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ABSTRACT
Four-dimensional variational data assimilation (4D-Var) seeks to find an optimal initial field that minimizes

a cost function defined as the squared distance between model solutions and observations within an assimilation
window. For a perfect linear model, Lorenc showed that the 4D-Var forecast at the end of the window coincides
with a Kalman filter analysis if two conditions are fulfilled: (a) addition to the cost function of a term that
measures the distance to the background at the beginning of the assimilation window, and (b) use of the Kalman
filter background error covariance in this term. The standard 4D-Var requires minimization algorithms along
with adjoint models to compute gradient information needed for the minimization. In this study, an alternative
method is suggested based on the use of the quasi-inverse model that, for certain applications, may help accelerate
the solution of problems close to 4D-Var.
The quasi-inverse approach for the forecast sensitivity problem is introduced, and then a closely related

variational assimilation problem using the quasi-inverse model is formulated (i.e., the model is integrated back-
ward but changing the sign of the dissipation terms). It is shown that if the cost function has no background
term, and has a complete set of observations (as assumed in many classical 4D-Var papers), the new method
solves the 4D-Var-minimization problem efficiently, and is in fact equivalent to the Newton algorithm but without
having to compute a Hessian. If the background term is included but computed at the end of the interval, allowing
the use of observations that are not complete, the minimization can still be carried out very efficiently. In this
case, however, the method is much closer to a 3D-Var formulation in which the analysis is attained through a
model integration. For this reason, the method is called ‘‘inverse 3D-Var’’ (I3D-Var).
The I3D-Var method was applied to simple models (viscous Burgers’ equation and Lorenz model), and it was found

that when the background term is ignored and complete fields of noisy observations are available at multiple times,
the inverse 3D-Var method minimizes the same cost function as 4D-Var but converges much faster. Tests with the
Advanced Regional Prediction System (ARPS) indicate that I3D-Var is about twice as fast as the adjoint Newton
method and many times faster than the quasi-Newton LBFGS algorithm, which uses the adjoint model. Potential
problems (including the growth of random errors during the integration back in time) and possible applications to
preconditioning, and to problems such as storm-scale data assimilation and reanalysis are also discussed.

1. Introduction

Over the last decade many important applications of
the backward integration of the adjoint of the linear
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tangent model have been introduced in the literature.
These include the generation of singular vectors for en-
semble prediction (e.g., Molteni et al. 1996), four-di-
mensional variational data assimilation (e.g., Lewis and
Derber 1985; Le Dimet and Talagrand 1986; Courtier
et al. 1994), forecast sensitivity to the initial conditions
(Rabier et al. 1996; Pu et al. 1997a), and targeted ob-
servations (e.g., Rohaly et al. 1998; Pu et al. 1998).
Among advanced methods for data assimilation, four-

dimensional variational data assimilation (4D-Var) is the
approach that has received the most attention in recent
years (e.g., Derber 1989; Courtier et al. 1994; M. Zu-
panski 1993). A simplified version has been imple-
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mented recently at the European Centre for Medium-
Range Weather Forecasts (ECMWF; Bouttier and Ra-
bier 1997; Rabier et al. 1997), and at the time of this
writing, the National Centers for Environmental Pre-
diction (NCEP) is testing a 4D-Var system for the Eta
Model.
In 4D-Var a cost function is defined as the squared

distance between a model integration and the obser-
vations in a given assimilation interval. Lorenc (1986,
1988) showed that for a linear perfect model, if (a) a
background error term is added to the cost function at
the beginning of the assimilation period, and (b) the
background error covariance is the same as that used in
the Kalman filter (KF) at the initial time, then the 4D-
Var analysis at the end of the interval is the same that
would be obtained using the KF. This makes 4D-Var
attractive, because it is much less expensive than KF
(see also Daley 1991; Thepaut et al. 1993).
4D-Var provides initial conditions for a model inte-

gration that is close to the observations, but it also has
some disadvantages.
1) It is difficult to include forecast error covariances in
the cost function except at the beginning of the in-
terval, which forces the use of short assimilation
intervals in order to maintain the impact of model
errors small. It is obvious from Lorenz chaos theory
that even with a perfect model, one would not want
to perform 4D-Var over, for example, a 2-week data
assimilation interval, since the 4D-Var analysis
would be given by the state of the model after a 2-
week integration, when the predictability has been
lost (Pires et al. 1996). Even if the assimilation in-
terval is reduced to a shorter period, such as 6–24
h, the neglect of model errors during the forecast
can lead to unrealistic results (Menard and Daley
1996). There have been attempts to include simple
evolving model errors (e.g., Derber 1989; D. Zu-
panski 1997), but much remains to be done in this
area.

