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1. Introduction

This report presents findings from research conducted during Year 5 of the project “Climate
Vulnerability Assessment of Salt Lake City’s Water System.” The Salt Lake City Department of
Public Utilities (SLCDPU) recommended an overarching goal structure for the project
responsive to an expressed need for climate readiness tools delivered by the University of Utah
(UU) team meeting the set of priority research objectives included in the Year 5 statement of
work:

Objective 1. Climate: Seasonal to multi-year precipitation guidance. (a) Conduct global climate
model experiments to understand how the Atlantic driver of precipitation interacts with El Niño.
(b) Develop a tool for seasonal to multi-year precipitation guidance.

Objective 2. Hydrology: Tool development and resolving key knowledge gaps identified during
years 1-4. (a) Develop clear tools in consultation with SLCDPU staff that translate research
findings into operations. (b) Resolve key remaining knowledge gaps underlying the statistical
model of streamflow.

Objective 3. Engineering: Supporting system operations with supply and demand management
guidance. (a) Develop a workflow to use drought severity-duration-frequency (SDF) curves for
analysis of vulnerabilities of the water system to low-flow scenarios. (b) Develop water system
management and guidance tools (demand) in collaboration with hydrology (seasonal supply)
and climate (annual supply) to enhance resilience.

Research conducted by the coordination between the UU and UA teams in achieving these
objectives led to three key scientific discoveries which inform the order and format of results
presented here, and also motivate directions for future research. We briefly summarize the
discoveries here and detail them in subsequent sections of the report:

Key Discovery 1. (Climate) Atlantic Ocean surface temperature drives multi-year precipitation
anomalies which are crucial to baseflow and water yield. The Atlantic-driven atmospheric
pattern shifts the precipitation anomalies associated with El Niño north-south, providing
potential for predictability on seasonal to three-year time scales. A 10,000 perpetual
current-climate simulation with the Geophysical Fluid Dynamics Lab (GFDL) global climate
model confirms the role of the AQM in shifting the ENSO precipitation pattern north-south.

Key Discovery 2. (Hydrology) New analyses during year 5 focused on two knowledge gaps
underlying our statistical model of streamflow. First, targeted streamflow sampling for
chemistry and isotopes, including leveraged funding for 3H sampling, identified a strong
relationship between groundwater age and runoff efficiency in SLCDPU catchments. These
observations are consistent with our recharge model that suggests groundwater storage is
strongly related to multiple years of antecedent precipitation and melt dynamics (Year 4).
Groundwater ages range from 4 to 20 years supporting our inferences that streamflow in any
one year is the product of multiple years of antecedent climate. Second, the finding that faster
melt is positively related to both spring streamflow and groundwater recharge suggests that
faster (slower) melt minimizes (increases) sublimation and evaporation losses. These changes

2



during the winter and spring are likely to decrease runoff efficiency in the future. We have
begun initial analyses to determine both the magnitude and spatial variability of these losses.

Key Discovery 3. (Engineering) Mean air temperature and cumulative precipitation during April
and May exhibit a strong correlation to total seasonal water use and water system performance
spanning April to October. Univariate frequency analysis can address the practical knowledge
gap in terms of the lack of usable multi-year streamflow deficit information for urban water
supply systems' operational planning and management.

The next three sections detail the scientific discoveries and new modeling capabilities developed
in pursuit of the three research objectives (Sections 2-4). Section 5 presents initial efforts to
synthesize these findings and modeling capabilities into a framework for supporting water
resource decision-making on seasonal and longer time scales.

2. Climate: Deeper investigation of Atlantic Driver of Groundwater
Recharge

Previously we identified two modes of coupled variability that link Atlantic sea surface
temperatures and western US precipitation. This analysis focused on the northern Atlantic Ocean
sea surface temperatures and a three-year window. To better understand the seasonal impact of
the Atlantic on wet and dry years in the study area, we expanded the domain to global sea
surface temperatures and focused on a one-year time frame.

Key discoveries:

● Study-region hydroclimate is affected by interactions between the Atlantic Quadpole
Mode (AQM) and the El Niño - Southern Oscillation (ENSO).

● The AQM shifts the precipitation anomalies associated with ENSO north-south,
providing overall wetter conditions during warm AQM and drier conditions during cold
AQM.

● A 10,000 perpetual current-climate simulation with the Geophysical Fluid Dynamics Lab
(GFDL) global climate model confirms the role of the AQM in shifting the ENSO
precipitation pattern north-south.

Key tool

● A lookup table was developed to predict winter precipitation percent anomalies
associated with different combinations of ENSO and the AQM.

2.1 Atlantic Quadpole Mode and Seasonal Precipitation
Using maximum covariance analysis (MCA), a statistical method which finds the most important
coupled modes of variability among two variables in a large data set, we identified the two most
significant modes of coupled variability between precipitation and sea surface temperatures.

In observations, the first mode of coupled variability, referred to as MCA1, is the familiar ENSO
pattern in which positive MCA1 corresponds to El Niño with elevated central tropical Pacific
SSTs (Figure 2.1a) and a dry-north / wet-south precipitation dipole over the western U.S. (Figure
2.1c). This mode accounts for 59% of the total covariation between Atlantic sea surface
temperature and western US precipitation. To illustrate the associated atmospheric pattern, we
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show 300-hPa geopotential height (Z300) in Figure 2.1b, which can be interpreted similarly to a
weather map of sea level pressure (e.g., El Niño corresponds to anomalously low Z300 which
overlies anomalously low sea level pressure in the Gulf of Alaska, and La Niña corresponds to
the reverse). The Z300 pattern shows the canonical poleward and eastward propagating
atmospheric wave associated with central tropical Pacific storminess, producing a strong trough
(low-pressure area) in the northeast Pacific responsible for the positive precipitation anomalies in
the Southwest during the ENSO warm phase. The associated time series of SST (S1) and
precipitation (P1) reflect strong interannual variability (Figure 2.1d).

Figure 2.1. Based on Maximum Covariance Analysis (MCA), the leading mode of coupled
variability (MCA1) between sea surface temperatures and western-US precipitation. The upper
left map shows how sea surface temperatures correlate with the MCA1 mode, and the lower
left map shows how precipitation correlates with the MCA1 mode. When the MCA1 sea surface
temperature index and MCA1 precipitation index (panel d) are both above average, the
anomalies of sea surface temperature and precipitation closely resemble the patterns mapped
at left. When the indices are both below average, the anomalies of sea surface temperature and
precipitation are the reverse of those shown at the lower left. The magenta boxes  in the maps
at left indicate the SST and precipitation analysis domains used in the MCA. In panel b at upper
right, shading shows how 300-hPa geopotential height correlates with MCA1 (can be
interpreted similarly to a weather map showing pressure), dashed green contours indicate
regions of enhanced tropical storminess, and solid green contours indicate regions of reduced
tropical storminess.
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The second coupled mode, MCA2, accounts for variability most strongly in the Atlantic (Figure
2.2a) and accounts for 23% of the total covariation between Atlantic sea surface temperature and
western US precipitation. Here, we refer to MCA2 as the Atlantic Quadpole Mode (AQM),
where S2 > 0 is the Warm AQM and S2< 0 is the Cold AQM (Figure 2.2d). AQM captures
precipitation variability across much of the coastal and Intermountain U.S., including where the
study region lies, in the transition zone between the wet and dry anomalies associated with
ENSO (Figure 2.2c).

Figure 2.2. Same as Figure 2.1, but for the second mode of coupled variability (MCA2) between
Atlantic sea surface temperatures and western US precipitation referred to as the Atlantic
Quadpole Mode (AQM). The indices in the lower right panel show how the AQM evolved over
time during the historical record, with positive values of the indices corresponding to the Warm
Quadpole and negative values corresponding to the Cold Quadpole. In the Warm Quadpole, the
anomalies of sea surface temperature and precipitation closely resemble the patterns mapped
at left. In the Cold Quadpole, the anomalies of sea surface temperature and precipitation are
the reverse of those mapped at left.

The cross-equatorial tropical Atlantic SST dipole associated with MCA2 flanks the region of
high precipitation associated with the Intertropical Convergence Zone (ITCZ; green contour,
Figure 2.2a). Positive S2 tends to shift storminess northwest toward Central America (i.e., in
Figure 2.2b, dashed contours over Central America and northern South America indicate
enhanced storminess flanked by solid contours indicating diminished storminess). This shift
appears to be associated with a teleconnection to the Gulf of Alaska trough (Figure 2.2b), which
is responsible for the positive precipitation anomalies over much of the western U.S. We
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conducted more than 40 global climate model (GCM) experiments, each with 30 members, to
test the causal mechanisms associated with the AQM, and results show some support for this
tropical ITCZ mechanism (Stone, 2022). However, more GCM work is needed to investigate the
mechanism further and to assess how well it is captured by seasonal forecast systems in
operational use.

2.2 Interaction between ENSO and the Atlantic Quadpole Mode

Grouping precipitation patterns by phases of ENSO and AQM shows the familiar
wet-north/dry-south pattern of La Niño years, and the familiar wet-south/dry-north pattern of El
Niño years (Figure 2.3). These ENSO patterns provide little predictability in the transition zone
between the anomalously wet and dry regions. In contrast, the AQM patterns shown in the lower
row of Figure 2.3 depart from the traditional ENSO dipole pattern and provide information in the
transition zone, with the Warm AQM corresponding to anomalously wet conditions and the Cold
AQM corresponding to anomalously dry conditions.

