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Abstract
The increasing use of climate projections in adaptation necessitates a consistent method for producing estimates of likely 
future conditions from available climate model data. Many climate projections are produced using high emission scenarios 
and an evenly weighted ensemble of all available climate models despite substantial evidence that the continuously rising 
emissions in high emission scenarios are unrealistic, and that some models are more reliable than others. While high emission 
scenarios can be used to generate a more significant climate change signal and are often not intended to be interpreted as 
projections, a reader who is a non-expert on climate scenarios may not understand this nuance. As a result, unlikely climate 
projections could be inadvertently used to plan crucial adaptation efforts for future warming. Here, we present a simple and 
easy to use framework for creating projections of our likely future climate by combining existing methods. The framework 
involves three measures: selecting the most likely emission scenario, choosing the most reliable models, and debiasing against 
observational or reanalysis data. Each of these steps allows for a range of methods with varying complexity, precision, and 
utility. To demonstrate our framework and its components, we use the simplest applicable methods to estimate future changes 
in tropical width, a hydrologically important climate feature. Our projections show that the likely tropical expansion by the 
end of this century is roughly half of some previously reported estimates, largely due to the selected emission scenario. This 
simple framework can be easily applied to other climate features, allowing for better estimates of likely future conditions.

1 Introduction

Adapting to our changing climate requires accurate informa-
tion about the likely future. However, extracting estimates 
of probable future conditions from climate model simula-
tions is challenging because the emissions scenarios and 
participating models of the Coupled Model Intercomparison 
Project (CMIP) differ so greatly. Simple variations in data 
processing methods such as model selection can produce a 
wide range of climate projections, complicating adaptation 
efforts. Recent estimates of future emissions and warming 
indicate that some simulations are more realistic than oth-
ers, allowing for more precise estimates of probable future 
conditions. However, studies have often used implausibly 
high emission scenarios and included less-realistic models 
(Hausfather and Peters 2020a), creating a situation where 
the prevalence of these simulations could cause improbable 

projections to be interpreted as our likely future. Here, we 
present a simple framework which uses probable estimates 
of future emissions, removes less realistic models, and debi-
ases model outputs to create more realistic projections of the 
likely future climate.

In the last few years, substantial evidence has emerged 
that the high emission CMIP scenarios RCP 8.5 and SSP5-
8.5 do not represent a plausible future (Hausfather and 
Peters 2020b; Huard et al. 2022; Srikrishnan et al. 2022). 
Multiple recent reports suggest that global  CO2 emissions 
will peak before 2025 (Climate Analytics 2023, IEA 2023, 
BloombergNEF 2024), in disagreement with the continu-
ously rising emissions in the high emission scenarios. This 
change in thought is further demonstrated by the recent 
interest by the ScenarioMIP working group in using a less 
intense high emission scenario than RCP 8.5 or SSP5-8.5 
in CMIP7 due to these scenarios becoming increasingly 
unlikely (van Vuuren et al. 2023). While high emission 
scenarios should be considered as a low probability, high 
consequence potential future (Schwalm et al. 2020; Kemp 
et al. 2022), the implausibility of the current high emis-
sion scenarios limits their utility for planning purposes. 
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Additionally, more realistic scenarios such as SSP2-4.5 have 
been less frequently studied than these high emission sce-
narios, creating a relative scarcity of more probable future 
climate projections (Pielke and Ritchie 2021;  Burgess et al. 
2022). Although SSP2-4.5 is less extreme than SSP5-8.5, 
it still represents a substantially warmer future, with severe 
societal and ecological impacts necessitating strong adapta-
tion and mitigation (Cook et al. 2020; Spinoni et al. 2020) .

High emission scenarios are often chosen in theoretical 
studies to create larger signal-to-noise ratios, or due to data 
availability. Notably, many studies are explicit in describing 
these scenarios as a high-emission future or worst-case sce-
nario. However, due to the prevalence of studies which have 
used this scenario, a reader who is not an expert in climate 
scenarios may assume that these studies are projections of 
a probable future. In addition, it may be interpreted that the 
frustratingly slow progress on decarbonization suggests that 
the high emission scenario is likely. Regardless, because of 
the focus on high emission scenarios, the estimates of prob-
able future conditions necessary for adaptation are under-
reported for many parts of the climate system.

