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Discussion

What is lake- and sea-effect precipitation/snow?

Lake- and Sea-Effect Precipitation

Capping Inversion
e —

I ' Heat/Moisture Fluxes

Courtesy Peter Veals

Precipitation produced primarily by boundary layer convection that is generated,
enhanced, and organized by sensible and latent heat fluxes and associated boundary
layer and mesoscale circulations as cold air moves over relatively warm water
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Learning Objectives

 After this class you should be able to

— Recognize several ways that lakes and complex
terrain affect the morphology and intensity of
lake-effect storms

— Use this recognition to better analyze and predict
lake-effect storms

What Is Lake- and Sea-Effect Precip?
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“Precipitation occurring near or downwind from the

shore of a lake resulting from the warmin .
%@tablhzatlon) and moistening of relatively cold air
Uring passage over a warm body of water

— Glossary of Meteorology (2000)

Key Ingredients

Instability
— Lake—850-hPa or Lake—700-hPa AT exceeding dry adiabatic

* There are some exceptions

¢ Wind Direction/Fetch

* Moisture if fetch is small can be important
— Less important for large bodies of water

* Boundary layer or mesoscale circulations
— Former include land breezes and terrain-forced flows

Steenburgh et al. (2000), Alcott et al. (2012)




Additional Factors
* Shoreline geometry
* Land and lake breezes
* Upstream and downstream topography
* Multi-lake/sea effects

* Ice cover (where and when it happens)
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Example

Lake- and Sea-Effect Regions

Sea of Japan, Yellow Sea,
Sea of Okhotsk

Baltic Sea, North Sea,
English Channel, Norwegian Sea

Lake- and Sea-Effect Regions

Eastern Mediterranean,
Black Sea

Lake- and Sea-Effect Regions

Central Mediterranean,
Adriatic Sea
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Lake- and Sea-Effect Regions “Small” Lakes

Great Salt Lake, USA Finger kes, USA
North American

Great Lakes

Buffalo |

Image: NASA

Umek and Gohm 2016; Alcott et al. 2012; Bergmaier and Geerts 2016

Tug Hill: Storms of Great Intensity

“Snow rates during some events are the
greatest ever measured on record
from anywhere in the world” =

— Burt (2007) =
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Japan’s Gosetsu Chitai
(Heavy Snow Region)

“Some of the world’s deepest seasonal
snowpacks”- Yamaguchi et al. (2011)

“The surest climatological bet for deep
powder skiing anywhere in the world”
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Morphology

Lake- and sea-effect modes

¢ “Broad coverage”
— Open cells/non-banded

— Longitudinal-mode bands
— Transverse-mode bands

* Mesoscale bands
— Long-lake-axis parallel (LLAP)

— Japan Sea Polar Airmass Convergence Zone
— Other terrain/coastally forced

* Mesovorticies

Longitudinal Mode (Cloud Streets)

- Formed by buoyancy and shear

Cloudstreet  Cloud-free

Nearly parallel to ambient flow

Mean Surface

z
v
X ttp://www.eumetrain.org/satmanu/CMs/Clste/print.htm

Open Cells/Non-Banded

Alcott et al. 2012; Campbell et al. 2016

Horizontal Roll Convection
High directional shear environments

Parallel to shear vector

Nearly transverse to mean flow
Asai 1972; Campbell et al. 2018




% Flow along major lake axis
Large lake-land AT

Mesoscale forcing from
land breeze or breezes

Paul Markowski; Alcott et al. 2012; Campbell et al. 2016
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LLAP Band (Type 1) Event

LLAP Bands (Type )

Form near lee shore

Land breeze opposes
large-scale flow

Veals and Steenburgh 2015; Hjelmfelt 1990

Courtesy Tyler West

134°E 136°E 138°E 14

Japan Sea Polar Airmass Convergence Zone

Drivers include convergence in lee of Korean Highlands,
coastal geometry, Sea of Japan SST distribution

Mesovortex

ichig dar htrl
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Discussion

‘What controls the mode of lake- and sea-effect precipitation?