2) 4D-Var has a large computational cost compared to
3D-Var (typically 10–100 or more iterations are re-
quired for convergence, equivalent to about 30–300
model integrations per day). ECMWF, for example,
has a powerful supercomputer about 25 times faster
than a Cray C90, and has been running a model at
a horizontal resolution of T213. Nevertheless,
ECMWF had to make several simplifying assump-
tions in their implementation of 4D-Var (such as us-
ing a lower horizontal resolution model of T63 and
a short assimilation window) in order to reduce the
computational cost (Bouttier and Rabier 1997; Ra-
bier et al. 1997).
Recently Wang et al. (1997) suggested the use of

backward model integrations in order to accelerate the
convergence of 4D-Var (without including background
error in the cost function). Pu et al. (1997a) showed that
for the problem of forecast sensitivity, closely related

to 4D-Var, a backward integration with the ‘‘quasi-in-
verse’’ of the tangent linear model (TLM) gave results
far superior to those obtained using the adjoint model.
The quasi-inverse model is simply the model integrated
backward but changing the sign of dissipative terms in
order to avoid computational blowup. It can be applied
to either the tangent linear or the full nonlinear model,
each of which has advantages for different applications.
The quasi-inverse linear (QIL) method has been tested
successfully at NCEP in several different applications,
for example, forecast error sensitivity analysis and data
assimilation (Pu et al. 1997a), and adaptive observations
(Pu et al. 1998).
Wang et al. (1997) adopted the quasi-inverse ap-

proach for their adjoint Newton algorithm (ANA), and
applied it to a simplified 4D-Var problem, using sim-
ulated data, using the Advanced Regional Prediction
System (ARPS; Xue et al. 1995), with impressive re-
sults. They assumed the availability of a complete set
of observations at the end of the assimilation interval,
and showed that the ANA converged in an order of
magnitude fewer iterations, and to an error level an order
of magnitude smaller than the conventional adjoint ap-
proach to solve the same (simplified) 4D-Var problem.
Kalnay and Pu (1998) generalized the Wang et al.

(1997) approach by including a background term to the
cost function and further simplified the method. The
background error term in the cost function allows using
incomplete sets of observations, but in order to maintain
the efficiency of the method, it is necessary to estimate
the background error term at the end of the assimilation
interval, rather than at the beginning as in the Lorenc
(1986) formulation. We have further generalized the
method to allow for the assimilation of data at different
times, rather than only at the end of the interval, as in
Wang et al. (1997). The results suggest that the quasi-
inverse model may be used in data assimilation for ac-
celerating convergence and reducing spinup problems,
although problems may arise when tested on compre-
hensive atmospheric models.
In this paper we first introduce the quasi-inverse ap-

proach for the forecast sensitivity problem, and then
formulate a closely related variational assimilation prob-
lem using the quasi-inverse model (section 2). We show
that if the cost function has no background term, and
has a complete set of observations (as was assumed in
many classical 4D-Var papers), the new method solves
the 4D-Var-minimization problem efficiently, and is in
fact equivalent to the Newton algorithm but without
having to compute a Hessian. If the background term
is included but computed at the end of the interval, the
minimization can still be carried out very efficiently,
but in this case the method is closer to a 3D-Var for-
mulation in which the analysis is attained through a
model integration. For this reason, we call the method
‘‘inverse 3D-Var’’ (I3D-Var).
In section 3 we introduce a simple ‘‘model’’ (viscous

Burgers’ equation), which includes effects mimicking
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the three main components of atmospheric models: ad-
vection, large-scale instabilities, and dissipative pro-
cesses. Using this simple model we show the effects of
applying a linear tangent model, its adjoint, the exact
inverse, and the quasi-inverse model, and compare one
iteration of inverse 3D-Var and adjoint 4D-Var. In sec-
tion 4 we present preliminary results comparing inverse
3D-Var and the adjoint 4D-Var using Burgers’ model
and Lorenz’s model (Lorenz 1963). We show that when
the background term is ignored and complete fields of
noisy observations are available at multiple times, the
inverse 3D-Var method still minimizes the same cost
function as 4D-Var (but much more efficiently). Section
5 discusses several topics related to possible applica-
tions of inverse 3D-Var: assimilation of data at multiple
time levels, research on a storm-scale model with re-
versible clouds for storm-forecast initialization, and the
problem of random observational errors, which may am-
plify during the backward integration (Reynolds and
Palmer 1998).