Figure 2.3. Observed December-March precipitation anomalies for La Niña years, El Niño years,
Cold Atlantic Quadpole Mode (AQM) years, and Warm AQM years. Values are shown as percent
anomalies.

Further separating western U.S. precipitation patterns to consider various combinations of ENSO
and the AQM (Figure 2.4) reveals some important interactions between the two modes in which
the AQM alters the alignment or strength of the seasonal precipitation impacts of ENSO. First,
we note that the precipitation anomalies traditionally associated with ENSO appear most clearly
under Neutral AQM (Figures. 2.4b,h). The Warm AQM is associated with above-average
precipitation across most of the Intermountain U.S. (Figure 2.4, right column), whereas Cold
AQM is generally anomalously dry over the western U.S. (Figure 2.4, left column).

During El Niño, Warm AQM shifts the zero precipitation anomaly transition zone north (Figure
2.4c), and Cold AQM shifts it south (Figure 2.4a). Previously ambiguous precipitation anomalies

6



in the transition zone extending west to east from northern California through northern Colorado,
become drier (wetter) during the cold (warm) AQM. Similarly, during La Niña, the warm phase
of the AQM extends the transition zone farther south (Figure 2.4i), increasing the extent of the
above-average precipitation anomaly.

Figure 2.4. Observed December-March precipitation anomalies for various combinations of the
Atlantic Quadpole Mode (AQM; columns) and El Niño-Southern Oscillation (rows). Values are
shown as percent anomalies.

To complement the observational results and provide a much larger sample size for the coupled
variability analysis, we analyzed a multi-millennial (10,000-year) present-day climate control
simulation performed with a fully-coupled configuration of the Geophysical Fluid Dynamics
Laboratory (GFDL) Climate Model (fully-coupled means the model has an atmosphere which
interacts with the land, ocean, and ice models at the surface). Greenhouse gasses, ozone
concentrations, and other external forcings were held constant at 1990 levels in this simulation to
remove the confounding effects of climate change. Having approximately 1,000 winters in each
of the ENSO-AQM combinations from the simulation yields results that are similar to but more
smooth and statistically robust than the observed patterns (Figure 2.5). In composite precipitation
anomalies for different combinations of MCA1 and MCA2 in the GFDL model (Figure 2.5), we
see the familiar ENSO north/south precipitation dipole present in the neutral phase of the AQM
(Figures 2.5b,h). During El Niño, as the AQM transitions from the Cold to Warm phase, the
region of above-average precipitation expands north (Figures 2.5a-c). During La Niña, Warm
AQM extends the above-average precipitation zone farther south, as seen moving from left to
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right in the lower row of Figure 2.5. For Neutral ENSO, Cold AQM is associated with a dry
pattern over most of the Intermountain U.S. (Figure 2.5d) and Warm AQM is associated with the
opposite (Figure 2.5f). Overall, the GFDL model precipitation anomaly patterns match the
observations well, including the anomaly magnitudes and shifting of the transition regions as a
function of the AQM phase.

Figure 2.5. December-March precipitation anomalies as in Figure 2.4, but based on analysis of a
10,000-year global climate model simulation in which the confounding effects of climate
change are eliminated by keeping greenhouse gas concentrations held constant at 1990 levels.
The three columns correspond to the different phases of the Atlantic Quadpole Mode (AQM),
and the three rows correspond to the three ENSO phases (El Niño, Neutral, La Niña).

2.3 Seasonal Planning Tools

Leveraging the scientific findings above regarding the AQM and ENSO, we developed a
study region precipitation guidance tool (Figure 2.6). ENSO appears to exert important
effects on study-region precipitation in conjunction with the AQM pattern. The values on the
guidance tool indicate the winter precipitation percent anomaly expected for any
combination of AQM and ENSO. Various indices of El Niño are readily available from the
Climate Prediction Center (www.cpc.ncep.noaa.gov), and we are planning to work with web
developers at Western Water Assessment to develop a convenient web-based portal for
tracking the AQM index.
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Figure 2.6. Percent anomalies of December-March study-region precipitation for different
combinations of ENSO and the AQM.

The value of this research extends to water stakeholders outside the study region as well. To
illustrate, the bar chart in Figure 2.7 shows the percent precipitation anomalies for each of the
three watersheds in the transition zone where ENSO typically has minimal predictive value.
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Figure 2.7. For three watersheds, percent anomalies of December-March precipitation
corresponding to combinations of ENSO and AQM. The inset maps shows the three watershed
boundaries, where the southern edge of Northern California (37.5°N) is near the latitude where
ENSO precipitation anomalies become significant

3. Hydrology: Tool development and resolving key knowledge gaps
identified during years 1-4.

Year 5 of our collaborative work with SLCDPU focused on integrating knowledge developed in
years 1-4 of the project into useful tools to assist decision-making. This includes both coupled
climate-streamflow-decision support models that integrate products from our three major
research themes as well as stand-alone tools combining groundwater storage and precipitation
that provide guidance on upcoming spring snowmelt in January. Our new research in Year 5
focused on two knowledge gaps underlying our statistical model of streamflow. Specifically, we
used tritium (3H) as an age tracer of groundwater to confirm or refute the presence of
long-residence time groundwaters. We also began to evaluate the potential for mid-winter and
spring vapor losses from the snowpack inferred from the finding that faster melt is positively
related to both spring streamflow and groundwater recharge. We continued to publish and
present our work in peer-reviewed literature and regional, national, and international meetings,
effectively transferring the impacts of this project beyond SLCDPU.

Key Tools:

● Our major addition to decision support this year includes translating model results
relating catchment-wide precipitation from PRISM and groundwater storage into
“lookup tables” using SNOTEL SWE and January baseflow to predict spring runoff for
each of the major supply catchments.

● We developed a multiple linear regression model to predict how groundwater storage,
and by extension runoff efficiency, can be expected to change in response to future
climate scenarios.
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Key Discoveries:

● Our previous work that describes “quasi-decadal” periodicity in groundwater storage is
actually composed of two patterns including a 3-4 year cycle since 1902 and a ~12-year
cycle since 1955.

● Apparent groundwater ages range from 4 to 20 years in SLCDPU catchments, similar to
the range observed in western headwater catchments throughout western North America.

● In the Great Basin, including SLCDPU supply catchments, there is an inverse
relationship between apparent groundwater age and runoff efficiency.

● Slower and earlier snowmelt is likely to increase vapor losses from the snowpack,
reducing runoff and groundwater recharge.

3.1 Predictive streamflow lookup tables

We have distilled the key findings underlying the interaction between current year precipitation
and groundwater storage, controlled by multiple years of precipitation, temperature, and melt
dynamics into “lookup tables” for each of the four major water supply catchments (Table 3.1).
Each table provides a projection of the coming year's streamflow in acre-feet using predicted
snow water equivalent (SWE) data from local SNOTEL sites and current (January) streamflow.
January streamflow data is current while projected SWE data can be obtained from a range of
sources including those provided by our climate modeling above or from the Climate Prediction
Center.

Each cell in Table 3.1 represents a range of annual streamflow values given projected SWE and
January streamflow. More precise estimates can be made using the full MLR models presented in
previous reports.

11



Table 3.1 Lookup tables for Big Cottonwood, Little Cottonwood, City Creek, and Parleys Creek
provide estimated annual streamflow in acre-feet using observed January streamflow and
predicted annual SWE at local SNOTEL stations. Full size tables can be found in Appendix A.3

Surface water supplies from the 4 major water-producing catchments in SLC (City Creek J CC,
Parleys Creek J PC, Big Cottonwood Creek J BC, and Little Cottonwood Creek J LC) can vary
between 30,000 acre-ft/year to 200,000 acre-ft/year. As we would expect, wet years often lead to
higher runoff than dry years, however, runoff efficiency (the fraction of precipitation that makes
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it to streamflow) can still be lower than expected even if the Wasatch mountains receive
above-average precipitation.

Figure 3.1 Mean annual catchment precipitation (in/year) compared to annual streamflow
(acre/ft/year) in City Creek (J CC), Parleys Creek (J PC), Big Cottonwood Creek (J BC) and Little
Cottonwood Creek (J LC). Precipitation alone explains approximately half of the variability in
streamflow (r2 = 0.56). Red circles indicate the range of expected streamflow for each water
supply catchment given average mountain precipitation.

As seen in the lookup tables (Table 3.1), including antecedent catchment conditions represented
through winter baseflow further reduces the uncertainty observed in annual runoff.

3.2 Multiple Linear Regression Model of groundwater recharge

To assess the drivers of recharge under current and potential future climate scenarios, we return
to our analyses of ten regional catchments that include both warmer and drier conditions than
those observed in SLCDPU water supply catchments. Across this broader range of sites, MLR
models demonstrated that annual variability in groundwater recharge, inferred from January
streamflow, was significantly related to a number of antecedent climate variables over the
previous four years (p<0.05) (Figure 3.2; Table 3.2). The periodic variability in winter baseflow
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was significantly related to the concurring water year’s fall precipitation (9/10 catchments), 1-4
years of antecedent precipitation (all catchments), 1-3 years of previous melt rate and/or duration
(9/10 catchments), and 1 year of antecedent temperature (8/10 catchments). The number of
variables retained as significant in each regression ranged from as few as two in Little
Cottonwood Canyon (J LC) to as many as 10 in City Creek (J CC). The strongest predictors of
change in storage / January baseflow in all catchments were the concurring year’s fall
precipitation (β= 0.14-0.56)(Table 3.2), the previous year’s annual precipitation (β=
0.14-0.57)(Tbale 3.2), or the previous year’s melt rate (β= 0.07-0.44)(Table 3.2. Here, the β
values are regression coefficients for predictors scaled to have mean of zero and variance of 1, so
their values indicate the relative strength of the statistical relationship.

