
10. MATHEMATICAL MODELING OF OIL SHALE PYROLYSIS 

The process of transforming solid kerogen to liquid and gaseous products is complex. 

Several interrelated physical and chemical phenomena occur simultaneously.  Products are 

formed and exit the mineral matrix at definitive velocities through permeable paths. A pore 

network is created and the pressure changes during the gaseous product formation due to 

decomposition of the organic matter. A model created with COMSOL multiphysics for oil shale 

thermal retorting has been developed. The general kinetic model was integrated with some of the 

important physical processes which occur during pyrolysis. The effect of the process conditions 

was also investigated. 

10.1. Modeling Framework 

The main components of the oil shale pyrolysis process, in a logical sequence are 

depicted in Figure 10-1. A mathematical representation of the physical phenomena during oil 

shale pyrolysis is modeled in COMSOL multiphysics simulation suite. COSMOL multiphyics 

uses finite element method to solve the coupled equations simultaneously. The data visualization 

is relatively simple. It has the capability to include problem specific equation with existing 

simulation modules. The purpose of developing this model was to understand the coupling of 

various phenomena in oil shale pyrolysis and to estimate the effect of operational parameters on 

product distribution. The model developed in this study includes heat transfer due to conduction 

and mass transformation due to reaction kinetics. Further, porosity and permeability models were 

included in the  



 

Figure 10- 1: Schematic of the model design to simulate the coupled multiphysics involved in the 
thermal treatment of oil shale.  

 
framework and convective phenomena in heat and mass balance equations were included.  In a 

shrinking core model, the particle size changes. Hence a grain model concept was applied. It was 

assumed that the physics vary only in the radial direction. Figure 10-2 shows the geometric 

representation of simplified simulation scheme adopted in this study. The coupled governing 

equations were solved simultaneously. Appropriate changes in the physical properties of the 

material were taken into account as the decomposition process evolved. For example, the 

propagation of heat conduction within 
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Figure 10- 2: Schematic of experimental approach and identical simulation environment. The 
variation is in the r direction only. 
 

10.2. Governing Equations and Solution Methodology 

The governing equations included in the basic model are shown below. 

• Heat transfer equation 

 

 

• Mass transfer equation  

 

 

• Rate equation  
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the particle changes the basic physical properties such as density, thermal conductivity, and heat 

capacity used in the heat transport governing equation. The changes in the physical properties  

ρOS, Cp and K of raw material were adopted from the literature [37, 52] and allowed to be 

changed as the reaction progressed using the following expressions;  

• Density of the raw material- function of organic composition (org)  

ρ!" =      !"#_!"#  ×  !"#_!"#$
(!"#  ×  (!"#_!"#$  !  !"#_!"#)  !  !"#_!"#)

 

• Heat capacity of the raw material- function of oil yield and temperature 

Cp   = 4186.8383×[0.172  + (0.067+ 0.00162×Grade_OS×cO)×(10!!× !
!
×T)] 

 

• Thermal conductivity of the raw material –function of oil yield and temperature  
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× ! − 273.15 − 53 − !!!×
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a1’, b1, a2` and b2` are constants. Three reaction mechanisms were examined- a single 

step mechanism which does not account for the secondary reactions and a two-step mechanism 

in which oil produced during the process participates in the secondary reaction. The mass 

coefficients in the reactions were adopted from the literature and were modified based on the 

observation in the laboratory [121]. The third mechanism is a multistep mechanism proposed by 

Burnham and Braun [121] and modified by Bauman and Deo [153] for mass stoichiometric 

coefficients as to match the mass and elemental balances. The mass coefficients (equation 10-7 

to 10-9) are assumed constant, though reaction temperature affects the distribution of product.  

Table 10-1 shows the molecular weight (MW) and elements, carbon and hydrogen data 

for the multistep mechanism. The data up to three decimal points are required to conserve the 
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mass balance. The mass coefficients were calculated balancing the elements and conserving the 

mass. The products of the primary reaction from kerogen decomposition are classified as HO 

(heavy oil), LO (light oil), Gas, Char and Methane.  Methane is not included in the Gas fraction 

and does not go through the secondary processes. All other products participate in further 

pyrolysis and produce solid and fluid products by cracking or coking. 

• Single step mechanism      

 

• Two step mechanism

 

• Multistep mechanism 
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Table 10- 1: Elements and molecular weight data used in constructing the multistep step reaction 
mechanism. 

 
Component Kerogen HO LO Gas Char Methane Coke 

C 1479.000 31.751 11.189 3.354 1.004 1.000 1.185 

H 2220.000 42.818 17.510 11.634 0.546 4.000 0.316 

Ratio 1.501 1.349 1.565 3.468 0.544 4.000 0.267 
MW 20000.550 424.492 152.034 52.011 12.604 16.042 14.552 

 

The kinetic parameters for kerogen decomposition were taken from Tiwari and Deo 

[148]. The distributions of activation energy and preexponential factor as decomposition reaction 

progresses were used for the first step. The kinetic expressions for secondary reactions were 

fixed, E =200 kJ/mol and A = 1E10 S-1. The heat of the reaction was assigned a value of 370 

kJ/kg [154].  All the species concentrations were converted to mass units and the equations were 

solved keeping the overall mass conserved.  

