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Learning Objectives

» After this class you should be able to

— Recognize several ways that lakes and complex terrain affect
the morphology and intensity of lake-effect storms

— Use this recognition to better analyze and predict lake-effect

storms

— Be prepared to help us advance our understanding of lake-

effect storms in areas of complex terrain!
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Introduction
The Great Salt Lake (GSL)
The GSL-effect
— Morphology and climatology
— Environmental conditions
— Shoreline band dynamics
Orographic effects
Japan

Mechanisms of Orographic Enhancement

Introduction

What Is Lake Effect Snow?

“Lake effect snow is produced when cold winds
move across long expanses of warmer lake water,
picking up water vapor, which freezes and is
deposited on the lee shores

—Wikipedia.com (2006)

“Precipitation occurring near or downwind from the
shore of a lake resulting from the warmin
(destabilization) and moistening of relatively cold air
during passage over a warm body of water

—Glossary of Meteorology (2000)

Additional Factors

+ Lake-lake interactions & aggregate effects (Great Lakes)
* Boundary layer & thermally driven circulations
* Orography

— Mountains, hills, plateaus, and windward/leeward coastal

geometry
* Surface roughness contrasts

* |ce cover
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Lake-Effect Regions Great Lakes Climatology
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Lake Ontario and Tug Hill Great Lakes Snowfall Records
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50 * Storm: 95" @ Montague, NY (10-14 Jan 97)
” * Month: 192" @ Bennett Bridges, NY (Jan
N 1 1978)
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Frequency 10 dBZ during lake-effect periods & snowfall on lake-effect days * Winter: 466.9” @ Hooker, NY (1976-77)
‘North Redfield mean annual snowfall = 718 cm (282 inches)
u Veals and Steenburgh (2015) “ereacey |.'I' e

Event Types Event Types

* Wide-area coverage e e o e

' |- ek * Shore-parallel bands
- Z:/;Zj z:rr:e"tesl)bands (@ka. ‘ g ™ ﬁi — Type I: MidLake
N ’\‘ ::c — Flow along major lake
— Horizontal roll convection — axis

— Large lake-land
— Rolls oriented along temperature difference

boundary layer shear
— Land-breeze fronts form
one convergence zone

vector

NASA, UCAR/COMET Aeteorocey T Paul Markowski, Penn State University ctecrogey




Event Types

* Shore-parallel bands

— Type II: Shoreline bands

— Form near lee shore

— Land breeze opposes

large-scale flow

Hjelmfelt (1990)

GSL Physiography

Length: 120 km
~ Lake Ontario: 321 km
Width: 45 km
~ Lake Ontario: 85 km
Area: 2500-5900 km?
~ Lake Ontario: 19,000 km?
Ave depth: 4.5m
- Lake Ontario: 86 m
Surrounded by intense, steeply sloped mountains
~ Lake Ontario: Tug Hill (500 m above lake level)
Salinity
~ Gilbert Bay: 6-22%
~ Gunnison Bay: 27%
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The Great Salt Lake
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Spatio-Temporal Variability
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The GSL-Effect
Morphology and Climatology
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Alcott etal. (2012)

Alcott et al. (2012)

Weakly or Non Banded Event

Banded Event
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Cloud Band
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Discussion
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Alcott etal. (2012)

Seasonality
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Interannual Variability
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The GSL-Effect

Environmental Conditions
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Key Ingredients Instability

Instability
— lake—700-mb AT>16°C
— 16°C is approximately a dry adiabatic lapse rate

— Alcott et al. (2012) show important exceptions exist

* Events are moist and exclusively in Dec-Feb [JNo GSLE|

Upstream Moisture IFMAM

. . . *  93% of events occur at lake-700-mb AT=16°C
Wind Direction/Fetch

— Exceptions occur exclusively during winter months (*moist” events)

Land-Breeze Convergence — Falland spring events occur at higher thresholds
— Suggests a seasonally varying threshold (ATe,cess) is more appropriate than a
fixed threshold
— u —
Steenburgh et al. (2000), Alcott et al. (2012) eteorocey . Alcott etal. (2012) etecrocey

Moisture More on Instability/Moisture
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Fraction of soundings with GSLE as a function of (AT,yess) and 850-700-mb RH Event intensity/LEP SWE not well correlated with Ate,c.;; and moisture
Moisture matters, avoid “thermomyopia” Other processes, poorly resolved by current obs and analyses, are likely important
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Alcott et al. (2012), Steenburgh et al. (2000)