Figure 3.2: Predicted winter baseflow using antecedent precipitation, temperature, melt rate
and melt duration, compared to observed winter baseflow in ten regional catchments, seven in
the Jordan River Basin including Emigration Creek (J EC) Parleys Creek (J PC), Red Butte Creek (J
RB), City Creek (J CC), Big Cottonwood Creek (J BC), and Little Cottonwood Creek (J LC) and three
in the Weber River Basin including Chalk Creek (W CC), Weber at Oakley (W O),a nd Ogden
South Fork (W OS). Because predictor values of precipitation, temperature, and melt vary
dramatically, all values are normalized using z-scores with means of 0 and variance of 1 allowing
direct comparison between catchments. On average, the model better predicted winter
baseflow in warmer and drier (lower runoff efficiency) catchments (r2>0.7).

The MLR models better predicted recharge / January baseflow in warmer and drier catchments,
(r2 > 0.7 for W CC, J PC, J RB, J MC) than in cooler and wetter catchments (0.70 > r2 > 0.46 for
W OS, J CC, J BC, W O, and J LC) (Table 3.2). J EC was an exception to this overall pattern.
Although J EC is relatively warm and dry with a low water yield or runoff efficiency (RE =
0.18), predictability was low (r2 = 0.29) compared to catchments with similar climate regimes.
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Table 3.2: Antecedent meteorological variables included in MLR model to predict winter
baseflow. MLR equation: Δ Winter baseflow= β Precipitation(n-i) + β Temperature(n-i) + β Melt
Rate(n-i) + β Melt Duration(n-i) . Here, wy denotes current water year, i is the number of years in
the past (eg. n-1 indicates 1 year previous), the β terms are regression coefficients, R2 is the
fraction of observed variance explained by the model, and bold indicates statistical significance
(p-value less than 0.005).

Figure 3.3. Top panel shoes mean winter baseflow annual vairbailty in the last century. Bottom
panel shows wavelet transform analysis of mean winter baseflow across all catchments. Winter
baseflow provides an index of groundwater storage with warmer colors indicating that
groundwater storage across all of northern Utah exhibits coherent, cyclical patterns in space
and time. Specifically, groundwater storage exhibits 3-year periodicity of high correlation/power
level (0.23) (red values) over the full 100 year record and a late-century significant periodicity
(white outline) power level (0.29) at a ~12-year periodicity.
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3.4 Groundwater ages and runoff efficiency

We obtained external support from the National Science Foundation (NSF) to sample age tracers
(3H) in winter baseflow and spring snowmelt samples throughout the west. Included in the
project are multiple samples collected from SLCDPU water supply catchments and other
regional headwater catchments (Figure 3.4). Apparent groundwater ages range from 4 to 20
years in SLCDPU catchments, similar to the range observed in western headwater catchments
throughout western North America. The inverse relationship observed in the blue dots in figure
3.4, suggests that in higher efficiency catchments, where a larger fraction of precipitation makes
it to streamflow, apparent age is younger than in lower runoff efficiency catchments. The
coherence between older 3H ages and statistical sensitivity to more years of antecedent climate
in our models increases confidence that our lookup tables are capturing physical processes and
not spurious correlations.

Figure 3.4: In the Great Basin, including SLCDPU supply catchments, there is an inverse
relationship between apparent groundwater age and runoff efficiency (RE) for locations with
0>.20 RE (Blue dots). Below an RE of 0.20 ages is much more variable.

3.5 Initial analyses of snowpack vapor losses

Using leveraged funding, we have developed preliminary data addressing the potential for
warmer (e.g. higher energy) snowpacks to lose water through either evaporation or sublimation.
We briefly highlight initial results here which suggest that up to 40% of the snowpack may be
lost in higher-energy environments (Figure 3.5). This suggests that slower and earlier snowmelt
reduces both runoff and recharge by increasing vapor losses from the snowpack during winter
and spring.
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Figure 3.5. High spatial resolution snow surveys in Big Cottonwood Canyon document that up to
40% of annual snowfall (spatially averaged) can be lost to vapor flux before melt begins. These
losses occur in high-energy environments (warmer) that serve as proxies for snowpack ablation
during years with earlier and slower melt.

4. Engineering:  Developing tools and integrating system modeling
methods to enhance operational water management

Previous research activities advanced the understanding of the climate, population growth, and
operational factors influencing the reliability, resilience, and vulnerability (RRV) of the water
system. We integrated the potential infrastructure and operations highlighted in the Supply and
Demand Master Plan into the Salt Lake City Water Systems Model (SLC-WSM), including but
not limited to new source development, water reuse, and increasing the preferred volume of
storage in the MWDSLS system. Using the SLC-WSM, our research evaluated the performance
of the water system to historically observed variability and, driven by advancements in the
understanding of the governing climate-hydrology interactions  (i.e., single to multi-year flows
related to climate signals), the projected response of streamflow to climate change. Using the
volume of water requested from Deer Creek reservoir as a metric to gauge the performance of
the water system (i.e., due to additional treatment, transfer, and pumping costs), model
simulations indicated large accuracy improvements by integrating climate-sensitive estimates of
demand. The comprehensive assessment of the water system leveraging hydroclimate-driven
supply and demand influences on performance supports refined estimates of the timing,
magnitude, and duration of supply requests from Deer Creek reservoir. The use of the
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Climate-Supply-Development Water Demand Model (CSD-WDM) supported the effort to
characterize seasonal estimates of demand in response to variations in annual hydroclimate
anomalies but needed an improved end-user interface for operations.

Building on the climate-supply theme, we performed a trend analysis to characterize the timing,
duration, and intensity of hydrological drought in the region, and by proxy, the variability and
magnitude of historical deficits (i.e., volume of surface water supply below the historical
average).  Evaluating the trends in the SLC-WSM highlighted the performance of the water
system exhibiting greater sensitivity to mild multi-year droughts compared to extreme
single-year drought events.  While downscaled GCM-driven projections of streamflow provide
useful insights into the anticipated impacts of climate change, there is a need to assess the
performance of the water system based on the probability of available supply.

Studies have looked at the severity, duration, and frequencies of droughts based on different
drought indices, but no guidelines exist on using univariate and multivariate frequency analysis
in an operational way. The drought severity-duration-frequency (SDF) information on droughts
has not yet been standardized like the flood frequency analysis in the Bulletin 17C or the rainfall
depth-duration-frequency (IDF) curves available from the National Weather Services (NWS) of
the National Oceanic and Atmospheric Administration (NOAA).

The lack of a standard guideline is important to address because water utilities must develop
adaptation plans including new water infrastructure, demand management, and exploring
non-conventional water sources. The adaptation and mitigation plans must be based on evidence
that can provide frequency as well as time domain information to the water utility about the risks
from a range of streamflow deficit events. This study advanced the use of a technique called the
retro-prospective technique, enabling water managers to develop a streamflow time series
representing streamflow deficit events from the empirically developed SDF curves representing
the complete spectrum of severity and duration of deficits in the historical streamflow record.

The Engineering work for Year 5 leverages our cumulative years of advancements in the
understanding of the Salt Lake City water system to develop water system management
products that enhance the operational capacities of the utility. The research advancement led to
two operational tools: 1) hydroclimate-driven demand estimator and corresponding water
system performance index tables built off a comprehensive set of water system simulations to
variations in hydroclimate (i.e., air temperature, precipitation, snowpack, streamflow) and 2)
SDF curves and complementary tables and charts for multi-year streamflow deficit scenarios of
specific return periods showing the expected volume and the deficit in the volume of water
relative to average volume in a given year.

The demand modeling work leveraging the CSD-WDM illustrates the connectivity between the
total water demand of the Salt Lake City system to variations in hydroclimate (i.e., variations in
mean monthly air temperature and cumulative monthly precipitation).  Additional research into
the hydroclimate connection to demand indicates that the conditions observed in April and May
exhibit a strong relationship to outdoor water use spanning June to October. The findings and
corresponding research tools support the assessment of the compounding influences of climate
on supply, demand, and the overall performance of the water system - likely mirroring the
Atlantic Quadpole Mode and hydrological base flow signals demonstrated by the Climate and
Hydrology teams (Sections 2 and 3).
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The engineering research activities bring together the state-of-the-science from the Climate,
Hydrology, and Engineering teams into actionable and informed operational tools for SLCDPU.
The engineering team produced the following key discoveries and tools as part of the Year-5
scope of work.

Year-5 key discoveries/tools:

● We identified a practical-knowledge gap surrounding the lack of usable multi-year
streamflow deficit information for water supply planning and management. Addressing
the research and operational need, we applied a univariate frequency analysis of the
historical streamflow deficit for multiple years to support a supply event-based planning
and management strategy for the SLC water system.

● For this study, we addressed the SLCDPU need for SDF curves and we derived the
corresponding streamflow analogs and deficits. We built on previously provided SDF
curves and accompanying tables for the standard return intervals (10-yr, 50-yr, and
100-yr) and the deficit in streamflow volume for each creek on an annual basis - a matrix
of negative volumes.

● Hydroclimate conditions during April and May strongly influence seasonal water use,
with the mean daily temperature of April and May identified as key indicators of April
through October water use and generally exhibiting a positive feedback, i.e., an increase
in temperature results in an increase in per-capita outdoor water use.