Ontano Winter Lake-effect Systems
(OWLeS)Field Campaign

University of Wyoming King Air
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Lackmann (2011)

Tug Hill: Inland/Orographic Transition
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Instead: Convective to stratiform transition with snowfall
Becoming more continuous and persistent
Minder et al. (2015)
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Mesoscale & Orographic Forcing
OWLeS IOP2b

0000/11-0000/12 UTC Dec

IOP 2 : 11-12 Dec 2013, 0000-0000 UTC

Dec 11, 0005 UTC
3 g KTYX-Derived Precipitation

Long-Lake Axis Parallel (LLAP) System

Snow: 48 cm Snow: 102 cm
LPE: 33.5 mm LPE: 62.5 mm
OR=NR/SC=1.9

Campbell et al. (2016)

Forcing Conceptual Models

Cold Land Warm Lake Cold Land

Thermally Forced Land Breeze Convergence
(Symmetric, Mid-Lake Axis)

UCAR/Comet

Forcing Conceptual Models

ST A i S S G G

divergence
e

#—%@_—%‘4‘7

—_— ey /vce
gen

conver
7 7 7

/ / p+Ap

Frictionally Forced Land Breeze Convergence
(Streamwise-Right Shore)

Markowski and Richardson (2010)

Lake Ontario Not Symmetrical Or Oval!

Lake Ontario

Impact of Shoreline Geometry
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Steenburgh and Campbell (2017)
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Impact of Shoreline Geometry

1200 UTC 11 Jan: WRF near-surface pot. temp. and pot. temp. gradient (K/10 km)
N,

Steenburgh and Campbell (2017)

Impact of Shoreline Geometry

1200 UTC 11 Jan: WRF near-surface wind, IR, reflectivity, potential temperature
v D)

~

Steenburgh and Campbell (2017)

Impact of Shoreline Geometry

Trajectories ending 1200 UTC 11 December

Cross west shore, long over-lake residence time
Cross north or south shore, short over-lake residence time
Confined to land, little or no lake modification

Steenburgh and Campbell (2017)

Getting Back to Tug Hill

1700 UTC 11 Jan: WRF theta-e (black contours), ascent (red contours), section-parallel
circulation vectors, and hydrometeor mixing ratio (shaded)

Campbell and Steenburgh (2017)

Getting Back to Tug Hill

1930 UTC 11 December
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Bergmaier et al. (2017)

UWKA Cloud Radar

1928-1935 UTC 11 December

Bergmaier et al. (2017)




Model Terrain Sensitivity
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Campbell and Steenburgh (2017)
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Tug Hill Influences

j Control No Tug
P v

0300-2200 UTC 0300-2200 UTC
Vertical Velocity Precipitation

Campbell and Steenburgh (2017)

Tug Hill Influences

@

Precip
Max

Watson and Lane (2012)

Yamayuki or Satoyuki?

Yamayuki Satoyuki
Mountain Snowfall Lowland Snowfall
= WARM AIR
STRONG INVERSION LAYER
1790~ 7379 %
= coto, oRY e SRk \\‘
L1
3
== MOUNTAIN
e AS A BARRIER 7777777 r
SIBERIA JAPAN SEA HOKKAIDO PACIFIC OCEAN

Conceptual Model of Satoyuki Snowfall
Magono et al. (1966)

Discussion

‘What controls whether a storm is Yamayuki or Satoyuki?
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Hokuriku Region

Wind d|rect|on (Moderate U)
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Veals et al. (2019, submitte

Wind Speed (290 )

Veals et al. (2019, submitted)

Tug Hill Comparison
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Wind Speed (320 )

Veals et al. (2019, submitted)

Non-Dimensional Mountain Height
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Albstadt

Memimingen
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Observed Event

(b
0800 UTC 8 Feb 2013

Umek and Gohm 2016

) Observations ®

Precip
Radar: 0640-1200 UTC 8 Feb
Gauge: 0700-1200 UTC 8 Feb

Observed Event

Simulation

Importance of blocking by topography south of Lake Constance

Umek and Gohm 2016

Divergence

Convergence
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Importance of blocking by topography south of Lake Constance
Umek and Gohm 2016
Sensitivity Studies
Control No terrain
No terrain to SE
\,v-\

Conclusion: Terrain blocking critical

Umek and Gohm 2016
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Oval Lake LLAP Band

Distance (km)

s
Reflectivity
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Distance (km)

10mst — Elapsed time: 36,000 seconds

Courtesy Tom Gowan
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Broad Lake Open Cellular
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Discussion: With same upstream sounding and terrain, why
is the orographic ratio different in these two cases?

Courtesy Tom Gowan

Summary

* Many processes influence lake-effect systems
— Upstream instability and moisture

— Lake conditions (surface temperature, sub-surface
temperature, salinity, ice cover)

— Land breezes and PBL circulations
— Orography

* Orographic influences are multifaceted and affect
the initiation, intensity, and morphology of lake-
effect systems
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