The model was simulated first for a single particle, TGA analysis of a fine powder. The 

convection terms from heat and mass equations were omitted. To understand the effect of the 

scale (large size) the model was modified by including flow. Convective heat transfer as well as 

convective flow of the products was introduced in the governing equations using Darcy’s law 

and the continuity equation assuming fluid follows the ideal gas law. Continuity equations 

coupled with the Darcy flow generates the velocity data. Ideal gas law was used to account for 

the change in pressure because of density (ρ) variation. Velocity field (u) is determined by the 

pressure gradient (∇p), the fluid viscosity (µ), and the structure of the porous medium 

permeability (Kp). 
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An empirical formula for the porosity generated due to kerogen conversion was used 

[155]. The relationship of porosity and permeability was established using standard Kozney-

Carman equation by assuming the average pore diameter of 50×10-6 meter.  

• Porosity of oil shale as a function of conversion 

ε = 0.003+(0.0146+0.0129× (Grade_OS×xK)-0.000046 × (Grade_OS ×xK)2) 

 

• Permeability of oil shale  

  Kp = Dp
2 × ε 3/(150 × (1- ε)2) 

The model was calculated with the physical and chemical conditions mentioned above.  

The initial and boundary conditions were assigned according to the geometry and simulation 

conditions. For temperature, the initial condition was room temperature and boundary conditions 

were the pyrolysis temperatures (isothermal and nonisothermal). The boundary was set at 

atmospheric pressure. The mesh size in the geometry was generated and optimized for each 

simulation to achieve fast and reliable results. 

Following assumptions were applied to develop the model  

• It is assumed that the material was a 30 gal/ton grade oil shale contains 18% organic 

matter that was uniformly distributed. The physical properties expressions (ρos, Cp , K) 

were reported for this grade in the literature. 
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• The material was heated in the radial direction and it was assumed that the system is 

symmetrical with respect to z and theta direction. 

• Mass transfer through diffusion was not considered. A very small value 10-50 [m2/s] was 

used for all the species 

• Mass transfer equation was solved for each species involved in the reaction network. 

Kerogen, char and coke were considered as the solid phase, while the oils and gases were 

the fluid phase. 

• Single phase fluid behavior was applied assuming propane as a model fluid to compute 

the flux of each species. Model built follows the ideal gas law. 

10.3. Model Results and Observations 

The model developed was simulated with several conditions. A single particle model was 

examined for all three mechanisms to understand the kinetics and product distribution. This 

simulation scheme did not include the convective terms and it used the intrinsic kinetics 

parameters like in the TGA experiments and in a closed system. Figure 10-3 shows the kerogen 

decomposition and product formation for a single step mechanism for isothermal (400°C) and 

nonisothermal (10°C/min) boundary conditions. The two step and multistep mechanisms were 

simulated for the identical conditions and the results are shown in Figure 10-4 and Figure 10-5, 

respectively.  

It can be observed from the results of single particle simulation that the kinetics used for 

the kerogen decomposition is able to simulate the process effectively. The kerogen 

decomposition followed the similar trend as TGA analysis. The products formed are in 

accordance with the mechanisms and associated mass stoichiometry. The results also suggest the 

effects of the secondary reactions on the final products.  To achieve the  



 

Figure 10- 3: Kerogen decomposition (single particle) and product formation profiles using 
single step mechanism under (a) isothermal (400°C) and (b) nonisothermal (10°C/min). 

 

 
 
Figure 10- 4: Kerogen decomsposition (single particle) and product formation profiles using two 
step mechanism under (a) isothermal (400°C) and (b) nonisothermal (10°C/min). 
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Figure 10- 5: Single particle (TGA scheme in batch mode) of kerogen decomposes to different 
products using multiple step reactions mechanism under (a) isothermal (400°C) and (b) 
nonisothermal (10°C/min) pyrolysis. The small window shows the material profiles at long time 
scale (a log scale).  

 

maximum yield of the desired products, the material needs to be in a pyrolysis environment for a 

certain time and temperature. Increasing the temperature and heating rate reduced the optimal 

time. However, it is clear from the results that if the products are heated for a longer time 

(isothermal) or to higher temperatures (nonisothermal) the final result will be coke and gases. 

Thus, it is important to sweep the products out.  

The reaction mechanism is an important factor to control the product distribution. The 

multistep mechanisms showed that products are dominated by light oil fractions if the process is 

shutdown when kerogen decomposition is about 90% at 400°C (isothermal) and 10°C/min 

(nonisothermal) cases.  This value was observed to decrease with an increase in temperature and 

heating rate for the maximum production of light oil. These are results of the secondary 
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reactions. The two step mechanism which describes oil degradation as secondary reaction shows 

that maximum oil yield occurs at 80% and 95% kerogen conversion at 400°C isothermal and 

10°C/min nonisothermal conditions respectively. 

The next logical step in understanding the product formation rates and distributions was 

simulating the process with open boundary conditions with a large sample size. The fluid 

products generated were allowed to travel within the sample by the pressure gradient generated 

due to gas and methane formation. Core geometry of 10 cm radius was selected. The material 

was heated in two different configurations which were surface heating and heating from the 

center of the core. The schematic of the geometries for this simulation scheme is shown in Figure 

10-6.  In case of heat source at the center of the core a boundary with a radius of 1cm was 

created inside to act as a heater.  There is a temperature distribution across the material in heating 

schemes. Temperature distribution  

 

 

Figure 10- 6: Schematic of the application of the heat to the source material via surface heating 
and center heating. 



controls the kinetics, and hence the product distribution. The temperature distribution across the 

sample due to heat conduction and resulting rates of heavy oil formation in different sections in 

case of isothermal (400°C) surface heating are shown in Figure 10-7. The formation and 

degradation of products occur in a manner similar to single particle simulations. The temperature 

at the surface is higher thus the formation and degradation of heavy oil occur earlier. And, if the 

desired products (oils) are not collected at specific time/temperature they participate in the 

secondary reaction network resulting in formation of more coke and gases. 

