

Forecast Challenges in Mountainous Regions

- Extreme topography, hydrologic, meteorological, climatological, and socio-economic contrasts
- Sparse or unrepresentative observations
- Weather forecasts must be spatially detailed
- Many models poorly resolve or account for local topographic, atmospheric, land-surface, ecologic, and hydrologic processes

Questions

What weather-related hazards are strongly influenced by orography?

Weather-Related Hazards Strongly Influenced by Orography

- Floods and flash floods
- Debris flows
- Wildland and urban-interface fires
- Air quality
- Snowstorms
- Icestorms
- Avalanches
- High winds (e.g., downslope, gap)
- Severe convective storms (hail, flash floods, etc.)
- Transportation and road maintenance

Floods

- Produced by prolonged precipitation events
- Often associated with orographic precipitation enhancement
- Modulation of intensity and spatial distribution of precipitation by topography can determine the catchment basins affected
- Additional factors can include snowmelt, ecology, etc.

Flash Floods

- Rapid flooding often produced by heavy rain associated with convective storms (although there are other mechanisms)
- Mountains can play a role by influencing the formation and movement (or lack thereof) of deep convection and mesoscale convective systems

Example: Rapid City Flood 1972

238 killed 3,000 injured 1335 homes destroyed Dam failures contributed to losses

Weather-Related Debris Flows

- Heavy mountain precipitation or snowmelt leads to a water-laden mass of soil and rock flowing (sometimes violently) down a mountainside
- Initiated typically on slopes > 25 degrees
 Can move into lower angle areas
- Major concern on fire-denuded slopes

Bigger and More Frequent Fires

Large wildfire activity increased suddenly and markedly in the mid-1980s, with higher large-wildfire frequency, longer wildfire durations, and longer wildfire seasons. The greatest increases occurred in mid-elevation, Northern Rockies forests, where land-use histories have relatively little effect on fire risks and are strongly associated with increased spring and summer temperatures and an earlier spring snowmelt. - Westerling et al. (2006), Science

Ice Storms

• Mountains affect the blocking, damming, and channeling of shallow, cold airmasses, contributing to the development of thermodynamic profiles favorable for sleet or freezing rain

High Winds

- Mountains can produce local flow accelerations and damaging winds
- Examples include gap winds and downslope winds
- In addition to concerns for structures, terraininduced turbulence and rotors are a major hazard for aircraft

Severe Convective Storms

- Yes, these occur in the mountains too
- In addition, the severe storm environment of the high plains and portions of Europe and South America are strongly influenced by regional topographic effects

Transportation and Road Maintenance

- 70% of US roads in snowy regions that receive 13 cm or more of
- snow a year
 24% of US weather-related vehicle crashes occur on snowy, slushy, or icy pavement
- 15% occur during snowfall or sleet
- 1,300 fatalites/yr on snowy, slushy, or icy pavement
 116,800 injuries per year on snowy, slushy, or icy pavement
- Winter road maintenance accounts for 20% of state DOT
- maintenance budgets
 State and local agencies spend more than \$2.3 billion on snow and ice control
- Not all mountain weather related, but illustrates importance of winter weather

Mountain Weather Economics

- Outdoor recreation generates
 - In the US
 - \$646 billion in consumer spending
 - 6.1 million direct jobs
 - In the western US including Alaska and Hawaii
 - 197.5 billion in consumer spending
 - 1.8 million direct jobs
 - \$61.1 billion in salaries and wages

Questions

Why do we care about climate change in the mountains?

What do you think some of the impacts of climate change will be in mountainous regions?

