u*  to be 
consistent with this momentum flux).  We assume that the BL depth scales with . = u*/f.   These 
scalings suggest a nondimensionalization of the steady state BL momentum equations (6.24) and 
(6.25): 

 
u ! ug
u*

= !
d "v "w u*

2( )
d z #( )  (6.27) 

 
v ! vg
u*

=
d "u "w u*

2( )
d z #( )  (6.28) 

 
If we adopt a coordinate system in which the x axis is in the direction of the surface-layer wind, 
the boundary conditions on the momentum flux are 
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 !u !w u*
2 " 1  and !v !w u*

2 " 0   as  z/. ( 0  (i. e. at surface layer top) (6.29) 

 !u !w u*
2 " 0  and !v !w u*

2 " 0   as  z/. ( + (6.30)  

If we assume that the momentum flux depends only on wind shear and height, this is consistent 
with universal velocity defect laws: 

 
u ! ug
u*

= Fx (z " ) ,   
v ! vg
u*

= Fy (z " )  . (6.31) 

and similarly for momentum flux scaled with u*
2. These universal profiles can then be deduced 

from either lab experiments or numerical simualtions of turbulent Ekman layers. .   The figure 
below shows that Coleman's simulations and laboratory experiments with different parameters 
are consistent with the same Fx and Fy, supporting their universality.  One can see that at hN = 
0.8., the velocity defects are very close to zero (geostrophic flow), while at z 0 0.02., the v 
defect has flattened out with Fy(0) 0 5.  This corresponds to the top of the surface layer. 

In the surface layer , these universal functions cease to apply and the logarithmic wind profile 
u(z)  = (u*/k) ln(z/z0), v(z) = 0 must match onto the defect laws.  In particular, this means that 
Fy(0) = -vg/u*, i. e. that vg 0 -5u*. From the overall geostrophic wind magnitude G,  we can 
deduce the surface wind turning angle 1, i. e.  

 1  0 sin-1(5u*/G) . (6.32) 

For the case shown, this gives 1  0 15°, in excellent agreement with the hodograph in Fig. 6.5. 
Smoother surfaces with lower u*/G  (e. g. ocean) will give smaller turning angles and rougher 
surfaces will give larger turning angles, as we’d expect. We can also deduce ug (0 0.96G for the 
case shown).  At the top of the surface layer, us = ug + u*Fx(0)   0 ug- 5u*0 (0.96-0.27)G = 0.7G, 
again in good agreement with the plotted hodograph once it is rotated into coordinates 
along/transverse to the surface wind.  From this we could deduce a precise matching height zs at 
which us = (u*/k) ln(zs/z0) between the log-layer and the velocity defect profiles.  While this all 
may seem rather indirect, it provides a way to construct the boundary layer wind and stress 
profile in any turbulent barotropic Ekman layer.  In fact, this would be a wonderful approach to 
parameterize BLs if they were actually unstratified and barotropic, but this is almost never the 
case in reality. 
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