Further, other physical processes such as convective heat, convective mass transport, and 

creation of porous media to flow were included in the model. The simulations were carried out 

when the pressure generated due to the product formation regulated the flow behavior of the 

fluid products. 

 

Figure 10- 7: Isothermal (400°C) surface heating, (a) distribution of temperature and (b) rate of 
heavy oil formation in different sections of the core.  
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A single phase flow by using propane as a model fluid, for gas and methane fractions 

with Darcy’s law was incorporated in the model. The convection terms in heat and mass 

equations were included. All fluid products were assumed to follow the velocity of model fluid.  

The comparison of the rates of product formation at the surface with convection and no 

convection under nonisothermal heat input at the surface (10°C/min) is shown in Figure 10-8. 

The rates of fluid products are comparatively higher with convection. This indicates that the 

convective source in heat and mass transport equations influences the product rates.  

When the material is heated from surface, the products form faster at the outer zone and 

are released. Temperature propagates from the outer surface to inner zone. The product 

formation creates a porous network. The products at the inner zone form and are transported 

from a cold to a hot zone. The high temperature in this path favors the secondary reactions, but 

fluid spends less time due to high porosity. In the case of central 

 

Figure 10- 8: Effect of convection on product formation rates. 
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heating, the products hit the low temperature and less permeable zone. These conditions restrict 

the flow and products spend more time within the sample.  The condensation reactions due to 

local thermodynamic conditions may occur. The thermodynamic behavior of the fluid products is 

not taken into consideration in this model. In both the cases, kinetic conversion experienced a 

combined isothermal and nonisothermal temperature history.  Figure 10-9 shows the average 

total flux (kg/m2.s) of the fluid products from the surface of 10cm radius core samples in the 

surface heating and center heating schemes under isothermal (400°C) heat supply to the material.  

The comparison of these two plots shows that due to different time/temperate history the material 

is exposed, average outward fluxes of the products from the surface varies significantly in the 

distribution. In case of the center heating products come out with a time delay and lighter oil is 

produced. 

 

 
 
Figure 10- 9: Average total flux of the fluid products from the surface of the core during (a) 
surface heating and (b) center heating schemes.  

Surface Heating-Isothermal –[400C] Center Heating-Isothermal- [400C]

0.006

0.018

0.012

0.024

0

T
o
ta

l 
F

lu
x
, 
k
g
/(

m
2
s)

Time (min)
10-1 100 101 102 103 104

0.0015

0.0055

0.0035

0.0075

0

Time (min)
100 101 102 103 104

a b 



10.4. Summary of the Model Results 

The model is able to capture the effect of operation conditions and influence of secondary 

reactions on the distribution of products. The secondary reactions of coking and cracking in the 

product phase were addressed and their formation kinetics were included. The product 

distribution is constrained by elemental and product mass balances. The model is capable of 

predicting compositional information for generated and collected products at different scales. 

The simulation was designed to understand the effects of the temperature and heating rate on 

product distribution when additional physics involved in the process are applied. Surface and 

center heating schemes replicate two different boundary conditions of the core. The heat transfer 

through a large block experienced both isothermal and nonisothermal behavior simultaneously. 

The heat distribution regulates the kerogen conversion to product and formation rates. The 

secondary reactions in the process control the final product distribution. Each physical and 

chemical process included in this study influences the results. Additional processes which are not 

considered in this model may alter the product distribution such as thermodynamics of the phase 

equilibria, multiphase flow behavior, contributions of mineral reactions to the reaction network 

and the gas pressure generation, etc. The measurement study of the fracture and expansion 

during the pyrolysis at various temperature and compressive loads was reported [156-158]. 

These physical processes may also be important in developing a model. The model needs 

validation against experimental data. 
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Abstract 
 Three-dimensional (3D) structural models of the Green River kerogen based on 
the two-dimensional (2D) structure proposed by Siskin were generated using a 
combination of ab initio and molecular mechanics calculations.  Several initial monomer 
conformations were generated using the simulated annealing procedure, followed by 
minimization via quantum mechanical calculations.  13C solid state nuclear magnetic 
resonance (SSNMR) spectra and pair distribution function (PDF) plots were calculated 
based on these 3D models and compared to experimental results obtained on a Green 
River kerogen sample.  The results show reasonable good agreement between calculated 
and experimental results. 
 



Introduction 
 Kerogen is defined as the insoluble organic component of the organic matter in 
sedimentary rocks.  This organic matter is usually mixed with minerals during its 
deposition which contributes to the difficulty in its physical isolation.  Kerogen is not 
soluble in normal organic solvents because of the large molecular weight up to several 
thousand Daltons.1−4  Kerogen is found in rocks such as shale, as oil shale deposits and 
upon heating in the Earth’s crust, some types release hydrocarbons in the form of crude 
oil or natural gas.    