2. Formulation of inverse 3D-Var

a. Forecast sensitivity

We introduce inverse 3D-Var by first considering the
forecast sensitivity problem posed by Rabier et al.
(1996): Find the change in initial conditions !x0 that
‘‘optimally’’ corrects a perceived forecast error at the
final time t. In what follows, M is a nonlinear forecast,
that is, xt " M(x0), A is the analysis, E " M # A is
the perceived error, L is the linear propagator (linear
tangent model integrated forward in time), and L* is its
adjoint with respect to the metric used in the definition
of the inner product: $x, Ly% " $L*x, y% for any pair of
vectors x, y. Then !x0 is the solution of

M(x & !x ) " A or (1)0 0

!x " L !x ! M(x ) # A " E. (2)t 0 0

1) ADJOINT APPROACH
(RABIER ET AL. 1996; PU ET AL. 1997B)

In the standard adjoint approach, we define an error
cost function using, for example, an energy norm, that
is, defining the inner product such that the norm of a
vector x is given by $x, x% " xTW 2x, the total energy
of a state vector x. With this inner product, $x, Ly% "
$L*x, y% defines the adjoint of L with respect to the total
energy norm L* " W#2LTW 2, where LT is the adjoint
of L with respect to the Eulerian norm (transpose of L).
The error cost function is then

1
J " $M(x ) # A, M(x ) # A%. (3a)0 02

A perturbation !x0 in the initial conditions will lead to
a change in the cost function

!J " $M(x0) # A, !xt% " $M(x0) # A, L !x0%

" $L*[M(x0) # A], !x0% " $L*E, !x0%. (3b)

Since by definition !J " $!J(x0), !x0%, the gradient of
the cost function with respect to the initial conditions
is given by

!J(x0) " L*L !x0 " L*E. (4)

Equation (4) indicates that to obtain the gradient of
the cost function we have to integrate backward with
the adjoint model, starting from the perceived error at
the final time. The negative gradient gives an ‘‘optimal’’
descent direction that results in the maximum decrease
of the cost function for a given size perturbation. As
pointed out by Rabier et al. (1996), with this definition
of inner product, the gradient of J has the same units
as the state vector x, but it depends on the choice of
norm. The adjoint procedure requires in addition an es-
timation of an appropriate amplitude ', after which the
adjoint sensitivity correction becomes

!x0 " '!J(x0). (5)

This correction can be plugged into (1) and the whole
procedure iterated (Pu et al. 1997a).

2) QUASI-INVERSE APPROACH

In the QIL approach we try to solve (2) directly, but
in order to do so, we need to have an approximation of
the inverse of the TLM:

!x0 " L#1E. (6)

The QIL approximation to L#1 consists of simply run-
ning the TLM backward (changing the sign of (t, and
also changing the sign of the dissipative terms to avoid
computational blowup). Pu et al. (1997a) found that this
is a rather accurate approximation to the dry-dynamics
inverse model. It solves a deterministic problem, so that
there is no need to find an optimal amplitude, as required
by the adjoint method. Reynolds and Palmer (1998)
compared this method with running the exact inverse
(using a Runge–Kutta time scheme and no change in
sign for dissipation). They found that the presence of
dissipation during the backward integration had a ben-
eficial effect of a small reduction in noisiness.
Note that the inverse solution is not ‘‘optimal’’ like

the adjoint solution, since there is no constraint on the
size of !x. However, the inverse approach can be con-
sidered to be ‘‘perfect’’: it reaches in a single step the
same solution (!J ! 0) that the adjoint approach would
reach after many iterations. It should be pointed out that
Lorenc (1988) integrated the NCEP nested grid model
backward with a change of sign in the physics, but in
his experiments he was attempting to approximate the
adjoint model, not the inverse model.
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b. Inverse 3D-Var

Wang et al. (1997) were trying to solve a 4D-Var
problem on what they denote the ‘‘estimated Newton
descent direction’’ rather than the descent direction pro-
vided by the standard adjoint approach. For this purpose
they needed to approximate the inverse TLM, and suc-
ceeded by adopting the QIL method. In the experiments
they did with simulated data and the adiabatic version
of the ARPS model, they got convergence in an order
of magnitude fewer iterations with the new method
(ANA), and a decrease of the cost function, which was
also an order of magnitude better than with the adjoint
approach. They assimilated simulated data only at the
end of the interval, and only the full model field, so
that they did not need a background error term in the
cost function.
In this subsection we generalize their approach by

including both data and background in the cost function,
with appropriate error covariances. To maintain the abil-
ity to solve the minimization efficiently, however, the
background term is estimated at the end of the interval,
rather than at the beginning as in Lorenc (1986). Our
derivation is also considerably simpler than the ANA
method, and our method does not use line minimization,
as in Wang et al. (1997). As a result, our method is
about twice as fast as the ANA approach.
Assume (for the moment) that data yo is available at

the end of the assimilation interval t, with !x " xa #
xb, !y " yo # H(xb). Here xa and xb are the analysis
and first guess, respectively, and H is the ‘‘forward ob-
servation operator,’’ which converts the model first
guess into first guess observations (Ide et al. 1997). The
cost function that we minimize is the 3D-Var cost func-
tion at the end of the interval. It is given by the distance
to the background of the forecast at the end of the time
interval (weighted by the inverse of the forecast error
covariance B), plus the distance to the observations
(weighted by the inverse of the observational error co-
variance R), also at the end of the interval:

1
T #1J " (L !x) B (L !x)

2
1

T #1& (HL !x # !y) R (HL !x # !y). (7)
2

Here !x (the control variable) is the difference between
the analysis and the background (at the present iteration)
at the beginning of the assimilation window, L and LT
are, as before, the TLM and its adjoint, and H is the
tangent linear version of the forward observation op-
erator H. If we take the gradient of J with respect to the
initial change !x, we obtain

!J " LT[B#1L !x & HTR#1(HL !x # !y)]. (8)

From this equation we see that the gradient of the
cost function is given by the backward adjoint integra-
tion of the rhs terms in (8). In the adjoint 4D-Var, the

gradient information is needed in an iterative minimi-
zation algorithm (such as quasi-Newton, conjugate gra-
dient), which is used to minimize the cost function. The
iterative process can be expressed simply in the form

xk&1 " xk & akpk, (9)
where, for iteration number k, the vector pk represents
a search direction, and the positive scalar ak is the step
length. All minimization algorithms require the com-
putation of the search direction, which is a function of
!J. For example, pk " #!J for the steepest descent
algorithm, Qpk " #!J for the Newton method where
Q is a Hessian matrix, and Spk " #!J for the quasi-
Newton method where S is an approximate Hessian ma-
trix. These algorithms require many iterations until !J
becomes very small and the minimum of J is reached.
For some algorithms (e.g., LBFGS), each iteration re-
quires a few corrections (or function calls) to compute
the approximate Hessian, so that the number of direct
and adjoint integrations required by 4D-Var can be sig-
nificantly larger than the number of iterations.
In the inverse 3D-Var, however, we seek to obtain

directly the ‘‘perfect solution,’’ that is, the !x that makes
!J " 0 for small !x. From (8) we can eliminate the
adjoint operator, and obtain the ‘‘perfect’’ solution given
by

L !x " (B#1 & HTR#1H)#1HTR#1 !y. (10)
Since we have a good approximation of L#1 at hand (the
quasi-inverse model obtained by integrating the tangent
linear model backward, but changing the sign of fric-
tional terms), we can apply it and obtain

!x " L#1(B#1 & HTR#1H)#1HTR#1 !y. (11)
This can be interpreted as starting from the 3D-Var

analysis increment at the end of the interval and inte-
grating backward with the TLM or an approximation of
it. If we do not include the forecast error covariance
term B#1, (11) reduces to the ANA algorithm of Wang
et al. (1997) except that we do not need to run a min-
imization algorithm though a few quasi-inverse itera-
tions are needed due to the discrepancy between the full
nonlinear model and the linear model. We have tested
the inverse 3D-VAR with the ARPS model and found
that for this reason, the inverse 3D-Var is computation-
ally about twice as fast as the Wang et al. (1997) ANA
scheme.

c. Equivalence of inverse 3D-Var and the
Newton minimization algorithm

It is easy to prove that if (i) the forward model is
linear, and (ii) the quasi-inverse tangent approximates
the true inverse tangent linear model, then the inverse
3D-Var approach is equivalent to solving the minimi-
zation problem (at each time level) using the ideal New-
ton iterative method (e.g., Gill et al. 1981). Suppose that
we are seeking the minimum of a cost function at x &
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FIG. 1. Schematic of inverse 3D-Var approach when observations
are available at several time levels in an assimilation window (t1–t0),
in which the observational increments are brought back to the be-
ginning of the assimilation window. Solid line implies forward in-
tegration with the nonlinear model or the TLM, while dashed lines
are backward integrations with the quasi-inverse nonlinear model or
the quasi-inverse TLM. Analysis data, which can be a full analysis
or an observation increment, are represented as ). Model states are
shown as ".