In addition to focusing on implausible scenarios, many 
projections have used ensembles which include less reli-
able models. A sizable portion of CMIP6 models have cli-
mate sensitivities which are improbable, primarily due to 
being too large, decreasing the representativeness of both 
the ensemble spread and mean (Sherwood et al. 2020; Liang 
et al. 2020; Tierney et al. 2020; Hausfather et al. 2022). 
One easily calculated climate sensitivity metric, the tran-
sient climate response (TCR), measures the relationship 
between temperature increase and carbon dioxide increase 
once carbon dioxide concentration has doubled. The Inter-
national Panel on Climate Change Sixth Assessment Report 
(IPCC-AR6) calculated TCR by combining multiple meth-
ods, resulting in the estimated likely (1σ) range of 1.4–2.2 K 
(Arias et al. 2021), which we also use in this study. Because 
climate models vary so greatly, as measured by TCR and 
other metrics, many techniques have been developed for 
creating weighted ensembles based on model skill (Brun-
ner et al. 2020a). For example, by weighting models based 
on performance and independence, Brunner et al. (2020b) 
projected less intense warming from CMIP6 models. Here, 
we focus our model selection on TCR in an effort to present 
a simple version of this framework, though considering other 
metrics of model performance may also prove useful.

The final procedure in our framework is to debias the 
models. Biases in individual models and the ensemble mean 
have been well documented in CMIP6, with only modest 
improvements relative to CMIP5 (Kim et al. 2020). Because 
of this issue, a variety of methods for debiasing have been 
proposed, from simple mean subtraction to more advanced 
methods (Teutschbein and Seibert, 2012). In addition to 
discussion over the benefits of each method, the utility of 

debiasing has been debated for some applications (Laux 
et al. 2021), though some have argued that the negative 
effects of bias correction are not detectable (Maraun et al. 
2017). To present a simple version of the debiasing without 
introducing large and potentially spurious changes to the 
tropical width projections, we focus on removing the minor 
circulation change biases associated with the present-day 
circulation, similar to those previously reported in Kidston 
and Gerber (2010), Simpson and Polvani (2016), Curtis et al. 
(2020), and Simpson et al. (2021).

We create projections of tropical width to showcase our 
proposed framework and the impact of each of its measures. 
Tropical width is a societally important feature of the climate 
system, as the poleward edge of the tropics is associated with 
sharp latitudinal gradients in precipitation (Lu et al. 2007; 
Schmidt and Grise 2017). Over the satellite era (1979-pre-
sent), the latitudinal width of the tropics has increased due to 
many factors including natural variability, global warming, 
and stratospheric ozone depletion (Grise et al. 2019; Waugh 
et al. 2015). While temperature is projected to increase in 
the twenty-first century under all CMIP6 scenarios, strato-
spheric ozone depletion peaked at the end of the twentieth 
century and is projected to decline in the twenty-first cen-
tury (WMO, 2022), countering the increase in tropical extent 
associated with warming (Perlwitz 2011).

Recent tropical width modeling studies either focused pri-
marily on the high emission scenarios or included multiple 
scenarios with no emphasis on which projections are most 
probable. For example, Staten et al. (2018) and Grise and 
Davis (2020) only considered the high emission scenarios 
RCP 8.5 and SSP5-8.5 respectively. Tao et al. (2016), Allen 
and Ajoku (2016), and Xia et al. (2020) analyzed several 
scenarios, showing that tropical widening trends increase 
with emission intensity. Of these five studies, none consid-
ered model sensitivity, resulting in models with TCR outside 
of the likely range being included in the analyses. Using our 
simple framework, we attempt to project the most probable 
future tropical edge latitude and compare our results against 
those derived from methods such as those from Grise and 
Davis (2020). As we will show, our framework leads to a 
substantial reduction in estimated tropical expansion com-
pared to these methods.

