Surface Fronts

Atmos 5210/6210 Synoptic–Dynamic Meteorology II Jim Steenburgh University of Utah Jim.Steenburgh@utah.edu

What Is a Front?

- An elongated zone of strong temperature gradient (>10 C/1000 km) and relatively large static stability and cyclonic vorticity (Bluestein 1986)
- Sloping zones of pronounced transition in the thermal and wind fields (Keyser 1986)
- In the broadest sense, it is a boundary between two airmasses (Bluestein 1993)
- The interface or transition zone between two airmasses of different density (Glossary of Meteorology 2000)
- I can't define front, but I know one when I see one (Steenburgh)

Surface front – A front with greatest intensity at the ground

<u>Cold front</u> – A front with cold air advancing

<u>Back-door cold front</u> – A cold front that moves westward, poleward, or westward and poleward

<u>Warm front</u> – A front with warm air advancing (or, alternatively, cold air retreating)

<u>Back-door warm front</u> – A warm front that is advancing equatorward,

westward, or equatorward and westward

<u>Stationary front</u> – A quasistationary front. May become a warm or cold front if it begins to move

<u>Occluded front</u> – A tongue of warm air that extends from the low center to the peak of the warm sector

<u>Bent-back front</u> – A front that extends into the polar airstream behind the low center and may have the character of a cold front

<u>Coastal front</u> – A shallow, mesoscale boundary separating warm marine air from cold continental air

<u>Upper-level front</u> – A zone of strong horizontal temperature gradient in the upper and middle troposphere that does not necessarily extend to the ground

<u>Split front</u> – A cold front that has been "overrun" by low-θe air aloft (i.e., Browning and Monk's upper cold front)

<u>Cold front aloft</u> – A cold front that is located aloft and ahead of a surface pressure trough

Characteristics of Surface Cold Fronts

- Frontal zone is located on cold side of wind shift
- Wind veers as one moves across front toward cold air
- Identified with triangles pointing toward the warm air
- Strip of high vorticity @ wind shift (not shown)

Source: Shapiro (1983)

- Temperature gradient most intense @ ground and weakens with height
- Frontal zone marked by strong static stability and vertical wind shear
- Front steepest near the ground

Example Cold-Front Passage

Cold Front Movement

- Speed of cold front not necessarily determined by the difference between pre and post-frontal winds normal to the front
- Speed better correlated with wind speed normal to the front in the cold air
- Numerical models generally quite good at cold-frontal speed today so don't rely on old rules of thumb!
- Situations where the front propagates (i.e., moves faster than expected from advection) exist – beware!

The Frontal Nose

- Front may slope forward at lowest levels
- Narrow plume of intense ascent (> 10 m/s) may be found at leading edge
 - Sometimes produces
 rope cloud or narrow
 cold-frontal rainband

Narrow Cold-Frontal Rainband (NCFR)

Cold-Front Example

Core and Gap Structure

Vorticity and Vertical Velocity

Core updrafts approach 5 m/s Reflectivity maxima downstream of cores

Conceptual Model

Characteristics of Warm Fronts

- Frontal zone is on cold side of warm front
- Wind veers across front as one moves toward the warm air
- Strip of high vorticity at wind shift (not shown)
- Identified with semicircles pointing toward cold air

Warm Front Example

Mesoscale Structure

- Weak wind shift across front at low levels (800 m AGL)
- Precipitation (infered from dBZ) strongest ahead (poleward) of warm front

Vertical Structure

- Sloping region of enhanced horizontal and vertical θ_e gradient
- Veering winds with height
- No distinct frontal discontinuity at surface (front best defined aloft)

Vertical Structure

- Front-relative winds show strong veering with height
- Cross-front θ_v gradient delineates frontal zone
 - Weak near surface
- Strong sloping region of front-relative crossfrontal flow
 - Warm sector air ascending underlying cold air

Vertical Structure

- Strip of high vertical vorticity with localized maxima in frontal zone
- Highest vorticity also found aloft, not at the surface

- Frontogenesis: Process of increasing the magnitude of the horizontal temperature gradient (i.e., creating a front)
- Frontolysis: Process of decreasing the magnitude of the horizontal temperature gradient (i.e., destroying a front)

Frontogenesis Mathematically

$$Fr = \frac{D}{DT} |\nabla_2 \theta|$$

$$Fr > 0 \rightarrow$$
 Frontogenesis
 $Fr < 0 \rightarrow$ Frontolysis

Consider a zonally oriented front with a meridional temperature gradient

• In this case, frontogenesis is

$$Fr = \frac{D}{DT} |\nabla_2 \theta| = \frac{\partial \theta / \partial y}{|\partial \theta / \partial y|} \left[\frac{\partial}{\partial y} \left(\frac{D\theta}{Dt} \right) - \frac{\partial \theta}{\partial y} \frac{\partial v}{\partial y} - \frac{\partial \theta}{\partial z} \frac{\partial w}{\partial y} \right]$$

Differential
diabatic
heating/cooling

 Differential heating & cooling: Horizontal gradients in heating/cooling strengthen or weaken the temperature gradient

$$Fr = \frac{D}{DT} |\nabla_2 \theta| \propto - \left[\frac{\partial}{\partial y} \left(\frac{D\theta}{Dt} \right) \right]$$

 Differential heating & cooling: Horizontal gradients in heating/cooling strengthen or weaken the temperature gradient

Frontogenesis!