!x, and our present estimate of the solution is x. Then
by Taylor expansion,

!J(x & !x) " !J(x) & *2J(x) !x " 0. (12)
Here *2J(x) is the Hessian matrix *2Ji,j " +2J/+xi+xj.
The Newton algorithm, which has quadratic rate of con-
vergence, solves the rhs part of equation (12): !J(x) &
*2J(x) !x " 0. Therefore the Newton iteration is given
by

!x " #[*2J(x)]#1!J(x). (13)
Using the full-Newton algorithm (13) is extremely ex-
pensive because it requires the computation of both the
gradient and the inverse of the Hessian. Navon and Leg-
ler (1987) reviewed various alternatives to the full-New-
ton algorithm for meteorological application (e.g., qua-
si-Newton, limited-memory quasi-Newton, and trun-
cated Newton methods). With the truncated Newton
method the Hessian-vector product [*2J(x) !x in (12)]
is obtained approximately by the difference of gradients,
while with the adjoint truncated Newton method (Wang
et al. 1995) it is obtained exactly by solving the second-
order adjoint. Although both methods can reduce the
computing cost of the full-Newton iterations and show
more efficient performance than quasi-Newton methods
(Wang et al. 1995), they still require many iterations
and are computationally expensive.
For the specific cost function (7), the Hessian is given

by
*2J " LT(B#1 & HTR#1H)L. (14)

Therefore the first iteration with the Newton descent
algorithm is

!x1 " [LT(B#1 & H TR#1H )L]#1LTH TR#1 !y
" L#1(B#1 & H TR#1H )#1H TR#1 !y, (15)

which is identical with the inverse 3D-Var solution (11).
The inverse 3D-Var algorithm solves exactly the same

problem but takes advantage of the fact that the lhs of
(12)!J(x & !x) " 0 can be solved directly [cf. Eqs.
(8) and (11)]. Therefore the inverse 3D-Var iteration
(11) is identical to the Newton algorithm iteration (as-
suming the quasi-inverse approximates the true inverse),
but it is not necessary to compute the Hessian or the
gradient, just to integrate the linear tangent model back-
ward.
The results of Wang et al. (1997) and Pu et al. (1997b)

support considerable optimism for this method. For a
quadratic function, the Newton algorithm (and the
equivalent inverse 3D-Var) converges in a single iter-
ation. Since the cost functions used in 4D-Var are close
to quadratic functions, inverse 3D-Var can be considered
equivalent to perfect preconditioning of the simplified
4D-Var problem.

d. Multiple time levels of data
If there are data at different time levels we can choose

to bring the data increments to the same initial time

level (as shown schematically in Fig. 1) so that the
increments corresponding to the different data can be
averaged, with weights that may depend on the time
level or the type of data. For applications in which
‘‘knowing the future’’ is allowed, such as reanalysis,
the observational increments could be brought to the
center of an interval, and used for the final analysis. In
section 4 we show that, in a simple nonlinear model
with complete data, when increments are brought to the
same initial time, we solve a separate minimization for
each time level, but that in fact (at least for this model)
the I3D-Var minimizes the same multiple-level cost
function as the simplified 4D-Var problem.

3. Burgers’ equation example
a. Simple TLM, adjoint, and inverse model

formulation

Consider the simplest example of a nonlinear model
with advection and diffusion, based on Burgers’ equa-
tion

2+u +u + u
" #u & , , (16)

2+t +x +x

where u " u & !u and , is a diffusion coefficient, and
we assume that the basic flow u(x) is a slowly varying
function of x, and neglect its time changes.
The linear perturbation model is then

2+!u +!u du + !u
" #u # !u & , . (17)

2+t +x dx +x

Assume

!u " A(t)eik(x#ut) .

Then
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dA du
2# ikuA " #ikuA # A # ,k A or

dt dx
2#[(du /dx)&,k ]tA(t) " A e .0

We can interpret the first term in the exponent as an
instability associated with the large-scale flow (pertur-
bations grow where there is convergence, du/dx - 0),
whereas the second term represents small-scale dissi-
pative processes. The imaginary exponent represents the
effects of large-scale advection.
So the solution is

!u(t) " e#ikute#(du/dx)t ,2#,k te !u(0) (18)

which can be interpreted as

final perturbation

" (large-scale advection)(large-scale instability)

) (diffusion)initial perturbation.

The TLM or propagator between time " 0 and time
" t, is then

L " .2#(du/dx&,k )t#ikute (19)

The adjoint model is obtained by taking the complex
conjugate of the transpose:

L* " .2#(du/dx&,k )t&ikute (20)

The exact inverse linear tangent model is obtained by
integrating backward in time (changing the sign of
time):

L#1 " 2(du/dx&,k )t&ikute (21)

and the approximate inverse (quasi-inverse) QTLM (Pu
et al. 1997a) is obtained by integrating backward in time
except for changing the sign of the diffusion terms:

L. " .2(du/dx#,k )t&ikute (22)

If we integrate forward with the linear model fol-
lowed by a backward integration with the exact inverse,
we get the exact initial conditions:

L#1L " I. (23)

If we integrate forward with the linear model followed
by a backward integration with the adjoint, the unstable
modes grow both during the forward and the backward
integration, and damping also occurs twice:

L*L " ,2#2(du/dx&,k )te (24)

whereas if we follow the forward integration with a
backward integration with the quasi-inverse QTLM, we
get

L.L ,2#2,k te (25)

that is, we get the exact initial condition except
smoothed twice by the diffusive terms.

b. Application of 4D-Var and inverse 3D-Var to
Burgers’ equation

Let us assume that H " I (observations are made in
the model variable space). We assume

B " 'U 2I, R " U 2, (26)

where U 2 is the observational error variance, and 'U 2

is the background error variance.
Then, from (10), the inverse 3D-Var analysis is given

by

'
obsL !u " !u , (27)0 1 & '

where ' K 1 corresponds to small background errors
(good forecast) and ' k 1 to a poor forecast (relative
to the observations). If we neglect diffusion, the inverse
3D-Var solution is

'
(du /dx)t&ikut obs!u " e !u . (28)0 1 & '

The observational increments are appropriately weight-
ed and moved back in time (advected and decreased
where the flow is unstable). Note that in areas of large-
scale decay (du/dx / 0) the initial increments will be
larger than at the final time. This is not of concern,
because when integrated forward, they will decay to
their proper observed values.
If using the method of steepest descent, the first it-

eration of the regular 4D-Var, on the other hand, is

!u1 " a!J0 " aexp[0 (du/dx)t& ikut] !uobs, (29)

where a is an appropriately chosen amplitude. Like the
forecast sensitivity problem, it moves the observational
increment backward in time, but enhancing the growing
modes during the adjoint integration. It should be noted
that when the 4D-Var is iterated, eventually it should
converge to the same solution (28).

4. Numerical experiments

We have performed preliminary experiments with the
NCEP global model (Pu et al. 1997a), and with two
simple models, viscous Burgers’ equation and the Lo-
renz (1963) model.

a. The NCEP global model

The application to the global NCEP model was a
forecast sensitivity approach. The 24-h forecast error
was estimated from the 24-h analysis, and the difference
between the analysis and the forecast was integrated
backward, using the TLM of the NCEP global model,
with the sign of surface friction and horizontal diffusion
changed. The results were very encouraging, indicating
that the correction of the forecast was considerably bet-
ter than using the adjoint sensitivity approach, even
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FIG. 2. Convergence rate of cost functions for two methods (adjoint
4D-Var vs inverse 3D-Var) as a function of CPU time, which is
proportional to ICALL (number of calls for the nonlinear model and
adjoint or inverse model). For the adjoint 4D-Var, the LBFGS al-
gorithm is employed, in which one iteration requires more than one
ICALL. The number of iterations is described in the parentheses.
Reynolds number is 1000, and the initial error magnitude is 50% for
u. The assimilation window length is (a) 71 and (b) 106.

when the latter was iterated five times (Pu et al. 1997a).
Several important points should be noted:

1) Ideally, the TLM integrated backward should have
a reversible formulation of the Hamiltonian (energy
conserving) dynamics. In practice, the NCEP model
has only approximately reversible dynamics (e.g.,
the Robert time filter is slightly diffusive). This will
introduce additional diffusion during the backward
integration; this subject is further discussed in the
next subsection.

2) A known nonlinear solution was integrated backward
and again forward over 24 h. The error in repro-
ducing the full nonlinear perturbation with the TLM
and the quasi-inverse TLM was about 10% in both
total and kinetic energy throughout the model at-
mosphere, except near the surface, where the effect
of changing the sign of friction is most important
and where the error reached about 25%.

3) The amplitude of the quasi-inverse sensitivity was
much larger than the adjoint sensitivity. This is be-
cause the adjoint sensitivity focuses only on the fast-
est growing modes [cf. Eq. (24)], whereas the quasi-
inverse sensitivity includes both growing and de-
caying modes (and the latter grow during the back-
ward integration). This may result in unwanted noise
growth, and needs to be handled carefully.

b. Burgers’ equation

We performed some numerical tests with viscous Bur-
gers’ equation (16). It should be noted that the model
had been originally programmed using the Lax scheme
(e.g., Anderson et al. 1984), which is highly diffusive
and far from reversible (S. K. Park, personal commu-
nication 1998). Such a scheme would not be appropriate
for a method that requires approximating the inverse of
the model by running it backward. This was easily
solved by rewriting the model with a leapfrog scheme
for advection (with a forward first time step) and
DuFort-Frankel for diffusion (e.g., Anderson et al.
1984). Therefore the numerical scheme was fully re-
versible except for the first forward time step. This al-
lowed us to compare the effects of using the exact in-
verse linear model (IL) and the QIL as long as the Reyn-
olds number was large enough (i.e., low dissipation) for
the exact inverse to remain computationally stable.
The results were excellent. Figure 2a shows the cost