2  Data and methods

We used CMIP6 (Eyring et al. 2016) zonal surface-wind and 
2 m air temperature data for the historical period 1850–2014 
and for three forcing levels from 2015–2099: SSP1-2.6, 
SSP2-4.5, and SSP5-8.5. Zonal surface-wind and temper-
ature data were acquired for all available CMIP6 models 
(Table 1). We selected 28 models based on the availability of 
data for both variables across all three forcings. TCR values 
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were acquired from Hausfather et al. (2022) and checked 
against Nijsse et al. (2020). Of the 28 models, 1 has a TCR 
of less than 1.4 K, 19 have TCR values in the likely range of 
1.4–2.2 K calculated in IPCC-AR6 (Arias et al. 2021), and 
8 have TCR values greater than 2.2 K. To provide obser-
vation-based estimates of the present-day tropical width, 
we used monthly averaged ERA5 (Hersbach et al. 2020) 
reanalysis data for zonal surface-wind from the satellite 
era (1979–2014). This period was chosen as a compromise 
between length and quality as there are fewer remote obser-
vations before 1979.

ERA5 is chosen as it is the successor to ERA-Interim, 
which is shown in Davis and Davis (2018) and Chemke and 
Polvani (2019) to be physically reasonable for phenomena 
associated with Hadley cell width and circulation strength. 
ERA5 is chosen over ERA-Interim due to the improved 

resolution and accuracy (Hersbach et al. 2020), and a recent 
study demonstrating that ERA5 produces internally consist-
ent estimates of Hadley cell width using the chosen metric 
(Baldassare et al. 2023).

Zonal surface-wind data from both ERA5 and CMIP6 
were zonally and annually averaged and then used to com-
pute the latitudes of the tropical edge over the two hemi-
spheres using the zonal surface-wind zero crossing method 
in the software package PyTropD (Adam et  al. 2018). 
PyTropD uses spline interpolation to determine the tropi-
cal edge latitude, decreasing the impact of resolution differ-
ences between models. The zonal surface-wind zero crossing 
method is chosen over other methods such as the meridional 
stream function due to the consistency in estimates from 
ERA5 (Baldassare et al. 2023), though similar results were 
obtained using the meridional stream function (not shown). 

Table 1  CMIP6 models used in 
this study with associated TCR 
values. Models with TCR below 
likely range of 1.4–2.2 K are 
marked in green, while those 
with TCR values greater than 
this range are in red
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Annual mean global averages of 2-m temperature were com-
puted from CMIP6.

For both ERA5 and CMIP6, uncertainties are calculated 
through bootstrapping, using 10,000 samples with replace-
ment. To focus on the likely changes to tropical width, we 
use the 1σ uncertainty range throughout, consistent with the 
likely range from IPCC-AR6 (Arias et al. 2021). For the 
final projections shown in Fig. 6, the uncertainty range is 
calculated by summing the bootstrapped uncertainties of the 
30-year mean of the model projected tropical edge latitude, 
present-day ERA5 tropical edge latitude, and the uncertainty 
of the ensemble mean.

3  Forcing selection

Choosing the most representative emission scenario is the 
most critical step in producing a likely climate projection. 
To select the forcing scenario, we suggest comparing the 
emissions from each scenario to trustworthy emissions 
projections and probabilistic emissions models. This flex-
ible method allows for potential refinements in climate 
projections following the anticipated emergence of addi-
tional emission scenarios and improved emission projec-
tions. For this study, we begin by comparing the emissions 
from the three SSP scenarios to the “Policies and Action”, 
“2030 Targets Only”, and “Pledges & Targets” projections 
from the Climate Action Tracker (Climate Action Tracker 
2022). These three projections represent twenty-first cen-
tury emissions resulting from different assumptions in the 
implementation of national emission reduction pledges. 
All three projections most closely match SSP2-4.5 while 
also projecting emissions which are less than 1/3 of SSP5-
8.5 emissions by the end of the century (Fig. 1). None of 
the projections match SSP1-2.6 as the negative emissions 
needed for this scenario do not exist in the Climate Action 
Tracker projections. Next, we consider recent studies com-
paring each scenario to probabilistic integrated assessment 
models (Srikrishnan et al. 2022; Huard et al. 2022), both of 
which indicate that SSP2-4.5 is the most likely scenario in 
the late twenty-first century. Following these comparisons, 
we conclude that SSP2-4.5 is currently the most likely sce-
nario, while the frequently used SSP5-8.5 is very unlikely.