● Leveraging advancements in machine learning, we developed a demand simulation tool
to build a lookup table of seasonal estimates of water demand based on percent changes
in temperature and precipitation (i.e., hydroclimate).

● We developed lookup tables displaying the estimated volume of out-of-district Deer
Creek water required to prevent system deficits for a range of surface water supply (i.e.,
from climate and hydrology groups) and demand scenarios (i.e., produced by lookup
table from the engineering group) to support proactive water system management (e.g.,
demand hedging).

We break down the summary of results and deliverables below, with the objective of defining
the overall theme of each section and subdividing it by the sub-tasks.

4.1 Develop a workflow to use SDF curves for analysis of multi-year low-flow scenarios

The Engineering team completed the analysis of historical hydrological trends and accomplished
the development of SDF curves for the surface water supply sources of SLC. Building upon the
accomplishments from Year 4, we operationalized the SDF curves for use in multi-year water
supply system impact analysis and decision-making. Below are the results of the three subtasks
connecting SDF curves to operations.

4.1.1 Probabilistic Supply Estimator within the SLCDPU timeline and planning horizon

The operationalization of the developed SDF curves is achieved by introducing a concept called
the retro-prospective approach, which in simple terms means looking back in the past to estimate
the possible conditions in the future. Based on this concept and collaborations between the utility
and research groups, the closure of the water year was identified to be the optimal time for the
use of the SDF curves. Given the tool leverages the relationships between interannual surface
water supply yields (i.e., percent surplus or deficit of the historical average relationship to the
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next few years), the timing of application in October (i.e., the start of the new water year and
completion of the prior) complements the tools from the other teams. Specifically, it aligns with
the anticipated precipitation anomaly provided by the climate team and establishes a range of
streamflows for the following year based on the relationship between the present conditions and
historical frequency. We developed the Probabilistic Supply Estimator to serve as both the first
approximation of surface supply yield for the following year and to function as a long-term
planning tool for applying an acceptable level of risk to decision-making, complementing the
Hydrology team’s annual supply estimates beginning in February. The long-term planning tools
build on the probabilistic capabilities identified in the SDF analysis, e.g., what is the probability
of experiencing below-average supplies for the next three years? The Probabilistic Supply
Estimator supports risk-tolerance-based decision-making for estimates of surface water yields
with an event horizon extending to five years. The SDF curves for 2-5 years durations for the Big
Cottonwood Creek are shown below in Figure 4-1. From the SDF curves, any selected point
corresponds to a streamflow time series in the historical record of streamflow data. Thus, a
streamflow time series for any point can be derived by matching the level of severity and
duration of the event selected.

Figure 4.1. Multi-year streamflow deficit SDF curves for Big Cottonwood Creek
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4.1.2 Operationalizing the SDF curves

While lookup tables provide easy-to-reference estimates of streamflow, we recognize that the
utility may want to use hydrographs at a daily resolution of the water year for their own water
system analysis. From Figure 4.1 above, the most severe 2-year streamflow deficit in the plot,
i.e., a return period of 110 years, has a severity of 45%. A streamflow time series corresponding
to this deficit is provided below in Figure 4.2.

Figure 4.2: Streamflow time series analog for the 110-yr return interval, 2-year duration

streamflow deficit event for the BCC

As discussed in section 4.1.1, we developed a new technique called the retro-prospective
approach, linking the historical streamflow information to the estimated streamflow in future
years. We recommend applying the retro-prospective approach at the end of the water year where
the utility can determine the recently completed water year deficit in relation to the historical
mean, e.g., if the annual yield is below the mean yield, the previous water year is a deficit year.
Next, the utility selects an event of interest (i.e., an event-based return period or periods of
interest that will provide the severity of the deficit) from the streamflow deficit SDF curves for a
respective planning horizon. The workflow provides a streamflow analog for the selected
probability of the event determined by the SDF curves’ respective severity and duration within
the streamflow record. The streamflow time series can then support an event-based impact
analysis of the water system.

4.1.3 Applying the SDF curves and Streamflow Analogs for System Impact Analysis and
Informed Decision-Making.

The SDF curves and streamflow analogs provide a novel early-season water resources planning
tool connecting a supply-sided probability of occurrence to the severity of a possible deficit.
However, it is necessary to note that the term deficit here refers to below-average conditions for
any selected period. For example, for 2 years, the deficit is calculated as below the 2-year
moving average flow, and so on for other durations. Table 4.1 shows the streamflow deficits for
standard return periods (10, 50, and 100 years) of 2-5 year durations.
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Table 4.1: Multi-year streamflow deficit levels (in percentage below average) for 2-5 year

duration of standard return periods for the three creeks of SLC.

To eliminate the need to repeatedly use SDF curves and search for streamflow analogs for
different events of streamflow deficits, we developed charts and tables to convert the streamflow
analogs to the projected volume deficit in a given water year. For return periods of 10, 50, and
100 years and streamflow deficit duration of 2-5 years, the expected volume of water relative to
the average volume for each creek is shown below in Figures 4.3, 4.4, and 4.5.
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Figure 4.3. Expected volume relative to the average volume of water from the Big Cottonwood

Creek for a given duration of streamflow deficit of standard return periods. Units are acre-feet.

Figure 4.4. Expected volume relative to the average volume of water from Little Cottonwood

Creek for a given duration of streamflow deficit of standard return periods. Units are acre-feet.

23



Figure 4.5. Expected volume relative to the average volume of water from City Creek for a given

duration of streamflow deficit of standard return periods. Units are acre-feet.

The above three figures show the volume available in a given year for a given duration. For
example from Figure 4.3, for a return period of 100-year (i.e., an event that has an exceedance
probability of 1%), the annual water volume for the 5-year duration is ~33,000 acre-feet.
Compared to the average, this is a deficit of 18,000 acre-feet in a given year.

In Figure 4.6 below, for a streamflow deficit duration of 5 years and a return period of 100 years,
the total deficit (from the three creeks combined) on an annual scale is shown (i.e., 36,500
acre-feet). This is the amount of water shortage in the system if a streamflow deficit event of a
5-year duration of a 1% chance occurs. The 36,500 acre-feet of water is what is required to
bridge the gap in demand and supply. Here, it is essential to mention that for these five years, the
demand as well as supply from other sources is assumed to be constant. Thus, this deficit can be
bridged by requesting 36,500 acre-feet of water each year from the Deer Creek reservoir.
Additional requests from the Deer Creek system each year mean additional costs to the utility
and also deplete the storage in the reservoir, thus increasing the vulnerability of the system.
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Figure 4.6. Demonstration of the calculation of the deficit in the system on an annual scale from
all three creeks for any selected duration and return period. Only the expected volumes of Big

Cottonwood Creek are shown on the left, and the table on the right shows the deficit for all
three creeks.

4.2 Advance and apply Hydro-ML modeling to guide water system management
operations to seasonal supply limiting conditions

Key Discovery 3. Mean air temperature and cumulative precipitation during April and May
exhibit a strong influence on total seasonal water use and overall water system performance
spanning April to October.

A primary focus of the Engineering team’s effort during year 5 was to leverage advancements in
Hydro-ML, integrate and couple with the existing SLC-WSM framework, and process the
information in useful tools to enhance the management and operations of SLCDPU’s water
system. The goal of the research activities was to develop tailored water systems tools linking
climate, streamflow, and demand projections to inform on seasonal water system performance
without the need to run an array of stochastic simulations. Due to the multi-disciplinary
connections in the development of the engineering tools, the tools are most useful when
coordinated with the use of the climate and hydrological tools described in Sections 2 and 3. The
research-to-operations workflow is an example of academic-practitioner interactions and has led
to one accepted peer-reviewed article, three in-submission peer-reviewed articles, and several
conference presentations. Descriptions of the research and tools are in the following subsections.

4.2.1 Operationalize Water Demand Prediction

The goals for operationalizing water demand prediction involved the exploration of a variety
of advanced deep learning algorithms to 1) enhance the prediction of
hydroclimate-urbanization-driven water demands and 2) develop the cyberinfrastructure to
operationalize the model. The initial Climate-Supply-Development Water Demand Model
(CSD-WDM) relies upon linear driver-demand statistical relationships (see Year 4 report for
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more information). From a modeling perspective, there is an opportunity to integrate
modeling methods capable of capturing nonlinear driver-target interactions that have the
potential to improve the predictive performance of the water demand model, notably during
April, May, and October. Complementing algorithm development, the engineering team
established the framework to bring the CSD-WDM from research into operations. Research
activities under this scope of work integrate the measurement of uncertainty into the forecast
and the development of lookup tables to support annual total production demand estimation.