As kerogen is a mixture of organic material, its chemical composition varies from 
one sample to another.  According to the van Krevelen diagram, kerogens can be 
classified based on the ratios of H/C and O/C.5  Type I kerogens have H/C ratio greater 
than 1.25 and O/C ratio less than 0.15.  This class is derived primarily from cyanobacteria 
or various Chlorophyta and dinoflagellates.  Type II kerogens, derived from marine 
planktonic organisms, have H/C ratio less than 1.25 and O/C ratio of 0.03 to 0.18.  Type 
II kerogens can be enriched in organic sulfur; in this case they are further classified as 
belonging to Type IIS kerogens.  Type III kerogens are derived primarily from higher 
plant remains in coals and coaly shales; they possess a low hydrogen count (H/C < 1, O/C 
≡ 0.03−0.3) because of the extensive ring and aromatic character in these systems.  
Finally, type IV kerogens are comprised of mostly polycyclic aromatic hydrocarbons 
with H/C ratio less than 0.5. They contain mostly decomposed organic matter and have 
no potential to produce hydrocarbons. 
 Source rocks in the Green River formation, one of the most extensive oil shale 
reserves in the world, contains hydrogen-rich algal kerogen (type I) with up to ∼20 wt% 
organic matter in the form of amorphous kerogen solid integrated in a silicate- and 
carbonate-based mineral matrix.6,7  In the past few years, investigators have employed 
different methods to separate organic kerogen from inorganic minerals in oil shales and 
to recover the unaltered kerogen for characterization studies.8−10  Although considerable 
progress has been achieved from these studies, the complete isolation of kerogen from oil 
shales remain difficult.   
 In the case of these petroleum precursors, i.e., both the source rocks and the 
kerogens, little information is presently available to describe their physical behavior.11  
Only a few relevant studies have been published which utilize both chemical and 
instrumental analysis to reconstruct a stochastic two-dimensional model of kerogens.12-16  
The work of Durand and co-workers dealt with type I and type II kerogens.12  More 
recently, two-dimensional (2D) models of kerogen have been proposed by Siskin13 for 
type I Green River Oil Shale (GROS) and Lille14 for kukersite (a type II/I kerogen).  A 
much larger (more than 104 core structures with approximately 106 atoms), more general 
2D kerogen model16 has also been developed using the data from various solid state 
analyses to construct the cores; this model has been used to predict oil and gas 
compositional yields. 
 A potential solution to aid in the isolation of kerogen is the analysis of its three 
dimensional (3D) molecular structure using molecular modeling and simulation. 
Atomistic modeling is routinely used in many industries (pharmaceutical, polymers, 
coatings, explosives, membrane proteins, etc.) to gain insight to material properties and 
behavior.  Faulon15 reported some preliminary data on 3D structures of kerogen but there 
has been a lack of modeling work that utilizes the molecular modeling tools that are 



available today.  Hence, little is known about the 3D characteristics of any of the kerogen 
models.  The 3D characteristics of kerogen will not only define the manner in which the 
kerogen folds and interacts with both the extractable bitumen and the mineral matter, but 
the structural information will provide a new view of the structure and which portions of 
the structure are exposed on the surface, which portions are accessible through channels, 
and/or which portions may be isolated in the interior of the structure.   An understanding 
of where the various functional groups are located may serve as useful guides for 
developing novel processing schemes for resource recovery.  In addition, the surface 
exposure of polar functional groups will provide new information on the interaction of 
the kerogen structure with the inorganic matrix that appears to bind tightly to the mineral 
matter.17-20 

 In this work, the 3D structure of the Green River Siskin model13 was obtained 
using a combination of ab initio and molecular mechanics calculations.  The 3D structure 
was then used to calculate the 13C chemical shifts, from which a simulated 13C spectrum 
can be generated, as well as to simulate the expected atomic pairwise distribution 
function (PDF) plot.  A PDF plot is gives the probability of finding an atom at a given 
radial distance from another atom; the peaks observed correspond directly to interatomic 
distances within the sample and is suitable for this study as it provides local structural 
information independent of long-range order.21,22    13C solid state NMR (SSNMR) is also 
a powerful tool to obtain structural information on insoluble samples such as kerogens.  
Using the methodology developed by Grant and Pugmire23 and used extensively on fossil 
fuel samples, SSNMR 13C spectra can be analyzed to provide detailed structural data such 
as the average aromatic cluster size and the average number of substituents on the 
clusters.23   

The 13C SSNMR spectrum and PDF plot simulated using our model are compared 
with their experimental counterparts on the kerogen extracted from a segment of a Green 
River basin shale core.24  The comparison of the simulated and experimental properties 
allows for an evaluation of the quality of the 3D model as well as the underlying 2D one.  
The existence of a 3D model that has been validated against experimental data will allow 
for further study on the interaction between the kerogen and the mineral matrix as well as 
the further processing of the kerogen in oil production process.  

 
Computational and Experimental Details 

Generation of 3D Model:  A 3D structure corresponding to the 2D Siskin’s 
kerogen model13 (chemical formula of C645H1017N19O17S4; molecular weight of 9438.35 
dalton) was built using HyperChem.25  A preliminary chemical structure was obtained via 
the molecular mechanics energy minimization routine in HyperChem using the MM+26 
force field.  This minimized structure was further optimized using the ab initio software 
package GAMESS27 at the restricted Hartree-Fock (RHF) level of theory using the  
minimal STO-3G28 basis set.  