function for a case in which the first guess included
errors of 50%, and the observations were exact. As in
Wang et al. (1997), the observation field at the end of
the assimilation interval was complete, and the cost
function did not include a background term. Unless not-
ed otherwise, the results described below are computed
with the QIL. The 4D-Var minimization was performed
using the LBFGS algorithm (Liu and Nocedal 1989),
based on a limited-memory quasi-Newton method. It
should be noted that the parameter for checking direc-

tional derivative condition (GTOL) in the LBFGS al-
gorithm has to be chosen appropriately for each prob-
lem; after some experimentation, we chose it to be
GTOL " 0.1, which we found to be optimal for the 4D-
Var in our case. For an assimilation window of 71 time
steps (Fig. 2a), the inverse 3D-Var converged to less
than 10#12 of its initial value in 4 iterations, whereas
the adjoint algorithm required 11 iterations (and 17 com-
putations of the gradient, each one involving a forward
and backward integration) in order to converge to 10#10.
For longer assimilation windows, the advantages of in-
verse 3D-Var became more apparent. For example,
when the assimilation window was extended to 106 time
steps (Fig. 2b), inverse 3D-Var converged to 10#10 in
only five iterations. The 4D-Var, on the other hand, con-
verged to the same value in 34 iterations, and almost
80 computations of the gradient (each one involving a
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FIG. 3. Same as in Fig. 2 except that the assimilation is 101, and
that, for the adjoint 4D-Var, the case with observations only at the
end of the assimilation window (END OBS) is compared with the
case with observations at all time steps (ALL OBS).

FIG. 4. Rms errors of u between true fields and forecast fields from
various initial conditions generated by adjoint 4D-Var and inverse
3D-Var methods. Each method has been compared for different it-
eration numbers where initial conditions are generated using obser-
vations at six time levels (t " 0, 21, 41, 61, 81, and 101). The inverse
3D-Var has been performed by running quasi-inverse TLM starting
from each observation time (except t " 0) and those ensemble initial
conditions are averaged including the observation fields at t " 0.
Reynolds number is 1000, and initial error magnitude is 10% for u.
Each observation includes random errors with maximum magnitude
of 10%.

TABLE 1. Variations in the cost function computed from different
initial conditions generated by the same procedure as in Fig. 4 except
that each variational assimilation (adjoint and ensemble inverse) has
stopped at iteration numbers of 1–5.

Iteration Adjoint Ensemble inverse

0
1
2
3
4
5

41.8588
22.5407
2.1480
2.0967
0.8558
0.8666

41.8588
1.7420
0.9197
0.8881
0.8787
0.8746

forward and backward integration of the model or its
adjoint). Choices of smaller GTOL resulted in a lack of
convergence.
Figure 3 shows the performance of two methods for

the same case as in Fig. 2 but with an assimilation
window of 101 time steps and different number of ob-
servations. The inverse 3D-Var converges to 10#12 of
its original value after three iterations, but 4D-Var with
data at the end of the interval requires 44 equivalent
model integrations to converge to 10#10. If we provide
4D-Var with complete observations for every time step,
it converges to 10#10 of the original cost function in 12
time integrations. Many other experiments including ob-
servational and background errors were performed with
uniformly good results. Some of the conclusions from
these experiments (S. K. Park 1998, personal commu-
nication) are:
1) Results from inverse 3D-Var are very good in es-
sentially every case. In general, for large Reynolds
number (low dissipation), the QIL converges slightly
faster than the exact IL. For small Reynolds number,
the exact IL becomes unstable, but the QIL still con-
verges fast.

2) We also tested the results of having multiple time
levels in the observations. We included random er-
rors in the observations with maximum amplitude of
10% of the total range. We followed the approach
of Fig. 1, that is, we brought the observational in-
crements (innovations) from different observational
times backward to the same initial time level. Per-
forming an average of the simultaneous increments
gives very good results, and improves forecasts be-
yond the assimilation window roughly like (n)#½,
where n is the number of time levels in the obser-
vations. Additional iterations are performed inte-
grating the nonlinear model from the updated initial

conditions, and integrating backward the observa-
tional increments. The results of the forecasts with
one iteration of inverse 3D-Var were comparable to
those of 20 iterations of 4D-Var, whereas three it-
erations of inverse 3D-Var resulted in much better
forecasts (Fig. 4).

3) It is important to note that in this experiment, the
inverse 3D-Var approach in practice minimizes the
same total cost function as the variational approach,
even though it is only guaranteed to minimize one
observation level at a time (Table 1).