The importance of forcing selection is shown by the sub-
stantial differences in projected tropical expansion between 
emission scenarios (Fig. 2). The three scenarios shown are 
SSP1-2.6, an improbable low-emission scenario which lim-
its warming to around 1.5 °C; SSP2-4.5, the most likely 
scenario with moderate emission reductions; and SSP5-8.5, 
an unlikely high-emission scenario with continuously ris-
ing emissions. In the Southern Hemisphere (SH), tropical 
expansion begins in the early twentieth century and acceler-
ates after 1960, coinciding with the start of ozone depletion 

(Polvani et al. 2011; Solomon et al. 2005), while the weaker 
Northern Hemisphere (NH) expansion only becomes notice-
able after 1990. Because CMIP6 models project ozone 
recovery by the late twenty-first century (Revell et al. 2022), 
the larger SH expansion compared to the NH is unrelated to 
changes in ozone and indicates that the SH tropical width is 
more sensitive to the warming from increased greenhouse 
gases, in agreement with previous studies (Watt-Meyer et al. 
2019). In addition, the greater sensitivity in the SH results 
in forcing differences which are larger than intermodel dif-
ferences, in contrast to the NH where intermodel differences 
are greater (Fig. S1). As shown in Fig. 2, by the end of the 
twenty-first century, the projected SH expansion under the 
low and high emission scenarios differs by a factor of three, 
and the expansion from SSP5-8.5 is roughly twice that of 
SSP2-4.5.

4  Model selection

While selecting the most likely emission scenario SSP2-
4.5 has a large impact on the tropical width projections, the 
full ensemble is still composed of models with implausible 
rates of future warming. We attempt to correct this issue by 
focusing on models with reasonable TCR values, discard-
ing models outside of the likely climate sensitivity range 
of 1.4–2.2 K from IPCC-AR6 (Arias et al. 2021). Because 
more CMIP6 models have high TCR than low TCR values, 
our moderate ensemble has an average TCR of 1.76 K com-
pared to the full ensemble average of 1.97 K (Table 1).

Fig. 1  Greenhouse gas emissions from  CO2,  CH4, and  N2O in gigaton 
of  CO2 equivalent per year for three SSP scenarios and three Climate 
Action Tracker projections. Equivalent  CO2 emissions are calculated 
by multiplying the  CH4 and  N2O emissions by their respective global 
warming potentials and adding these values to  CO2 emissions. Cli-
mate Action Tracker data is from the Climate Action Tracker (Cli-
mate Action Tracker 2022), and SSP scenario data is from Riahi et al. 
(2017)
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For SSP2-4.5, the moderate TCR ensemble projects less 
warming and less tropical expansion than the full ensemble 
as shown by the difference between the ensemble averages 

(Fig.  3). There is an approximately linear relationship 
between warming and tropical expansion, with a greater 
slope in the SH and for higher forcing simulations. Although 

Fig. 2  Ensemble mean tropical 
edge latitude change relative 
to 1850–1879 for 28 CMIP6 
models from three forcing sce-
narios. Thin lines represent the 
raw ensemble mean while thick 
lines result from a Gaussian 
smoothing

Fig. 3  Changes in tropical 
edge and temperature from 
1850–1879 to 2070–2099. Mod-
els with TCR values between 
1.4 and 2.2 K are denoted by 
triangles, and models with TCR 
outside of this likely range 
are marked as circles. Large 
symbols denote ensemble 
means with their 1σ range, with 
the large circle representing the 
ensemble mean of all models, 
and the large triangle represent-
ing the mean of moderate TCR 
models. For each forcing level, 
a linear best fit from all 28 
models is displayed in the corre-
sponding color
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the slopes of the regression lines for all three scenarios are 
positive, they are significantly different from zero at the 
two-sided 95% confidence level only for the high forcing 
simulations in both hemispheres. For all scenarios in both 
hemispheres, the larger temperature increase projected by 
the full ensemble results in more expansion than the moder-
ate TCR ensemble. Because of the greater sensitivity, the 
TCR filtering is more impactful in the SH, similar to the 
forcing selection shown previously.