We explored Multilayer Perceptron (MLP) neural networks and Random Forest Regression
(RFR) tree-based machine learning (ML) algorithms to evaluate model complexity vs.
accuracy to the existing ordinary least squares (OLS) algorithm. We selected the MLP model
for its demonstrated performance throughout many applications in water resources modeling
and built the MLP network with the support of the Keras package within Tensorflow v2.4.1
and the drivers of demand identified by recursive feature elimination (RFE) from the OLS
algorithm. The MLP network consists of an input layer that receives the predictors, middle
hidden layers with nodes/neurons that form the computational engine, and an output layer
that produces the prediction. Model training consisted of the following parameters: rectified
linear activation function (ReLU), two to eight hidden layers with neurons ranging from 8 to
128, the Adam optimizer, and 500 epochs. During training, we use five-fold cross-validation
with backpropagation gradient descent to weight the network and minimize error (i.e., Root
Mean Square Error, RMSE). We selected the RFR algorithm for its demonstrated high
proficiency in transforming data into estimates of demand without relying on rule-based
programming for applications throughout water resources management. The algorithm
performs its regression modeling via a meta-estimator composed of several fitted
regression-based decision trees on multiple subsamples of the training data and then averages
to improve the accuracy and overall robustness of prediction. We built the model using the
Scikit-Learn RandomForestRegressor python package, trained using the drivers of demand
identified from RFE and the OLS algorithm, and used a grid-search cross-validation function
to optimize the model. We trained all models on the same data spanning 1980-2017, and
omitted the three testing scenarios; wet (2008), average (2017), and dry (2015). Model
evaluation leveraged percent bias (PBias, %), root-mean-squared-error (RMSE), and
Kling-Gupta Efficiency Coefficient (KGE).
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Table 4.2. The CSD-WDM with OLS regression demonstrated greater modeling performance
than the more complex MLP and RFR machine learning algorithms. All machine learning
algorithms demonstrate greater performance than using a historical monthly mean (TD).

While it is critical to produce accurate estimates of demand, differences in model interpretability
can challenge the adoption of ML algorithms into operations. We performed a model accuracy
vs. complexity evaluation that highlights a threshold of complexity for achieving representative
estimates of demand. A key threshold to defining sufficient model complexity appears to
depend on the integration of key, temporally dynamic service area characteristics, i.e., the
integration of climate features, that produce measurable gains in model performance compared
to the climate-independent econometric-based model (i.e., using historical averages to inform
future demands). The high accuracy and minimal prediction error of the CSD-WDM with the
OLS algorithm demonstrate that sufficient complexity can match or exceed the performance of
greater complexity models (i.e., MLP, RFR).
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Table 4.3. Evaluating error in prediction at a seasonal and annual temporal resolution
indicates the original OLS algorithm demonstrating the greatest average predictive
performance across the three varying hydroclimate scenarios.

With the complexity vs. accuracy assessment indicating no statistically significant modeling
performance benefits from the MLP or RFR algorithms, we select the CSD-WDM with the OLS
regression algorithm as the demand modeling method of choice for SLCDPU. The OLS
algorithm uses a linear driver-target relationship (coefficients, see Table 4.4) that supports an
understanding of the factors affecting mean monthly water demands. For example, we see that
for every 1oC increase in April Mean Temperature that April water demands increases by 5.63
gpcd. A key finding here is the presence of April and May mean temperature influencing
demands for the remainder of the season, generally exhibiting a strong positive relationship, i.e.,
an increase in temperature leads to an increase in demand.

With the OLS algorithm demonstrating the greatest overall performance, we set to implement
uncertainty estimates into the model.  We complement the OLS algorithm with the Statsmodels
v0.12.2 python package to communicate the uncertainty of the forecast to a 95% confidence
level based on the internally characterized error of the model, see Figure 4.7.
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Table 4.4. The CSD-WDM uses eighteen statistically significant hydroclimate, supply, and
development features to model total monthly water demands (gpcd).
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Figure 4.7: The CSD-WDM with ordinary least squares (OLS) and a 95% confidence interval
demonstrates minimal error in prediction for all hydroclimate scenarios.

From the cumulative advancements and model evaluation surrounding SLCDPU demand
estimation, we used the finalized model to produce estimates of demand influenced by the
historical variability in observed precipitation and mean air temperature. From these
simulations, we developed lookup tables in coordination with the climate and hydrology
working groups, see Figures 4.8 and 4.9 for use application.
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Figure 4.8: The water demand lookup table operationalizes the CSD-WDM, estimating total
annual produced water demand (total volume of water needed to enter the water system,
acre-feet) a function of running hundreds of simulations through the CSD-WSM with varying
percentage changes in temperature and streamflow. The bounds of precipitation and
temperature on the respective axes reflect the historically observed variability.
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Figure 4.9: By using the AQM and ENSO phases with NOAA temperature outlooks, the table
provides estimates of total annual production demand.

4.2.2 Advance modeling capabilities to guide water system management and operations

We built upon over a decade of systems model research and development enhancing the
SLC-WSM to transition the modeling work into operational decision timeline components.
Similar to the demand lookup table, we ran hundreds of simulations based on the availability
of surface water supplies (i.e., City Creek, Parleys Creek, Big Cottonwood Creek, Little
Cottonwood Creek) and projected demands (see produced water lookup tables above) to
create a water system performance lookup table based on the estimated volume of Deer
Creek reservoir water needed to mitigate local surface and groundwater deficits. Figure 4.10
presents the water system lookup table.

The water system performance lookup table integrates the cumulative advancements of the
Climate, Hydrology, and Engineering teams. The anticipated precipitation anomaly based on
the AQM and ENSO from the climate group supports streamflow estimates from the
hydrology group and demand estimates from the engineering group. The total production
demand estimates and streamflow supply estimates form the x and y-axis of the water system
lookup table, respectively. Figure 4.11 illustrates the use of the water system performance
lookup table.
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Figure 4.10: The water system lookup table leverages hundreds of water systems model
(SLC-WSM) simulations of varying surface water supply and produced water demands to
estimate the volume of Deer Creek reservoir water requests (acre-feet). Estimates are based
on a service area population of 330,000.

The utility can use the water systems lookup tables for many applications such as: 1) event
planning from SDF curves, 2) early-season planning (e.g., October), 3) mid-season planning
(e.g., February - April), 4) late-season planning (e.g., June), and 5) other uses where there is a
need to estimate Deer Creek water usage based on estimates of supply and demand. The primary
application of the water system lookup table is for mid-season planning, as illustrated in Section
5, where there are refined estimates of supply based on observed low flows and the winter
precipitation anomaly. When entering the February to April period, the utility can estimate a
range of supplies and demands based on current and projected hydroclimate conditions, and by
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finding the respective estimates along the x and y-axis of the lookup table, can identify a range
of Deer Creek water use volumes (in acre-feet) needed to prevent water system deficits.

The estimated volume of Deer Creek water provides the utility with management options. For
example, if the volume of Deer Creek water is acceptable, the utility can monitor use to ensure it
is aligning with the projections and meeting any carryover storage requisites. If the volume of
estimated Deer Creek water exceeds an acceptable threshold, the utility can preemptively plan
demand-sided conservation actions to reduce the overall volume of Deer Creek water use.
Systematically using the climate, hydrology, and engineering lookup tables supports a proactive
vs. reactive water system management foundation. The utility now has significantly reduced
uncertainty in the volume of annual supply, demand, and system water needs to develop
management actions that mitigate potential supply-demand deficits and maximize carryover
storage capacity.

5. Synthesis

The research-to-operations partnership between the Salt Lake City Department of Public
Utilities, the University of Utah, and the University of Alabama has led to key scientific
advancements in western precipitation anomaly, improving the fundamental understanding of
Wasatch Mountain hydrology, and novel methods for transitioning research advancements to
actionable water resources management tools. While each of these advancements reduces the
uncertainty of managing SLCDPU’s water resources, the realized benefit of the research is the
ability to create an operational decision timeline. Figure 5.1 illustrates the timing of reliable
estimates of water system performance influencing components (i.e., supply and demand).

The decision timeline begins with an estimation of the anticipated western US precipitation
anomaly for the upcoming water year beginning in October. At this time, there is sufficient
confidence in the winter ENSO pattern and, while in development, the AQM to form
preliminary estimates of above-average, average, or below-average winter precipitation
quantities. The steps in Section 2.3 describe the process for forming statistically informed early
season estimates of the quantity of water year precipitation.

Early winter presents the next opportunity in the operational decision timeline where
statistically significant models relate antecedent hydrological conditions to estimate catchment
annual water yield. A key indicator driving the models is antecedent groundwater storage,
assessed using January baseflow. While there is uncertainty in melt rate and melt duration, the
projections of winter precipitation and observations of catchment baseflow reduce the overall
uncertainty of annual catchment water yield by roughly half (for example, from 30k -200k
acre-feet to 120k-160k acre-feet). In this step, the utility can use the climate lookup tables to
estimate annual precipitation or refer to catchment SNOTEL observations to estimate a winter
precipitation trajectory. Using the precipitation estimates and baseflow observations supports
estimates of annual catchment yield while reducing the overall uncertainty.
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Figure 5.1. A Decision Timeline Framework to guide water resources decision-making.

Developing proactive approaches to water system operations and decision-making leverages the
advancements in the SLC-WSM in replicating surface water supply, municipal water demand,
and water system infrastructure limitations and interactions. In the operational decision timeline,
we need estimates of annual surface water supply and water demand to understand water system
interactions for identifying potential vulnerabilities and developing mitigation measures.
Through extensive conversation with the utility, the volume of Deer Creek reservoir water
serves as a vulnerability indicator of water system performance due to the increased treatment,
pumping, and it being a shared resource among other municipalities. With the framework for
generating surface supply estimates above, there is a need for estimating water demand to
estimate water system performance.

Following a framework similar to the winter precipitation and surface water supply tables, we
provide total produced water demand estimates using the relationships between service area
temperature and precipitation. Beginning in February, NOAA provides seasonal temperature
and precipitation outlooks that can form inputs into the water demand lookup table (i.e., April
and May temperature and precipitation probabilities). NOAA provides estimates based on the
probability of an event rather than a given quantity, which requires the utility to make an
inference connecting the probability of an event to a range in precipitation quantities and
temperatures. For example, if the NOAA seasonal forecast suggests a high probability of
above-average temperatures, the utility could explore all above-average temperatures. The same
mindset can be applied to precipitation. Note, the range of percent-from-average values in the
demand lookup table covers the range of values within the historical record (i.e., 1980-2020).
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Figure 5.2: The water systems lookup table leverages surface water supply (i.e., streamflow)
and production demand estimates using the AQM and ENSO precipitation anomaly. The
workflow estimates Deer Creek reservoir water needs to prevent supply deficits.