Diurnal Variability
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Discussion
‘Why is the correlation between environmental conditions and the
occurrence and intensity of lake-effect so limited?
'What does this mean for weather prediction?

v Steenburgh et al. (2000), Alcott et al. (2012) fy iy
The GSL-Effect
Shoreline Band Dynamics
g e
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7 December 1998 Event Mesoscale Evolution

* Two lake-effect snowbands merged into a

shoreline band

* Heaviest snow (up to 36 cm) concentrated in a

narrow, 10-km wide band over Tooele County

P o
“meteoroey Steenburgh and Onton (2001), Onton and Steenburgh (2001) eieerocsy

Steenburgh and Onton (2001), Onton and Steenburgh (2001) meteoroicey Steenburgh and Onton (2001), Onton and Steenburgh (2001) metecrocay

Initiation Phase
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Steenburgh and Onton (2001), Onton and Steenburgh (2001) meteoroicey Steenburgh and Onton (2001), Onton and Steenburgh (2001) metecrocay
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Mature Phase

Steenburgh and Onton (2001), Onton and Steenburgh (2001) metecrocny i Steenburgh and Onton (2001), Onton and Steenburgh (2001) “metecroey

Orographic Effects

Steenburgh and Onton (2001), Onton and Steenburgh (2001) “meteorosey ey

Potential Orographic Effects

* Precipitation enhancement

* Modification of the lake-effect system

— Initiation, intensity, morphology

* Lake-effect systems can be altered by upstream and

downstream topography

metecrolcey R Steenburgh and Onton (2001), Onton and Steenburgh (2001) Ameteorocmy
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System Modification: 27 Oct 2010 Terrain Sensitivity
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Lake Orographic
Dominated Dominated
Little sensitivity to the
presence of the GSL
'What controls the relative contribution of lake and orographic effects
on lake-effect systems?
‘Why are some events “lake dominated"?
‘Why are others influenced strongly by lake-orographic interactions?
Alcott and Steenburgh (in prep) “ereacey . |.'I' e
Hokuriku District
Treece b |.'|' Steenburgh (2014), GoogleEarth, IMA via Wikipedia fy iy

9/28/17

Microphysical Considerations

11
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Hokkaido Island
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Orographic Enhancement
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Importance of the CAP

= WARM AIR
STRONG INVERSION LAYER

= coLo, pRY

N5 % SARRIER
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HOKKAIDO PACIFIC OCEAN

SIBERIA

'Hypothesis; Height of CAP relative to mountain crest affects orographic ratio
in lake-effect storms

Magono et al. (1966) "ctecronsy

Mechanisms of Orographic
Enhancement

e
etecroey

Conventional Wisdom

Arctic air

Sl . o
Figure 9.21. Idealized cross-sectional schematic of LES development, with downstream
orographic lift. Depth of the inversion along the flow shown as a dashed red line.

Orographic lifting invigorates convection
(i.e., larger updrafts speeds and cloud depths)
Lackmann (2011)
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OWLeS Orographic Transect

North Redfield
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10P7 Thundersnow
24 lightning flashes 0630-1120 UTC
Surface Temps -10 to -19°C

Snow and Water Equivalent Obs

Collected @ Sandy Creek (lowland, 162 m MSL) and North Redfield (upland, 385 m MSL)
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Conventional Wisdom
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Figure 9.21. Idealized cr ction®schematic of

n along the flow shg

Overall enhancement: See Minder et al. 2015, http://dx.doi.org/10.1175/MWR-D-15-0117.1
OR variations: See Leah Campbell’s talk next

Summary

* Many processes influence lake-effect systems
— Upstream instability and moisture
— Lake conditions (surface temperature, sub-surface temperature, salinity, ice
cover)
— Land breezes and PBL circulations

— Orography

« Orographic influences not only include precipitation enhancement, but

also the initiation, intensity, and morphology of lake-effect systems

u Fowon

metecrocey

* Morphological controls

* Role of the CAP in modulating orographic enhancement

* Mechanisms of orographic enhancement

* Understanding (and predicting) the spectrum of lake-driven and terrain-driven
processes that influence lake-effect storms in areas of complex terrain

*  GSL: Interdecadal variability & lake size
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