After a minimum energy structure was identified by the above procedure, this 
structure was used to initiate a series of molecular mechanics calculations, which using 
simulated annealing29 generate several monomer conformations.  This procedure involves 
three steps: heat, run, and cool.  The first step was completed using simulation period of 
heat time (0.1 ps) and a starting temperature of 10 K to set initial velocities with rescaling 
of velocities at temperature increments of 119 K per 0.01 ps to reach the simulation 



temperature of 1200 K.  In the second step, the velocities are rescaled at a constant 
temperature of 1200 K for a run time of 0.5 ps.  The final step was the simulation period 
of cool time (1 ps), with rescaling of velocities at temperature increments of 9 K per 0.01 
ps to reach the final temperature of 300 K.  The process was repeated until four monomer 
conformations were obtained from the parent. 

Each of these generated conformers was then locally optimized using GAMESS 
at the RHF/STO-3G level of theory in the same manner as the original 3D structure.  The 
energies of these structures were compared and the structure with the overall minimum 
energy was then chosen as the “parent” for the next simulated annealing cycle.  The 
lowest energy conformation obtained in the second annealing cycle was used in the 
simulation of the PDF and NMR spectra.  Molecular images were generated using 
Mercury.30  

Calculation of 13C Chemical Shielding:  The NMR calculations were done using 
the density functional theory approach with  the PBE1PBE31 exchange correlation 
functional and using the 4-31G basis set32 as implemented in Gaussian09 suite of 
programs33.  The calculated chemical shielding values were converted to chemical shifts 
on the tetramethylsilane (TMS) scale using the shielding calculation of methane at the 
same level of theory, 200.5 ppm, adjusted by -7 ppm which is the chemical shift of dilute 
methane on TMS scale.34  Gaussian broadening of 2 ppm along with Lorentzian 
broadening of 1 ppm was applied on the aliphatic region, with 5 ppm Gaussian 
broadening used in the aromatic region to obtain the simulated SSNMR spectrum.   

Calculation of Atomic PDF:  The PDF plots were calculated using DISCUS and 
plotted using KUPLOT, both part of the DIFFUSE35 suite of packages.  Atomic 
coordinates of the model were used to calculate a PDF using the following equation     
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where r is the radius, δ is the Dirac delta function, ρo is the average number density of the 
kerogen , ƒ(0) ν and  ƒ(0) µ are the x-ray atomic form factors for atoms ν and µ while 
<ƒ(0) >2 is the square of the average x-ray atomic form factors.  The sum goes over all 
pairs of atoms ν and µ within the model separated by rνµ.  The subtraction of 4πrρo from 
the G(r) in the above equation leads to the function being equal to zero at large radial 
distances.  While this equation applies for infinite materials with homogenous density 
confined within well-defined boundaries, kerogen models are finite with irregular shapes 
and cannot be bound in any way to avoid void space within the boundaries.  This leads to 
a lower average density for the bound model which presents a problem when calculating 
the pair distribution function using the above equation.    To correct for this effect, a 
modified term is used to describe the shape and size of the kerogen model.  The modified 
equation that allows adjustments for model shape and size, can be derived from Eq. 4 in 
the paper of Neder and Korsunskiy,36 is as follows: 
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where S is related to the model shape and R the model diameter. 
Sample Details:  As mentioned in the introduction, experimental data was obtained on a 
kerogen extracted from a segment of a Green River basin shale core.24  An elemental 



analysis of the kerogen sample used gave an approximately 5% mineral matter content 
and a dry ash free atomic composition of  C100H150N3O8S1 for the organic content.  This 
can be compared to the atomic composition of the Siskin model (C645H1017N19O17S4); the 
only large difference is that the kerogen sample used has a higher oxygen content.  
Measurement of Atomic PDF:  Measurement of the atomic pair distribution function for 
a powdered (100 mesh) demineralized Green River kerogen sample24 was made on 
instrument 11-ID-B at the Advanced Photon Source (APS), Argonne National 
Laboratory.  High-energy X-rays (60 KeV, λ=0.2128Å) were used with a Perkin Elmer 
amorphous silicon based detector38 to collect diffraction data to high values of 
momentum transfer, Q (Qmax∼18Å-1; Q=4πSinθ/λ).  The 2D diffraction images were 
processed in Fit2D37 software to perform x-ray polarization correction and radial 
integration for peak intensity.  Extraction of the experimental pair distribution function 
from these data was made with PDFgetX2.39  This software applies corrections to the 
scattering data for oblique incidence of the x-rays on the image plate, background 
subtraction, and Compton scattering to produce a structure function, S(Q).  The reduced 
pair distribution function, F(Q) [F(Q)=Q(S(Q)-1)] is Sine-Fourier transformed to yield 
the atomic pair distribution function, G(r):  
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where the transform is truncated at Qmax=18 Å-1 due to experimental limitations.  The 
resulting experimental G(r) function yields information on the average bond distances in 
the kerogen material and can be compared to calculated PDF of kerogen models.  
Previously, this approach was shown to provide a reasonable comparison and validation 
of a coal model.40 

Measurement of 13C solid state NMR:  The 13C spectrum of the same Green 
River kerogen sample used in the PDF measurement was obtained on a Varian Direct 
Drive (Oversampled) NMR spectrometer operating at a carbon frequency of 25.152 MHz 
and a proton frequency of 100.02 MHz.  The probe was a Chemagnetics 7.5 mm with a 
ceramic housing for reduced carbon background.  The spinning speed was set at 4100 Hz. 
The pulse delay was 1 s, which is significantly longer than five times the T1 for the 
protons.  The data was collected using the cross-polarization (CP) method and TPPM41 
decoupling.  The contact time was 3 ms which was also more than five times the longest 
TCH of the aromatic region, as determined from a variable contact time fit42 of the data.  
Within the signal to noise ratio differences, the CP spectrum was essentially identical to a 
single pulse (SP) spectrum.  No line broadening was used in this CP spectrum and a total 
of 146,200 scans were taken.   
 