With estimates of annual surface water supply and total produced water needs by February, the
utility can produce their first estimates of annual Deer Creek Reservoir Water needs using the
respective water system lookup table (Figure 4.10).  The lookup table supports proactive water
system management, leveraging the research, knowledge, and modeling to produce a
data-informed tool for estimating the volume of Deer Creek Reservoir water needs as an
indicator of water system performance. While there is little actionable operational component to
increasing or decreasing supply availability, the lookup table provides the ability to make
generalized demand hedging estimates (i.e., is conservation needed to avoid a predetermined
threshold of Deer Creek water use? Should the utility propose drought contingency plans to
increase carry-over capacity?)  Figure 5.2 displays the above-described workflow for initiating
climate-supply-demand-water system performance estimation.

The final phase of the operational decision timeline is evaluation. While the lookup tables
containerized the climate, hydrology, and engineering research based on historical observation
and climate simulation, there is uncertainty in every model and corresponding estimate. It is also
difficult to take the breadth of information, simulations, and results into a comprehensive lookup
table that takes into account nonstationarity and the climate variability within the region. Thus,
from the time of initial estimates to June, we recommend the utility revisiting the table and
adjust the inputs as the uncertainty in the estimates are reduced. For example, by May, we will
have surpassed peak SWE and thus will have reduced the uncertainty in winter precipitation
quantity.  Similarly, we will know how April and May temperatures relate to the historical
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average which has a very strong influence on annual produced water demands. Lastly, NOAA
releases its summer temperature and precipitation guidance in May, supporting refined estimates
of water demand. With reduced uncertainty in supply and demand, and better estimates of
reservoir levels from the CBRFC, the utility can have refined estimates of water system
performance to inform decision-making.
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7. Appendices

Appendix A.1 Climate Vulnerability Project Glossary (alphabetical)

Baseflow – Streamflow derived from groundwater storage
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CAM - Community Atmosphere Model

Catchment storage  - consists of both groundwater (below gravitational water table) and soil moisture/
vadose zone water storage

CESM - Community Earth System Model

Clausen, B., & Pearson, C. P. (1995). Regional frequency analysis of annual maximum streamflow drought. Journal
of Hydrology, 173(1-4), 111-130.

CMIP – Coupled Model Intercomparison Project https://gmd.copernicus.org/articles/9/1937/2016/

Dracup, J. A., Lee, K. S., & Paulson Jr, E. G. (1980). On the statistical characteristics of drought events. Water
resources research, 16(2), 289-296.

EMMA –  End Member Mixing Analysis is a method for determining dominant flow paths and/or runoff
sources contributing to streamflow using dissolved solute concentrations;
http://snobear.colorado.edu/Markw/WatershedBio/EMMA/burns_01.pdf

FDOM – Fluorescent Dissolved Organic Matter is a continuous (for our permanent) measurement of
organic matter content of a solution (stream water). FDOM is a tracer of water movement through
shallow soils

MCA - Maximum Covariance Analysis is a method of statistical analysis that objectively finds patterns of
covariation between two large data sets (e.g., Atlantic sea surface temperatures and western-US
precipitation).

Mishra, V., Cherkauer, K. A., & Shukla, S. (2010). Assessment of drought due to historic climate variability and
projected future climate change in the midwestern United States. Journal of Hydrometeorology, 11(1), 46-68.

PDSI – Palmer Drought Severity Index;
https://climatedataguide.ucar.edu/climate-data/palmer-drought-severity-index-pdsi

PHDI – Palmer Hydrologic Drought Index;
https://www.ncdc.noaa.gov/temp-and-precip/drought/historical-palmers/overview

Quadpole -- a pattern of climate anomalies made up of four regions arranged north to south. Similar
terms exist for single regions (monopole), two regions (dipole), and three regions (tripole). In our
application, the Atlantic Quadpole is a pattern of sea surface temperature anomalies which influences
study-region precipitation.

R2O - Research to Operations

RCP - Representative Concentration Pathway
https://en.wikipedia.org/wiki/Representative_Concentration_Pathway
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Runoff Efficiency/ Water Yield – a dimensionless fraction relating the amount of water existing a
catchment as surface water (Q) divided by the amount of precipitation that fell over a period of time
(usually water year

SDF Approach – An integration measure of drought and potential water shortage combining Severity,
Duration, and Frequency

SpC – Specific Conductance is an integrated (and for our permanent sites) continuous measure of total
dissolved solutes

SPEI – Standardized precipitation Evapotranspiration Index;
https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-evapotranspiration-index-spe
i

SPI – Standardized Precipitation Index;
https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-index-spi

SSP - shared socioeconomic pathways (greenhouse gas emission scenarios for CMIP6, analogous to RCPs
used in CMIP5) https://climateanalytics.org/media/gmd-13-3571-2020.pdf

SST - sea surface temperature

Storm flow – The fraction of discharge associated with a runoff event (precipitation or melt) that is not
derived from baseflow. Stormflow is calculated as total discharge - baseflow
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Appendix A.3 Streamflow Lookup Tables for Water Supply Catchments

Estimated Water Supply (Acre Ft) for Big Cottonwood using Baseflow and Peak SWE
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Estimated Water Supply (Acre Ft) for Little Cottonwood Creek using Baseflow and Peak SWE
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Estimated Water Supply (Acre Ft) for Parleys Creek using Baseflow and Peak SWE
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Estimated Water Supply (Acre Ft) for City Creek using Baseflow and Peak SWE

Appendix A.4 Red Butte Creek Long Term Discharge and Hydrochemistry

Introduction and Study Location

Red Butte Creek’s (RBC) headwaters originate in the Wasatch Mountains east of Salt Lake City
in a highly protected Research Natural Area (RNA) with restricted access and very little impact
from human development. The creek flows westward through the RNA, the University of Utah
campus, and Salt Lake City before it joins the Jordan River and ultimately reaches the southern
end of the Great Salt Lake. This provides a unique opportunity to research how water supply and
water quality vary along this headwater-to-urban transition.

The Red Butte monitoring network consists of four climate sites and seven aquatic sites (Figure
A.4.1, Table A.4.1). Sites above the Red Butte Reservoir lie within the RNA and are
representative of the natural environment. Sites below the reservoir are affected by human
management, with the impact from development generally increasing downstream. All aquatic
sites are instrumented with sensors to measure discharge and several water chemistry parameters
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that are indicative of water quality and can be used to “fingerprint” streamwater. By quantifying
the interaction time between the water, the subsurface, and shallow soils, we can make inferences
about the source and relative age of streamwater. Climate sites are instrumented with sensors to
measure a variety of climate parameters, but the two basic parameters presented in this report are
air temperature and precipitation. All data is collected at 15-minute intervals and may be
aggregated to daily, monthly, or annual values (water year, Oct. 1 – Sept 30). To evaluate water
supply metrics, we used aquatic data from headwater sites in Upper RBC (LKF and ARBR). To
quantify water quality, we used aquatic data from urban sites below the reservoir (RBG, CG, FD,
1300E, and 900W).

Figure A.4.1: Map of climate (top) and aquatic (bottom) monitoring sites along Red Butte Creek.

46



Site Name Abbreviation Latitude/Longitude Elevation (m)

Knowlton Fork Climate RB_KF_C 40.789054°,-111.796416° 2178

Todd's Meadow Climate RB_TM_C 40.789054°,-111.796416° 1763

Above Red Butte Reservoir Climate RB_ARBR_C 40.780567°, -111.807222° 1666

Green Infrastructure Research Facility (GIRF) Climate RB_GIRF_C 40.760800°,-111.830474° 1487

Lower Knowlton Fork Basic Aquatic RB_LKF_BA 40.805550°, -111.765467° 1942

Above Red Butte Reservoir Advanced Aquatic &

USGS gauge

RB_ARBR_AA 40.779602°,-111.806669°

1649

Red Butte Gate Basic Aquatic RB_RBG_BA 40.774050°,-111.817798° 1582

Cottams Grove Basic Aquatic RB_CG_BA 40.763958°, -111.828286° 1502

Foothill Drive Advanced Aquatic RB_FD_AA 40.757225°, -111.833722° 1449

1300E Aquatic RB_1300E_A 40.745000°, -111.854433° 1353

900W Basic Aquatic RB_900W_BA 40.741583°, -111.917650° 1289

Table A.4.1: Red Butte Creek climate and aquatic monitoring site names, abbreviations, locations, and

elevations.

Water Supply in Upper RBC

The climate and hydrology of the headwaters of RBC are similar to mountain catchments
throughout the intermountain west, which are characterized by relatively hot, dry summers, and
cold, snowy winters, resulting in the accumulation of seasonal snowpacks that melt in spring as
solar radiation increases. Streamflow is typically relatively stable and low throughout the year
(except for isolated storm events) until snowmelt begins and streamflow increases. Streamflow
remains elevated during snowmelt before receding to baseflow levels once the snowpack has
melted out. The cycle of snowpack accumulation, snowmelt, and the resulting melt-induced
streamflow is relied upon as the most important component of water resources in western North
America.

