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Discussion
What aspects of our understanding of climate
change do we know with medium or high
confidence?

Recent Temperature Trends

Global Land and Occan Temperature Anomalics, January-December

“Warming of the climate system is unequivocal, and since the 1950s, many of the observed
changes are unprecedented over decades to millennia. The atmosphere and ocean have
warmed, the amounts of snow and ice have diminished, [and] sea level has risen.”
—IPCC (2013)

NOAA/NCEI
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Learning Objectives

* After this class you should:

— Have a basic understanding of recent global and regional
climate trends and their drivers

— Recognize the significance of climate change for
mountainous regions

— Be able to distinguish between climate variability and
change and how they affect and complicate the
interpretation of long-term trends and weather events

— Have a basic understanding of how future climate change
will affect snow over the western US and Utah

Recent Global Climate Trends

A Longer View

Anomalies relative to 1881-1980 mean
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“The mean NH temperature of the last 30 or 50 years very likely exceeded any previous 30- or
50-year mean during the past 800 years...Confidence is lower in this finding prior to 1200,
because the evidence is less reliable and there are fewer independent lines of evidence”

—IPCC (2013)

Masson-Delmotte et al. (2013, IPCC ARS)




An Even Longer View
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Source: NRC (2002), Alley (2000), https://wwiw.ncdc,noaa.gov/paleo/pubs/alley2000/alley2000.htmi

Arctic vs. Antarctica
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Arctic Sea Ice

Source: http://psc.apl.u 1 I
http://nsidc.org/arcticseaicenews/2015/09/2015_arctic-minimum/

Land Ice (Antarctica/Greenland)
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365 Gigatones = 1 mm sea level rise

Greenland Mass Balance
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“The total 2000-2008 mass...is equally split between surface processes (runoff and
precipitation) and ice dynamics. Without the moderating effects of increased snowfall and
refreezing, post-1996 Greenland ice sheet mass losses would have been 100% higher.”

Source: van den Broeke (2009, Science)

vital-signs/land-ice/

Source: Grace satellite, http://climaty

Glaciers ..
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Fig. 5.9 Cumulative specific mass balance

South Cascade Glacier, WA

Source: http://www.grid.unep.ch/glaciers/pdfs/glaciers.pdf, USGS
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Sea Level Rise
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Positive proof of global warming.

0

Greenhouse Gas Concentrations
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ngtt‘gry ‘ 1960‘ 1950 1970 1980 19‘90 2006 * CO2 more than 35% higher than pre-industrial

— Half of increase since mid 1970s
— Very likely exceeds highest natural concentrations over at least
the last several hundred thousand years

* Increases in other greenhouse gases too

Source: 2005 Cox Radio Interactive & Cox Radio, Inc. Source: Forster et al. (2007), https://w: . d/ccgg/trends/




Known Climate Forcings

Radiative forcing of climate between 1750 and 2011
Forcing agent
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Climate Model Sensitivity
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Source: http://wwuwglobalchange.gov/sites/globalchange/files/sap1-1-draft3-all.pdf

Source: Steenburgh (2014), adapted from Knutson et al. (2013)

Recent Estimates
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Source: Huber and Knutti (2012)

Key Remaining Uncertainties

* Aerosol-radiation and aerosol-cloud-radiation interactions

* Future climate forcings

— Trajectory of anthropogenic forcings like GHG concentrations,
aerosols, dust, etc.

* Sensitivity of climate to those forcings (still a wide range of possible
outcomes)

* Regional climate and impacts

 Shifts in weather and climate extremes
— Water is often the agent that delivers climate change impacts




Climate Change in
Mountainous Regions
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Discussion

What makes
of climate change and its impacts?

What are some of the possible consequences
of climate change in mountainous regions?

Significance of Mountains

“Mountains are important sources of water, energy, minerals, forest and agricultural products
and areas of recreation. They are storehouses of biological diversity, home to endangered
species and an essential part of the global ecosystem.”