Results and Discussion 
 3D Modeling:  Our work began with the assumption that the Siskin 2D model of 
the Green River oil shale kerogen was the most complete and reliable structural model 
that is presently available (Figure 1).  This structure was incorporated into the molecular 
modeling scheme using the general procedure described above.   The initial starting point 
was the 3D structure designated as S1 in Figure 2; this represents the starting point for the 
folded structure which was used to begin the search for lower local energy minima 
structures.  The RHF single point energy of this local structure is −28569.2846 Hartree (1 
Hartree = 627.509 kcal/mol). 



 Following the annealing/optimization process described above using the S1 
structure, four additional low energy structures, shown in Figure 3, were identified: S2 
(ERHF = −28569.7319 Hartree), S3 (ERHF = −28569.6691 Hartree), S4 (ERHF = 
−28570.3721 Hartree), and S5 (ERHF = −28569.9504 Hartree).  The lowest energy of 
these initial five structures, S4, was then used as the parent for another 
annealing/optimization cycle, generating structures S4-1 through S4-5. These structures 
are shown in Figure 4. These ten structures were all optimized at the RHF level to relax 
the geometries obtained from the MM+ calculations.  It should be noted that due to the 
size of these systems, it is not feasible to obtain a completely optimized structure.  The 
initial and final RHF energies are listed in Table 1. This shows that the structures 
obtained from MM+ are, on the average, 1 Hartree higher than those calculated from 
RHF.  The lowest energy structure after the optimization is S4-5 (ERHF = -28571.4952 
Hartree).  This S4-5 structure was the one used to obtain the simulations of 13C NMR and 
PDF measurements, used to validate the model.  

NMR:  In order to explore the sensitivity of the simulated 13C NMR spectrum to 
the structure of the model, calculations of the chemical shielding were completed on 
structures S4-1 through S4-5 and these calculations were used to simulate the spectra 
shown in Figure 5.  As can be seen in this figure, the spectra obtained by from any of 
these models are very similar, with only slight differences in the aliphatic chemical shift 
region.  This is not unexpected, as nearly all the structural changes in the models are 
occurring in the flexible aliphatic chains while the aromatic structures are very rigid and 
fixed.    
 A comparison between the spectrum simulated for model S4-5 and an 
experimental 13C SSNMR spectrum of a Green River kerogen is shown in Figure 6.  The 
agreement between the simulation and the experimental spectrum is quite good in terms 
of the agreement of the line shape for both the aliphatic and aromatic regions as well as in 
the relative intensities of the two regions.  The agreement of the relative intensities is a 
reflection that the model accurately reflects the experimentally observed ratio between 
aromatic and aliphatic carbons (28% aromatic/olefinic/carbonyl for the model and 24% 
from the experimental NMR).  The similarity in the lineshapes, is an indication that the 
distribution of carbon types in also being accurately reproduced in the model.   For 
instance, both the experimental and the simulated spectra show the same tail to higher 
chemical shifts, due to the presence of the carbonyl carbons. 

PDF:  A similar analysis was completed with the atomic pairwise distribution 
functions in order to obtain a second independent validation of the model.  The PDF 
simulated based on the S4-5 monomer model is shown in Figure 7, along with the 
decomposition to the pairings between different atom types.  The plot shows that the 
atom-atom correlations are consistent with the separations expected based on typical 
carbon bond lengths and angles: C−H (1.12 Å), C−C (1.52 Å), ∠ C−C−H (2.18 Å), ∠ 
C−C−C (2.56 Å), and dihedral C−C−C−C (3.90 Å).  The features above 3 Å are a 
function of the 3D structure and should show sensitivity to changes in the model.  A 
comparison of the PDFs of the structures S4-1 to S4-5 is shown in Figure 8.  The plots do 
not show any significant deviation from each other which indicates that in general the 
average of various geometrical parameters such as bond lengths, bond angles, and 
torsional angles are the same for all structures.  



To gauge the sensitivity of the PDF analysis to the structural model a 
stoichiometric equivalent 2D model of the kerogen Siskin model but using only aliphatic 
groups was built and its PDF was generated.  As shown in Figure 8, the PDF of the 
aliphatic model is clearly different from the PDF obtained from the other models in the 
region above 3 Å.  Hence, the PDF approach provides unique plots for different chemical 
structures and can be used for our analysis. 
 The ultimate test, of course, is how well the PDF of the models correlate with the 
experimental PDF.  A preliminary comparison of the model and experimental PDFs 
suggested that both have the same features in the short range region (r < 3 Å) but deviates 
heavily at longer distances.  There are two possible reasons for this discrepancy: (1) the 
model is considerably smaller than the experimental structure and (2) a correction term as 
discussed in the experimental section which accounts for the shape and size of the model 
is necessary for comparison with experiment.   