Rapid population growth and climate change will stress Utah’s already limited water supply. It is
uncertain exactly how higher air temperatures will affect water resources in seasonally
snow-covered headwater catchments, but the expectation is reduced water supply and a shift
towards earlier timing of snowmelt-induced streamflow. RBC is relatively warm and dry
compared to other water supply catchments in the Salt Lake City area and may be used to draw
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inferences about how water resources in colder and wetter catchments may respond to future
warming. Understanding the sources and relative age of streamwater in upper RBC will allow
water managers to assess the vulnerability of water supplies to climate change, and on what time
scales hydrologic changes might occur.

Variability in RBC water supply is predominantly controlled by annual precipitation amount
(Brooks et al., 2021). Mean annual precipitation at RBC sites from water years 2015-2021 ranges
from 47 cm (GIRF_C) to 87 cm (KF_C), with mean annual precipitation increasing by 5.4 cm
for every 100 m gained in elevation (Figure 2). Similarly, mean annual air temperature ranges
from 11.7˚C (GIRF_C) to 6.5˚C (KF_C) and decreases by 0.74˚C for every 100 m gained in
elevation. Daily climate data and monthly average data are included in the summary tables at the
end of this appendix.

Figure A.4.2: Water years 2015-2021 annual precipitation at Red Butte Climate Sites. Area-weighted

mean PRISM precipitation data for the watershed (above USGS gauge/ARBR site) is also included for

reference. Interannual variability in precipitation and temperature is consistent across sites.

Unsurprisingly, discharge in Upper RBC increases as you move downstream. Similar to
precipitation and temperature, variability in discharge is consistent across sites (Figure 3).
However, human management at the reservoir impacts discharge at the RBG site, which is
immediately downstream of the dam.

Due to several gaps in discharge data across all sites (including the USGS gauge at ARBR),
linear interpolation was used to fill data gaps so that total annual streamflow volume could be
calculated. These data gaps were typically during periods of low flows, such that unknown errors
due to linear interpolation of data likely have minimal impacts on the calculation of annual
discharge volume. Unfortunately, at RBG site, several longer gaps in discharge data (including
during periods of higher flows) made calculating annual discharge volume unfeasible for several
years. As a result, comparisons of runoff efficiency only include LKF and ARBR. Because
discharge is altered by human management at RBG, runoff efficiency calculations at that site are
less indicative of the natural environment anyways, compared to LKF and ARBR sites.
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Figure A.4.3: Daily discharge at upper RBC sites. Streamflow is generally low for much of the year but

increases sharply with the onset of snowmelt. RBG is included here for reference, but note that

discharge at RBG is affected by dam management, and often has a different pattern of streamflow

compared to LKF and ARBR.

Runoff efficiency (the ratio of annual streamflow to precipitation) is a useful metric to determine
how effectively precipitation is partitioned to streamflow, such that catchments with higher
runoff efficiencies more effectively generate streamflow from a given precipitation amount
compared to catchments with lower runoff efficiencies. To calculate runoff efficiency at upper
RBC sites, total annual streamflow in m^3 was first normalized for watershed area to yield units
comparable to precipitation (mm). Additionally, PRISM precipitation data were used instead of
precipitation data from individual climate sites. PRISM data is likely more indicative of
precipitation amounts in the entire upstream area of each site, as opposed to precipitation from
point locations at climate sites. The area-weighted mean of all PRISM pixel values above
individual sites (LKF and ARBR) was calculated for each month and summed to water year
values.

Runoff efficiency for water years 2017-2021 ranges from 0.27 to 0.36 at LKF and for water
years 2015-2021 ranges from 0.11 to 0.19 at ARBR (Table 2). Runoff efficiency is consistently
higher at LKF compared to ARBR, indicating that streamflow generation is more efficient at the
higher elevations of the watershed. However, interannual variability in runoff efficiency is less
consistent across sites than discharge. Interestingly, runoff efficiency in LKF was actually
highest in the relatively dry water years of 2018 and 2020 (following the wet years of 2017 and
2019). In contrast, runoff efficiency is higher at ARBR during wetter years. This variability in
runoff efficiency from upstream to downstream suggests spatial variability in how precipitation
is partitioned and that the source of streamwater may be variable from upstream to downstream.
Note the very low runoff efficiency at ARBR in water year 2021, indicating that 92% of the
precipitation that fell was partitioned to either evapotranspiration or to recharging groundwater.
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Runoff Efficiency

LKF ARBR

2015 0.11

2016 0.12

2017 0.28 0.17

2018 0.34 0.12

2019 0.28 0.19

2020 0.36 0.17

2021 0.27 0.08

Table A.4.2: Water years 2015-2021 runoff efficiencies at LKF and ARBR sites.

Stream chemistry provides additional insight into the relative sources and age of streamwater in
Upper RBC. Specific conductance (SpCond) is a measure of a water’s ability to conduct an
electrical current and is indicative of the total ion concentration in water. Water that has had
greater interaction with the subsurface (i.e. groundwater) will have a higher ion concentration
and thus a higher specific conductance value than fresh precipitation or snowmelt. For example,
fresh snowmelt typically has a specific conductance value of less than 30 uS/cm, while
groundwater values may range from roughly 300 to over 3,000 uS/cm (USGS Techniques and
Methods 9-A6.3, 2019).

Timeseries of daily SpCond values at ARBR and LKF (Figure A.4.4) indicate that streamwater
at both sites is primarily sourced from subsurface water that has a much higher ion concentration
than fresh snowmelt. SpCond values at LKF are relatively stable throughout the year but
decrease slightly during snowmelt in the two highest snowfall years (2017 and 2019). At ARBR,
streamwater during the winter months has even higher values of SpCond compared to LKF,
indicating that older groundwater sustains low flows down canyon (mean monthly SpCond
values in appendix). During the snowmelt season, SpCond at ARBR decreases rapidly as dilution
occurs, but SpCond values (~400-500 uS/cm) are still far greater than those of fresh snowmelt.
Taken in combination with the runoff efficiencies presented previously, these results suggest that
streamwater in the highest portion of RBC is primarily composed of subsurface water (that may
be carried over from the previous year), while further downstream, streamwater is composed of
older groundwater during periods of low flows and a mixture of old and new waters during
snowmelt.
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Figure A.4.4: Daily specific conductance values (uS/cm) at LKF and ARBR sites, indicating that streamflow

is primarily sourced from subsurface water with some mixing of new water during snowmelt.

Using a very simple end member mixing model, we approximate the fraction of “old”
(subsurface water, higher SpCond) and “new” (fresh snowmelt/precipitation, lower SpCond)
water in RBC. The mixing model is of the form:

𝑄𝑠 𝐶𝑠 =  𝑄𝑛𝐶𝑛 + 𝑄𝑜𝐶𝑜

where Qs is the discharge in the stream, Qn is the discharge that comes from the new water, Qo is
the discharge that comes from old water, Cs is the ion concentration (approximated by SpCond)
measured in the stream, Cn is the ion concentration of the new water endmember, and Co is the
ion concentration of the old water endmember. Assuming that Co equals the maximum SpCond
recorded at each site (representative of ion concentration of groundwater) and that Cn equals 5
uS/cm (approximate SpCond value of fresh snow), we rearrange the equation above to solve for
Qn (where Qo = Qs – Qn):

𝑄𝑛 = (𝑄𝑠(𝐶𝑠 − 𝐶𝑜))/𝐶𝑛 − 𝐶𝑜

Solving this equation indicates that the vast majority of streamwater in upper RBC is sourced
from “old” water (i.e. groundwater) and only during snowmelt and intense precipitation events is
there a significant amount of “new” fresh snowmelt or rainfall entering the stream (Figure 5).
Even during snowmelt, less than 30% of the water at ARBR and less than 20% of the water at
LKF is fresh snowmelt. It is important to note that these results are highly dependent on the
values of the end members chosen. Further constraining the end member values (via groundwater
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and snow sampling) will yield more accurate results.

Figure A.4.5: Timeseries showing the estimated percent of new (fresh snowmelt or rain) water in RBC at

ARBR and LKF sites. The vast majority of streamwater in upper RBC is derived from subsurface water,

even during the snowmelt season.

Fluorescent dissolved organic matter (fDOM) is another useful water chemistry parameter to
source streamwater. fDOM is indicative of how much interaction water has had with soil, as soils
have a relatively high organic matter content compared to fresh snowmelt or precipitation.
Comparing fDOM values with discharge at ARBR site, we see elevated fDOM values during
periods of higher streamflow, including during snowmelt (Figure A.4.6). These results indicate
that streamwater has passed through the soil before reaching the stream channel. Notably, during
snowmelt, there is a slight lag between fDOM and discharge, such that fDOM values increase
rapidly prior to peak streamflow. This result suggests there is a “flushing” of stored soil water
prior to peak snowmelt. fDOM values are also typically high during the fall season (monthly
mean fDOM values in appendix), likely due to the abundance of leaf litter in the stream and on
soil surfaces.

Figure A.4.6: Time series of weekly discharge (blue) and fDOM (orange) values at ARBR site. Increases in

fDOM during snowmelt and periods of high discharge indicate streamwater has passed through soils

before reaching the stream channel.
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The results presented above highlight the importance of stored subsurface water to water supply in RBC,
suggesting that streamflow during snowmelt is a mixture of stored groundwater, flushed soil water, and a
relatively small fraction of fresh snowmelt. The physical mechanisms controlling this “displacement” of
older water during snowmelt are not well-constrained. Previous work (Brooks et al., 2021; Wolf et al. and
others) indicate that variability in subsurface storage is controlled by antecedent climate (mainly the
previous years’ snowfall) and that storage variability may have an increasing influence on water supply as
the climate warms. Water supply in RBC (and other SLC supply catchments) is especially vulnerable to
consecutive years of below-average snowfall, even if none of those consecutive years are extremely low.
This can be seen in water year 2021, where 2021 precipitation was only slightly below-average, but due to
below-average precipitation in 2020, streamflow in 2021 was far below that of 2020. The low snowfall
during 2020 was likely not enough to recharge groundwater, thus making the activation of stored water
during 2021 snowmelt less effective. However, variability in other hydroclimate metrics not considered in
this study (evapotranspiration, melt dynamics, etc.) likely influence the surprisingly low streamflow
generation in 2021 as well.