Importance of Mountains

- 40% of the global population lives in watersheds originating from mountains
- Mountains are often ecological islands with unique species and strong ecosystem gradients
- Mountains are popular areas for ecotourism

Potential Impacts of Climate Change in Mountainous Regions

- <u>Hydrology</u>: Shifts in distribution, seasonality, amount, and type (e.g., rain or snow) of precipitation and runoff
- <u>Ecology</u>: Shifts and losses of vegetation, forests, and biodiversity
- Human Health: Shifts in vector-borne diseases
- Tourism: Beneficial and adverse effects

Hydrologic Consequences

- More precipitation falling as rain instead of snow in areas near the melting point during winter
- More snowfall in some colder, high altitude and high latitude areas with first few degrees of warming

 Eventually nearly all altitudes lose
- Substantial losses of most mountain glaciers
- Runoff changes that requiring mitigation and adaption (easier for advanced than developing countries)

Projections for Tschierva Glacier, Switzerland

Courtesy: Max Maisch, Univ

Ecosystem Consequences

Multifaceted

- Likely loss of coldest climate/ecosystem zones at mountain peaks
- Migration of some species higher
- Loss of some species due to adverse climatic change and invasive species
- E.g., trout can only go so high - Survival of some species in existing habitat areas due to
- Survival of some species in existing habitat areas due to lower climate-change sensitivity
- In some instances, ecosystem disturbance is or will have a stronger influence than climate change

Tourism

- <u>Direct impacts</u>: Changes in the climatic conditions necessary for recreation activities
- <u>Indirect impacts</u>: Changes to mountain landscapes and socio-economic shifts in demand for activities and destinations
- These vary geographically and by sector
- May be adverse (loss of snow for skiing) and beneficial (e.g., longer hiking season)

Winter Sports in Northeast US

- Under A1Fi scenario (fossil-fuel intensive) by 2070–2099
 - Reliable snowmobile seasons (>50 days) virtually eliminated
 - Only 4 of 14 geographically distributed ski areas can maintain a 100-day ski season (with much greater snowmaking requirements)
 - Consider analysis to be conservative

rce: Scott (2008, Mitig. Adapt. Strat. Glob. Change)

Summary

- Mountain weather impacts are diverse and extend away from mountainous regions
- Global warming will have important impacts on mountain climate, ecology, human health, and tourism that are mainly adverse, but in some cases beneficial
- More in the lectures to come!

References

Beniston, M., 2003: Climate change in mountain regions: A review of possible impacts. Climate Change, 59, 5–31. Bistenberger, G., and R. Fowler, 1995: Road docure to mitigate avalanche danger: A case study for Little Cottonwood Canyon. Int. J. Forecosting, 11, 1 17. doi:10.1016/J.ND.20702(4)02006.

- 174, doi:10.1016/0169-0270(94)02008-0. Dennison, P. F., S. Grewer, J. D. Arnold, and M. A. Moritz, 2014: Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett., DOI: 1010/1014/GIRGESTA.
- Fujita, T. T., 1989: The Teton-Yellowstone tornado of 21 July 1987. Man. Wea. Rev., 117, 1913–1940.

Weyers, M., and W. J. Steenburgh, 2013. Mountain weather prediction: Phenomenological challenges and forecast methodology. Mountain World Research and Forecasting: Recent Progress and Current Challenges. T. Chow, S. de Weikker, and B. Snyder, Eds., Springer, 1–34. Meybeck, M., P. Green, and C. Worozmary, 2001. A new typology for mountains and dher relief classes: An application to global continental water resources and population distribution. Mountain Research and Development, 21, 34–45.

NOAA 2014: The record front range and eastern Colorado floods of September 11–17, 2013. Available at http://www.nws.noaa.gov/om/assessments/pdfs/14colorado_floods.pdf.

Rothber, F. J., and J. R. Gyakum, 2003: Oregraphic influences on the mesoscale structure of the 1998 ke Storm. Mon. Wen. Rev., **111**, 27–50. Scott, D., Durson, and B. Jones, 2008: Climate change vulnerability of the US Northeast winter recreation-tourism sector. *Mella*, *Adapt. Strat.* Glob. *Change*, **11**, 57–56.

Steenburgh, W. J., 2014: Secrets of the Greatest Snow on Earth. Utah State University Press. 186 pp.