To explore the effect of the size of the model, a much larger model was built  by 
confining twelve of the unoptimized Siskin model structures (S1) in a bounding box just 
large enough to accommodate the model.  This last point is crucial as the correction term 
mentioned in point two above, assume a totally filled rectangular box with no void 
spaces.   
 The PDF of the 12-unit kerogen model and the experimental PDF for the Green 
River kerogen are shown in Figure 10.  The PDF of the model is corrected accordingly 
for size and shape.  The first peak in the PDFs corresponds to C-H distances whereas the 
second corresponds to the C-C distance between directly bonded carbons. This distance is 
approximately 1.5 Å for aliphatic carbons and 1.4 Å for aromatic ones.  The second peak 
at approximately at 2.5 Å corresponds to the geminal distance between carbons two 
bonds apart.  This distance is approximately 2.4 Å and 2.6 Å for aromatic and aliphatic 
carbons, respectively.  The peak at approximately 3 Å corresponds to the distance 
between carbons separated by four bonds in a cis configuration and the one at 
approximately 3.8 Å to carbons in a trans configuration.  For these peaks good agreement 
in terms of peak position and intensity is observed.  ANYTHING ELSE HERE? 
  
Conclusion 
 Several 3D models based on Siskin’s 2D model for a Green River kerogen were 
constructed by the geometry optimization of different conformations provided by 
simulated annealing techniques.  These models were used to obtain simulated PDF plots 
and 13C NMR spectra which were compared with experimental data obtained on a Green 
River kerogen sample.  This process allowed for the exploration of both the sensitivity of 
these experimental methods to the 3D structure as well as for the validation of the use of 
the models for subsequent modeling work. 
 Using different single unit models, simulations of the expected 13C NMR 
spectrum were completed.  These simulated spectra are all similar, but do show 
differences in the line shape in the aliphatic region.  The comparison between the 
experimental and simulated spectra is quite good, in terms of the lineshapes of both the 
aromatic and aliphatic region as well as in the relative signal intensity between the two 
peaks. 

The initial models consisting of a single kerogen unit were not sufficient to mimic 
the bulk kerogen as can be seen in their respective PDF plots.  A larger 12-unit model 



was therefore constructed in a manner which minimized the amount of “dead” spaces 
around the corners of our confining box, as the calculation of the PDF is based on a 
rectangular box with no void spaces around the molecule. Overall there is good 
agreement between the model and experimental PDF plots especially at shorter distances, 
however less accurate for distances between 4 Å and 6 Å.  For distances above 6 Å the 
PDF provides very poor resolution and while there is overall agreement between the 
model and experimental one, this does not provide any apparent structural information.   
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Table 1: RHF/STO-3G initial and final energies (in Hartree) of the different monomer 
kerogen models.  The S2 to S5 structures were obtained from the simulated annealing 
procedure on S1.  Structures S4-1 through S4-5 were derived from the lowest energy 
conformer (S4) from the first annealing step. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Energy (Hartree) 
 Initial Structure Final Structure 

S1 −28569.2846 -28570.5355 
S2 −28569.7319 -28570.5929 
S3 −28569.6691 -28570.4581 
S4 −28570.3721 -28571.1721 
S5 −28569.9504 -28570.4481 

S4-1 −28569.8771 -28571.4328 
S4-2 −28569.8316 -28571.3913 
S4-3 −28569.9410 -28571.4887 
S4-4 −28569.8622 -28571.4575 
S4-5 −28569.9061 -28571.4952 



 
 
 
 

 
Fig. 1: The 2D Siskin model of Green River kerogen, taken from ref 13. 
 

Chemical Formula: C20H42 
Exact Mass: 282.33 

20 Aliphatic C 
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Molecular Weight: 616.96 
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Molecular Weight: 5323.46 
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Chemical Formula: C102H167NOS2 
Molecular Weight: 1487.55 

Elemental Analysis: C, 82.36; H, 11.32; N, 0.94; O, 
1.08; S, 4.31 

20 Aromatic C; 2 Olefinic C; 1 Aliphatic N 

Type I Kerogen (Green River) 
Chemical Formula: C645H1017N19O17S4 

Molecular Weight: 9438.35 
Elemental Analysis: C, 82.08; H, 10.86; N, 2.82; O, 2.88; S, 1.36 



 
 
 

 
 
Fig. 2: Initial 3D model (S1) of the Green River kerogen Siskin model (1702 atoms). The 
atom colors are as follows: C - gray, O - red, N - blue, S - yellow, H - white. The tubes 
represent the molecule’s backbone and the spheres represent the atoms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

         
 

         
 
Fig. 3: Local structures generated by applying  the simulated annealing procedure 
described on the initial 3D kerogen model S1. The atom colors and molecule description 
are the same as in Fig. 2.  
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Fig. 4: Local structures generated by subjection kerogen structure S4 to the simulated 
annealing procedure. The atom colors and molecule description are the same as in Fig. 2. 
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Fig 5: Simulated 13C NMR spectra for models S4-1 thorough S4-5 
 
 



 
 
 
Fig 6: Comparison between simulated 13C NMR spectrum from model S4-5 and the 
experimental solid state 13C NMR spectrum obtained on a Green River oil shale kerogen. 
The RMS difference between S4-5 and experimental spectrum is 8 ppm. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7:  Pair distribution functions (PDFs) of atom-atom correlations in the kerogen 
monomer model S4-5.  The correlation is decomposed to the contributions from different 
atomic pairings.   
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Fig. 8:  PDFs of the five monomer conformations of kerogen obtained from the lowest 
energy structure S4.  A stoichiometric equivalent aliphatic structure is included to show 
that the PDF method is sensitive to varying structures. 
 
 
 
 
 



 
 
Fig. 9: Three-dimensional structures of the 12-unit kerogen models. The atom colors and 
molecule description are the same as in Fig. 2. 
 