The Red Butte Creek climate and aquatic stations record 15 minute interval data measurements.
Below is a snapshot of the water quality measurements  taken at the lower Red Butte Canyon
sites from 2014-2022 including, daily discharge(Q), specific conductance(SpCond), pH,
dissolved oxygen(DO), dissolved organic matter(fDOM) and Nitrate-N.

Water Quality in Lower RBC

Figure A.4.7: Daily discharge at Lower RBC sites. Discharge generally increases downstream and the

hydrograph becomes much more “flashy” due to precipitation falling on impervious surfaces and

entering the stream channel rapidly through storm drains.

53



Figure A.4.8: Daily discharge at Lower RBC sites (separated into two panels). Discharge generally

increases downstream and the hydrograph becomes much more “flashy” due to precipitation falling on

impervious surfaces and entering the stream channel rapidly through storm drains.

Figure A.4.9: Daily specific conductance at Lower RBC sites (separated into two panels for clarity).

SpCond values at downstream sites are typically similar during summer low flows, but increase

dramatically during winter storms as road salts and other contaminants are flushed into the stream.
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Figure A.4.10: Time series of daily pH values in Red Butte Creek.

Figure A.4.11: Daily turbidity values (NTU) at Lower RBC sites (separated into two panels for clarity). A

few very high values at FD and 1300E extend past the y-axis limit on the top figure.
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Figure A.4.12: Daily dissolved oxygen (mg/L) values at Lower RBC sites. Dissolved oxygen at 900W drops

low enough in summer months to not support cold water aquatic species.

Figure A.4.13: Daily fDOM (Dissolved Organic Matter) (QSU) values at Lower RBC sites.

Figure A.4.14: Daily Nitrate-N (mg/L) values at Lower RBC sites.
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Red Butte Creek Summary Tables

KF_C TM_C ARBR_C GIRF_C

January 10.2 7.2 5.2 4.8

February 9.4 6.9 4.8 4.4

March 9.8 8.7 6.3 6.4

April 8.9 8.7 6.5 6.0

May 8.8 7.4 6.2 5.3

June 2.7 2.4 1.8 1.5

July 2.1 1.6 1.4 1.2

August 3.7 3.4 3.1 2.8

September 5.5 5.2 4.5 4.2

October 5.8 5.4 4.3 4.0

November 6.5 4.7 3.3 2.8

December 11.1 8.5 5.8 5.5

Table A.4.3: Mean monthly accumulated precipitation (cm) across all years at RBC climate sites.
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KF_C TM_C ARBR_C GIRF_C

January -3.3 -2.8 -1.3 -0.3

February -2.6 -1.5 0.3 1.9

March 1.2 2.9 4.9 6.7

April 4.2 6.1 8.0 9.8

May 9.0 10.1 12.4 14.3

June 15.1 15.8 19.4 21.8

July 18.2 19.5 23.9 26.0

August 17.2 18.3 22.5 24.5

September 13.1 13.7 17.2 19.0

October 5.9 6.8 9.2 11.0

November 1.0 1.8 4.0 5.4

December -3.6 -3.4 -1.7 -0.5

Table A.4.4: Mean monthly air temperature (C) across all years at RBC climate sites.
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LKF ARBR RBG CG FD 1300E 900W

January 565 704 675 708 1056 1471 2073

February 560 688 694 712 1107 1946 1812

March 555 648 662 669 701 1027 1113

April 553 576 611 609 616 781 767

May 553 572 576 571 571 706 962

June 556 576 564 559 563 817 1209

July 562 581 559 570 573 943 1291

August 560 584 563 584 571 978 1328

September 567 618 562 576 575 1057 1189

October 583 690 602 637 637 1076 995

November 580 700 631 664 751 1216 1038

December 571 698 653 700 1088 1410 1489

Table A.4.5: Mean monthly SpCond values (uS/cm) across all years at Red Butte Creek sites. SpCond is
typically lowest during the snowmelt season and highest from late summer through winter. Even during
the snowmelt season, streamwater SpCond is much higher than that of freshly melted snow, indicating
mixing of fresh snowmelt and older stored water. Very high SpCond values at downstream sites in winter
may be due to salt from roads washing into the stream via storm drains.
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LKF ARBR RBG CG FD 1300E 900W

January 8.35 8.41 8.47 8.47 8.42 8.15 8.19

February 8.37 8.43 8.47 8.53 8.43 8.17 8.17

March 8.41 8.35 8.47 8.56 8.45 8.30 7.91

April 8.43 8.39 8.46 8.57 8.51 8.37 8.35

May 8.45 8.44 8.50 8.55 8.48 8.36 8.28

June 8.38 8.49 8.49 8.51 8.47 8.25 8.26

July 8.34 8.47 8.49 8.51 8.46 8.18 8.24

August 8.32 8.48 8.63 8.61 8.51 8.03 8.26

September 8.35 8.49 8.56 8.65 8.54 8.08 8.44

October 8.26 8.46 8.52 8.56 8.44 8.06 8.13

November 8.31 8.43 8.52 8.56 8.40 8.09 8.16

December 8.36 8.39 8.46 8.47 8.43 8.10 8.20

Table A.4.6: Mean monthly pH values across all years at Red Butte Creek sites.
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ARBR FD 1300E 900W

January 12.7 12.6 14.9 19.3

February 20.9 15.1 13.8 19.5

March 33.3 16.7 21.9 20.6

April 36.3 22.2 26.7 24.5

May 28.8 22.0 21.9 21.3

June 17.7 21.8 14.8 17.0

July 14.3 25.7 14.0 19.1

August 14.2 27.5 16.7 21.0

September 17.2 23.2 14.0 25.0

October 24.9 27.0 15.6 30.1

November 16.0 21.3 19.7 40.8

December 13.0 16.5 15.3 22.5

Table A.4.7: Mean monthly fDOM values (QSU) across all years at Red Butte Creek sites. ARBR site (the
only site in this table unimpacted by human management) shows higher fDOM values during snowmelt
season, suggesting the activation of stored soil water during melt.
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LKF ARBR RBG CG FD 1300E 900W

January 9.0 6.3 7.7 12.1 37.9 17.3 46.5

February 9.9 4.9 7.2 8.5 17.2 14.3 24.9

March 9.2 10.7 11.5 11.6 18.8 19.8 48.0

April 13.6 30.5 23.5 22.6 24.5 24.8 43.6

May 9.2 16.9 27.9 28.6 32.9 25.1 43.1

June 6.8 6.8 19.4 19.9 19.4 14.7 11.9

July 5.8 6.7 19.0 17.1 14.9 11.0 15.0

August 4.6 3.1 20.2 19.4 14.9 33.2 13.1

September 2.9 2.9 23.2 19.2 14.2 5.6 16.8

October 2.0 2.7 10.8 12.0 10.3 8.7 19.4

November 5.0 1.8 9.6 7.2 9.3 4.8 16.1

December 5.7 2.0 13.5 9.6 11.7 7.5 18.6

Table A.4.8: Mean monthly turbidity values (NTU) across all years at Red Butte Creek sites.
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LKF ARBR RBG CG FD 1300E 900W

January 10.7 12.0 11.5 11.8 11.8 10.4 9.6

February 10.6 11.8 11.3 11.6 11.6 10.2 8.9

March 10.3 11.1 10.9 10.9 10.9 10.4 9.6

April 10.0 10.4 9.9 10.1 10.0 9.8 9.3

May 9.5 9.6 9.0 9.2 9.1 9.0 7.5

June 9.2 9.0 8.3 8.2 8.1 8.4 6.7

July 9.0 8.3 7.7 7.5 7.5 8.3 6.4

August 9.0 8.4 8.2 7.8 7.8 8.4 6.0

September 9.2 9.0 8.3 8.3 8.3 8.6 7.1

October 9.6 9.9 9.1 9.4 9.3 8.9 6.3

November 10.1 11.2 10.5 10.6 10.6 9.3 7.2

December 10.6 11.9 11.3 11.6 11.7 10.2 9.3

Table A.4.9: Mean monthly dissolved oxygen values (mg/L) across all years at Red Butte Creek sites. DO
levels at most sites are high enough to sustain cold-water aquatic species year-round, while at 900 W DO
often drops below 6 mg/L (see timeseries figure), likely limiting the abundance of cold-water aquatic
species.
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1300E 900W

January 1.41 1.92

February 1.73 1.93

March 0.86 0.63

April 0.68 0.64

May 0.78 0.64

June 1.48 0.85

July 2.00 0.81

August 2.14 0.98

September 1.99 0.94

October 2.05 1.70

November 1.86 1.07

December 1.62 1.67

Table A.4.10: Mean monthly Nitrate-N values (mg/L) at Red Butte Creek sites. Nitrate values are on

average slightly lower at the 900W site compared to 1300E, but during isolated events, Nitrate-N spikes

much higher at 900W than at 1300E.
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