— UN (1992)

Source: Beniston (2003)

Significance of Mountains

* Mountains are unique areas for detecting climate change and assessing
climate-related impacts

— Vegetation, snow, ice, and hydrology vary rapidly with elevation and over
short distances

— Mountains have high biodiversity with large ecosystem gradients (ecotones)

— Mountains are often climate and ecosystem islands compared to the
surrounding plains

Source: Beniston (2003)

Significance of Mountains

* Mountains cover about 25% of continental surfaces
— Mountains, Hills, and Plateaus cover 46%

* 26% of world’s population lives in mountains or their
foothills

* 40% of world’s population lives in watersheds
originating in mountainous regions

* Mountain-based resources indirectly provide
sustenance for over half the world’s population

Source: Meybeck et al. (2001), Beniston (2003)

Specific Areas of Concern

* Water, snow, and ice
— Amount, timing, and seasonality of precipitation and snowfall
— Depth and duration of the seasonal snowpack
— Changes in “permanent” snow and ice
— Amount, timing and seasonality of runoff
— Extreme events and hazards such as floods, landslides, avalanches, etc.

* Vegetation, forests, and biodiversity
— Vulnerability to climate-change thresholds

— Impacts to natural and human-managed ecosystems and agriculture

* Health
— Shifts in vector-borne diseases (e.g., Malaria)

* Tourism
— Skiing, hiking, etc.

Source: Beniston (2003)
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The Western US

Discussion

How do you think climate change will affect
the aforementioned areas of concern in the
‘western US?

How will changes vary regionally and with
aspect and elevation?

US Temperature Trends
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Source: http://nca2014.globalchange.gov/highlights/report-findings/our-changing-climate

Utah

Utah, Average Temperature, January-December
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Western Snowpack Trends
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Source: Pierce et al. (2008)

Western Streamflow Trends
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Timing of spring-pulse onset

“The immediate forcings for the spatially coherent parts of the year-to-year fluctuations and
longer-term trends of streamflow timing have been higher winter and spring temperatures.
Although these temperature changes are partly controlled by the [Pacific decadal oscillation
(PDO)], a separate and significant part of the variance is associated with a springtime
warming trend that spans the PDO phases.”
— Stewart et al. (2005)

Source: Stewart et al. (2005)




Weather/Climate Variability vs. Change

“Weather is mood, climate is personality”
— Marshall Shepherd

Source: http://news.uga.edu
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A Tale of Two Seasons

“Big” Year “Bad” Year

WY2015: West

Wastuwide SNOTEL Current Snow Water Equivalent (SWE) % of Normal

“This Is the New Normal”
- CA Gov. Jerry Brown

Source: NRCS

Discussion

“This drought emergency is over, but the

next drought could be around the corner.

Conservation must remain a way of life.”
- CA Gov. Jerry Brown

Source: NRCS

The Future




Future Projections
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Source: IAMC RCP Database, Steenburgh (2014, adapted from Knutti and Sedlacek 2012)

Wintertime Precipitation Change
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Source: Steenburgh (2014, adapted from Diffenbaugh and Giorgi 2012), Court Strong
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Wintertime Temperature Change
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Source: Steenburgh (2014, adapted from Diffenbaugh and Giorgi 2012), Court Strong

Discussion

What do you think this means for the future of
'snow and skiing in the west?

Snowfall Vulnerability

Vulnerability greatest @
lower elevations

Upper elevations less
vulnerable
(but not immune)

Source: Steenburgh (2014, adapted from Jones 2010)

Downscaled Projections
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Downscaled Projections
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Snowfall Projections
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Summary

* Warming of the climate system is unequivocal

* Multiple lines of evidence support the conclusion that most
(perhaps all) of the recent warming is human caused

* Future warming depends on future emissions and other human
influences and the sensitivity of the climate system

* Impacts on mountainous regions vary regionally and with elevations
and extend to people in non-mountaonous regions

* The competitive advantages of high elevation resorts will likely
increase in time due to the uneven loss of snow and snowpack with
altitude

Lute et al. (2015]
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