Previous studies found an insignificant relationship in 
the NH between tropical widening and equilibrium climate 
sensitivity, which measures temperature change once climate 
has reached equilibrium following a pulse of carbon dioxide 
(Grise and Polvani 2014, 2016; De et al. 2021). However, we 
find that TCR is significantly correlated with tropical widen-
ing in both hemispheres, requiring the removal of overly sen-
sitive models for realistic tropical width projections (Fig. 4). 
The disagreement between our study and previous studies 
could be the result of different models or metrics, but may 
also be due to the fact that by 2100 the scenario simula-
tions are not yet in equilibrium, causing TCR to be a better 
predictor of the projected twenty-first century warming and 
widening than equilibrium climate sensitivity.

5  Debiasing model outputs

Now that we have chosen the most likely emission scenario 
and constructed an ensemble of the most reasonable mod-
els, the final measure is to debias the models. Depending 
on the feature of interest, debiasing may be necessary due 

to limitations in climate simulations (Laux et al. 2021). 
For example, both individual models and ensembles have 
been shown to inaccurately represent satellite era precipi-
tation in the tropics (Kim et al. 2020). These issues may 
become especially pronounced when focusing on a subset 
of precipitation or a more specific region or time period, 
an example being the large 95th percentile precipitation 
biases in October through December in East Africa shown 
in Ayugi et al. (2021). As here we are focusing on zonally 
averaged features of the annual mean Hadley cell, a climate 
feature which is generally well simulated (Chemke and Pol-
vani 2019), debiasing may not be as beneficial and could 
introduce spurious changes as observed from other debiasing 
methods (Cannon et al. 2015). To demonstrate this step in 
the framework without introducing large and questionable 
changes to the projections, we choose to perform a relatively 
simple debiasing, focusing on a minor and statistically insig-
nificant tendency for models with equatorward biased jets 
tend to exhibit more widening than other models (Kidston 
and Gerber 2010; Simpson and Polvani 2016; Curtis et al. 
2020; Simpson et al. 2021). To analyze whether present-day 
biases in the latitude of the Hadley cell edge exhibit a similar 
relationship in the chosen CMIP6 models, we calculate the 
corresponding statistics for each model (Fig. 5). Similar to 
previous studies (Kidston and Gerber 2010; Simpson and 
Polvani 2016; Curtis et al. 2020; Simpson et al. 2021), we 
find that the models with equatorward biased present-day 
tropical width project more future widening in both hemi-
spheres. While Fig. 5 shows the results for 2070–2099, this 
feature is present throughout the twenty-first century, though 
it is not statistically significant. Because the ensemble mean 

Fig. 4  Projected tropical edge 
latitude change (2070–2099 – 
1850–1869) by transient climate 
response for all CMIP6 models 
using SSP5-8.5. The shaded 
gray region denotes the likely 
TCR range of 1.4–2.2 K accord-
ing to IPCC-AR6 (Arias et al. 
2021)
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present-day tropical edge is biased equatorwards relative to 
ERA5 in both hemispheres, roughly 0.3 degrees in the NH 
and 0.1 degrees in the SH, the tendency for equatorward 
biased models to project more expansion may result in an 
overestimation of future expansion.

To debias the projections, we remove this tendency from 
the models by the following process, which is performed 
in each year j and repeated for both hemispheres as dem-
onstrated in Fig. S2. First, the present-day (1985–2014) 
tropical edge for each model �i and for ERA5 �ERA5 is cal-
culated, as well as the future tropical edge in each model, 
using 30-year mean data centered on the year of interest j. 
For each model i in each year j, the present-day tropical edge 

�i is subtracted from the future tropical edge, resulting in the 
change of tropical edge Δ�i,j . A linear best fit is calculated 
between the tropical edge changes and present-day tropical 
edges of all models in each year j, producing the intercept 
aj and slope bj . Next, from the linear best fit, each model’s 
estimated expansion Δ�̂i,j is

and the residual �i,j , which is the difference between the esti-
mated and the actual expansion, is

Finally, the debiased expansion Δ�̃i,j is given by the sum 
of the expansion projected by the best fit line at the ERA5 
present-day edge and the residual

This results in small reductions in projected expansion, 
which are not statistically significant in either hemisphere, 
and are larger in later years and in the NH. While in this 
example the debiasing has minor impacts, for climate fea-
tures with large known biases such as extreme precipitation, 
debiasing may be useful for providing more realistic projec-
tions (Xu et al. 2021).