 Confluence: Horizontal deformation acts to increase or decrease the horizontal temperature gradient

 Confluence: Horizontal deformation acts to increase or decrease the horizontal temperature gradient

 Tilting: Differential vertical motion strengthens or weakens the horizontal temperature gradient

$$Fr = \frac{D}{DT} |\nabla_2 \theta| = -\left[-\frac{\partial \theta}{\partial z} \frac{\partial w}{\partial y} \right]$$

 Tilting: Differential vertical motion strengthens or weakens the horizontal temperature gradient

Real World Example

Time-height section showing frontal nose, potential temperature hypergradient, and vertical motion

Surface cold front passage near Boulder (BOU)

Real World Example

- Horizontal confluence acts to strengthen front
- Tilting weakens fron (above 100 m)

Real World Example

- In total, confluence term wins and front is characterized by frontogenesis
- Gradient doesn't further strengthen, however, due to turbulent mixing

Discussion

How Does Orography Affect Fronts?

Orographic Impacts on Frontal Movement

- The mountain-induced flow advects and distorts a front (Egger and Hoinka 1992)
- Examples
 - Pre-frontal downslope (Foehn) and low-level blocking of the post-frontal wind can retard the progression of a front on the windward side of a mountain range
 - A mountain-induced anticyclone can act to rotate a front anticyclonically upwind of a mountain range
 - Terrain-channeled flow along a valley, plain, or gap can produce acceleration of a front
 - Ageostrophic flow along a mountain barrier can result in equatorward surges of cold air known as cold-air surges, coastally trapped disturbances, or cold-air damming

Examples of Frontal Deformation/Distortion

Fig. 7. Formation of a »Skagerak cyclone.«

Norwegian Cyclone Model: Skagerak Mountains retard a warm front, resulting in the formation of a warm-core seclusion and secondary cyclogenesis

Examples of Frontal Deformation/Distortion

Orographic distortion of a cold front by European topography including frontal retardation by Alps and acceleration in Rhone Gap between Alps/Pyrenees (Mistral) and east of Alps

Impact of Pre-Frontal Foehn & Blocking

- Windward retardation of cold front due to
 - Competition with prefrontal Foehn
 - Blocking of post-frontal wind, which becomes along barrier and along front
- Most dramatic with low Froude numbers (i.e., U/NH < 1)

Impact of Pre-Frontal Foehn & Blocking

- Figure 5. Cross-section along the line C-D of Fig. 1(b); 3 April 1973, 00 GMT; see also Fig. 4.
 - Decoupling of near surface and upper-level portions of front

Frontal Rotation

- Fronts rotate anticyclonically as they approach mountain barrier
 - Poleward portion
- Result of superposition of mountain anticyclone with large-scale flow
- Opposite affect equatorward portion

Appalachian Frontal Evolution

- Stable low-Froude number postfrontal flow becomes oriented along valley axis
- Cold air adveced rapidly up valley

- Terrain-parallel jet may develop in post-frontal environment
- Contributes to development of frontal surge in valley

- Front may develop gravity current like structure
 - Pronounced frontal nose
 - Low-level rear-to-front flow; prefrontal warm air ascends nose
 - Rapid increase in pressure and fall in temperature with fropa

 Gravity current stucture revealed over Strait of Juan de Fuca by dual-Doppler analysis

Cold Surges

- Surges of cold air frequently move along a mountain range with cold air to the right in the Northern Hemisphere and left in the Southern Hemisphere
- Examples
 - Southerly Buster/Cool Change (Australia)
 - Marine Surge (U.S. West Coast)
 - North American Cold Surges (east of Rockies)
 - Affect Canada, US, Central America
- Mechanism
 - Topography disrupts geostrophic balance, resulting in enhanced along-barrier flow and cold advection

Cold Surges

North American Cold Surge

Source: Colle and Mass (1995), Mass and Steenburgh (2000)

West Coast Marine Push or Surge

Discussion

What are the challenges of frontal analysis in complex terrain?

 Use altimeter setting and reduce/extrapolate pressure to the mean elevation of western U.S. surface stations

Sample 1500-m pressure analysis

• Use MesoWest: High station density

Conventional vs. MesoWest frontal analysis

Use MesoWest: High station density

Site with nocturnal inversion (frontal temperature change masked)

Site without nocturnal inversion (frontal temperature change evident)

Use MesoWest: Rich climatology

Use climatologies to understand when terrain-induced flows mask cyclonic wind shifts associated with fronts

At Kettle Butte, terrain channeling in Snake River Plain results in SW post-frontal wind

Use MesoWest: Multielevation stations

Summary

- Topography can affect the structure of a low-level cold front in several ways
 - Fronts can be retarded by pre-frontal downslope (e.g., Foehn) and blocking of the post-frontal airmass windward of the topography
 - Fronts may rotate anticyclonically (poleward portion of mountain) or cyclonically (equatorward portion of mountain) due to development of mountain anticyclone
 - Along-valley or gap winds may accelerate fronts through lowland regions
 - Low-level and upper-level portions of a front may become decoupled
- Frontal analysis in complex terrain is difficult, but can be aided over western U.S. by MesoWest
- Let's learn more by beginning this <u>lab</u> (turn in later for grade)