 
 
 
 
 



   
 
 
 
Fig. 10:  Comparison of experimentally determined PDF for Green River kerogen and the 
12-unit model.  The dodecamer model was shape and size corrected using the modified 
function -4πrρotanh(S(R-r)) with S=0.05 and R=19.3 Å. 
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AMSO LLC is a 50/50 joint venture of 
Genie Energy Ltd and TOTAL  S.A.

Genie is the operating partner 
during R&D; Total is during 
commercial operations
Genie also has an oil shale venture 
in Israel (IEI)
TOTAL also has other oil shale 
ventures (e.g., with Red Leaf in 
Utah)

The lease was originally issued to 
EGL Resources in 2007

Using the USGS 2-million barrels-per-
acre estimate, this area contains ~10 
billion barrels of potential resource

AMSO is one of three RD&D Leaseholders in AMSO is one of three RD&D Leaseholders in 
ColoradoColorado’’s Piceance Basins Piceance Basin
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AMSO is initially targeting AMSO is initially targeting illiteillite--rich oil shale rich oil shale 
below the saline zone on its RD&D tractbelow the saline zone on its RD&D tract

Minimal surface footprint

Protection of aquifers

Low water usage

High energy efficiency

Low gas emissions

High-value jobs
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Our RD&D Plan aims to demonstrate Our RD&D Plan aims to demonstrate 
important aspects of our processimportant aspects of our process

Geochemical and geomechanical properties of the illitic oil shale

Hydrologic isolation of the illitic oil shale from protected waters

Adequate heat transfer using a boiling oil pool
Central to the Conduction, Convection, Reflux (CCRTM) concept
Enhancement by thermo-mechanical fragmentation

Premium oil quality
High API gravity, low metals content, low nitrogen content

Minimal water usage (<1 barrel of water per barrel of oil)

Ability to meet all applicable air emission regulations

Technology for carbon sequestration

Economic viability
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The AMSO process uses convective heat transfer via The AMSO process uses convective heat transfer via 
permeability from thermopermeability from thermo--mechanical fragmentationmechanical fragmentation

From Prats et al., JPT, 1977

Confined on all but one side
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The University of Utah (ICSE*) is developing The University of Utah (ICSE*) is developing 
models to simulate and optimize our processmodels to simulate and optimize our process

Developing rock mechanics models to estimate load-
bearing capability, thermal fracture (crack) 
characteristics, and porosity and permeability

Modeling the relative importance of conductive and 
convective heat transfer rates as a function of rubble 
characteristics

Simulating heat transfer rates in our pilot test geometry 
at various levels of approximation

Developing reservoir simulators capable of modeling the 
entire range of important chemical and physical 
processes

*ICSE = Institute for Clean and Secure Energy
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permeability are required for numerical simulationspermeability are required for numerical simulations

Oil shale changes from elastic to viscoelastic to plastic as 
temperature increases, so modeling is difficult
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ICSE is exploring the most efficient way of ICSE is exploring the most efficient way of 
incorporating these properties into modelsincorporating these properties into models

J. McLennan, 
C. Ashcroft, 
and T. Tran, 
U Utah

Hyperbolic relationships (Duncan-Chang) between stress and deformation 

Neural networking protocols to interrelate behavior to the governing 
independent variables (e.g., temperature, grade)
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ICSE is calculating the relative importance of ICSE is calculating the relative importance of 
conduction and convectionconduction and convection

Initial Computational 
Geometries

P. Smith, M. Hradisky, D. 
Coates, U Utah

Solid shale Empty volume

Crack size 0.005 m Crack size 0.010 m Crack size 0.015 m
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Solid block heating with only thermal Solid block heating with only thermal 
conductionconduction
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Convection in cracks alters the nature of the Convection in cracks alters the nature of the 
heat transferheat transfer
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Our Pilot Test uses a triangular convection loopOur Pilot Test uses a triangular convection loop
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Our production well is insulated with Our production well is insulated with silcasilca
aerogel, the best insulation knownaerogel, the best insulation known

Filling the production wellFilling the production well

Aerogel granules <1/8Aerogel granules <1/8””
Carbon black added for Carbon black added for 
blocking blocking radiativeradiative heat transferheat transfer
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We conducted a 3We conducted a 3--day heater test in January to day heater test in January to 
check out downhole equipmentcheck out downhole equipment

Heater power up to about half its design value
Limited by a leaky weld that prevented drawing a vacuum on the reflux 
heater

Discovered flaws in some other downhole equipment that 
required fixing

The test propagated a steam front at about 250 oC up the lower 
lateral of the triangular convection loop.

The heater test provided valuable information for benchmarking 
process models
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Production Well Thermal Profiles
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The heater test proved the excellent The heater test proved the excellent 
insulation value of aerogelinsulation value of aerogel
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The Pilot Test has six geophysical monitoring The Pilot Test has six geophysical monitoring 
wells, including fiber optic temperatureswells, including fiber optic temperatures

Heater WellheadHeater Wellhead

Production WellheadProduction Wellhead

Geophysical Geophysical 
monitoring wellsmonitoring wells
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ICSE has constructed a 3D model of our Pilot ICSE has constructed a 3D model of our Pilot 
Test well system for thermal simulationTest well system for thermal simulation
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Temperature data from the TM wells will be Temperature data from the TM wells will be 
used to calibrate thermal transport modelsused to calibrate thermal transport models
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Pilot Status SummaryPilot Status Summary

Replacement parts were fabricated, and the heater casing and defective 
instrumentation have been reinstalled

The heater is scheduled to arrive and be installed in late May
Start of heating is estimated for late spring
Completion of the pilot is estimated to be approximately the end of 2012 
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