6  Likely tropical width projections

In Fig.  6, we compare the projections from our simple 
framework (blue) to those from a more “typical” methodol-
ogy such as Grise and Davis (2020) (red), which uses an 
ensemble of all CMIP6 models with SSP5-8.5 as the forc-
ing scenario. Compared to this methodology, our framework 
projects roughly half of the tropical expansion. The decrease 
is primarily the result of using the moderate emission sce-
nario, though the TCR selection results in a further reduc-
tion in expansion. Our framework (Fig. 6, blue) projects a 
twenty-first century tropical widening of 0.1 degrees in the 
NH, which is within the likely range of the late twentieth 
century as measured by the 1σ range of the ERA5 mean 
(1985–2014). In contrast, the projected twenty-first century 
SH widening of 0.5 degrees is significant, further demon-
strating the hemispheric differences in sensitivity. These 
results strongly differ from the projections of expansion 
from “typical” methods (Fig. 6, red), which are significant 
at the 1σ level in both hemispheres. The “typical” methods 
(Fig. 6, red) estimate roughly 0.5 degrees of expansion in 
the NH and 1.1 degrees in the SH. The differences between 
our framework and the previous approaches are larger in 
the SH due to the greater sensitivity, although by the end 
of the twenty-first century the difference is also significant 

(1)Δ�̂i,j = aj + bj�i

(2)�i,j = Δ�i,j − Δ�̂i,j

(3)Δ�̃i,j = aj + bj�ERA5 + �i,j = Δ�i,j + bj
(

�ERA5 − �i

)

Fig. 5  Tropical expansion between 1985–2014 and 2070–2099 by 
1985–2014 tropical edge latitude for moderate TCR models using 
SSP2-4.5. The stars denote the raw (black) and debiased (red) ensem-
ble means, with the 1σ range shown. The vertical dashed line marks 
the mean tropical edge in ERA5 from 1985–2014 with the gray 
shaded region depicting the 1σ range calculated from bootstrapping. 
The green line is a linear best fit of all models prior to debiasing.  R2 
is nearly zero in both hemispheres
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in the NH. Following our methodology, the best estimate 
for the absolute position of the tropical edge at the end of 
the twenty-first century is 31.1 degrees in the NH and 32.6 
degrees in the SH.

7  Summary and discussion

Following our methodology, the likely end of century 
NH expansion relative to present is about 0.1 degrees 
while the SH expansion is roughly 0.5 degrees, both of 
which are considerably smaller than the estimates from 
methods used in some previous studies, for example 
Grise and Davis (2020) (Fig. 6). Each measure of our 
proposed framework has distinct impacts on the projected 
tropical expansion. Focusing on the more likely moderate 
emission scenario roughly halves the expansion in both 
hemispheres. Excluding models with TCR values outside 
of a likely range decreases projected warming, causing 
a further reduction in expansion of roughly 0.1 degrees 

globally, primarily due to reduced expansion in the South-
ern Hemisphere. The removal of model biases similar to 
Kidston and Gerber (2010), Simpson and Polvani (2016), 
Curtis et al. (2020), and Simpson et al. (2021) further 
decreases projected expansion in both hemispheres.

The framework we have described creates probable pro-
jections of future climate using available climate model 
data. The measures in this framework are adaptable for 
different applications and can be modified as better infor-
mation or methods become available. The emission sce-
nario selection will likely change due to revised estimates 
of future emissions and the creation of new scenarios. 
Additionally, the emission selection could be improved 
through the consideration of other relevant factors such as 
aerosols, which have spatially heterogenous impacts and 
may be especially impactful for certain regions (Persad 
et al. 2023) or climate features (Zhao et al. 2020). The 
model selection could be refined by considering multiple 
measures of skill based on historical observations or theo-
retical arguments, or by using a more sophisticated weight-
ing method. For some climate features the debiasing step 
could be ignored, while for other features, debiasing could 
be modified by utilizing methods tailored to the system of 
interest. As it stands, the simple methods presented here 
produce improved climate projections with minimal effort.
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