The variational approach gives a slightly better mini-
mization after four iterations, but this does not translate
into a more accurate forecast (Fig. 4, verified against
truth), since there is slight overfitting of noisy obser-
vations.
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FIG. 5. Convergence rate of cost functions for adjoint 4D-Var and
inverse 3D-Var (INV) using the Lorenz model. For adjoint 4D-Var,
two methods are compared: Fletcher–Reeves conjugate gradient
method (FR#CG) and the limited memory quasi-Newton method
(LBFGS).

c. Experiments with Lorenz 3-variable model
Inverse 3D-Var was also tested and compared with

regular (adjoint) 4D-Var using Lorenz (1963) 3-variable
model. Figure 5 shows the evolution of the cost function
using two different library minimization algorithms for
the 4D-Var approach [limited-memory quasi-Newton or
LBFGS, and Fletcher–Reeves conjugate gradient or
FR#CG—see Navon and Legler (1987) for details] and
the inverse 3D-Var. The results are similar to those ob-
tained with Burgers’ equation: inverse 3D-Var reduces
the cost function to 10#10 in three iterations and to 10#22

in five iterations (Fig. 5). The conjugate gradient and
quasi-Newton methods converge to 10#14 in about 20
and 14 iterations, respectively (where each iteration in-
cludes several forward nonlinear and backward adjoint
integrations). Figure 6 shows the cost function in the
(X0, Y0) space and the descent approach of the three
algorithms. The fact that inverse 3D-Var is equivalent
to a Newton algorithm is apparent by the directness of
its convergence: both the descent direction and the am-
plitude of the step are optimal. Several additional ex-
periments with random errors in the initial conditions,
multiple levels of observations, and observations of sub-
set of variables and their combinations have also given
uniformly excellent results (J. Gao 1998, personal com-
munication).

5. Discussion
In the following discussion we first consider the re-

lationship between the traditional 6-h cycle for 3D-Var,
4D-Var, and inverse 3D-Var (Cohn 1997; Courtier
1997). In 3D-Var (or previously in optimal interpola-
tion) the observations were lumped together within a
13-h window, and were assumed to have been taken at

the center of the interval. For example, an analysis at
1200 UTC included observations taken between 0900
UTC and 1500 UTC, but assumed to be observed at
1200 UTC. For observations made, for example, at 1000
UTC, this introduces two (relatively small) errors: the
innovations (observations minus background) are com-
puted with respect to a forecast at the wrong time, and
the innovations are applied at the wrong time (1200
UTC instead of 1000 UTC). The first error can be easily
corrected within 3D-Var: the background can be com-
puted at the time of the observation, rather than at the
center of the window. This correction is currently done
at NCEP. However, only 4D-Var corrects the second
error, 4D-Var (as implemented at ECMWF) computes
the initial conditions valid at 0900 UTC that best fit the
data at their correct times throughout the 0900–1500
UTC interval. It minimizes a cost function that includes
distance to the background at 0900 UTC, plus the dis-
tance to the observations at their correct time (binned
into 1-h intervals). The 4D-Var ‘‘analysis’’ at 1200 UTC
is defined as the 3-h forecast from the optimal initial
conditions at 0900 UTC. Because the minimization re-
quired about 80 iterations before reaching a satisfactory
level, ECMWF has used a T63 model for the minimi-
zation, whereas the forecast model has T213 resolution.
Inverse 3D-Var offers some additional flexibility: if

observations are complete, it allows transporting all the
innovations from 0900 to 1500 UTC to the desired time
(1200 UTC) essentially exactly (Fig. 1). The innovations
at 1200 UTC can then be analyzed into a 3D-Var that
includes different background weights depending on the
length of the forecast. In general, however, the obser-
vations are not complete, and a background error co-
variance needs to be introduced into the cost function.
In that case, the inverse 3D-Var analysis at the end of
the assimilation interval is equivalent to 3D-Var, but the
analysis is reached through a model integration, which
can be advantageous in reducing problems of spin up.
When knowledge of ‘‘future’’ observations is available
(as in reanalysis), and the goal is to optimize the analysis
(rather than to improve the forecast), the inverse 3D-
Var can also be used, as suggested by the forecast sen-
sitivity applications. In addition, it may be possible to
use the inverse 3D-Var as a first iteration in the complete
4D-Var problem, thus acting as a kind of preconditioner.
We have seen that inverse 3D-Var has several poten-

tial advantages, including accuracy, efficiency, and flex-
ibility, and these have been apparent in the simple model
experiments. It also has some potentially serious dis-
advantages, but we believe they can be overcome with
further development and experimentation:

1) Growth of noise that projects on decaying modes
during the backward integration. This is a very se-
rious problem, but it need not be a ‘‘show-stopper’’
since those errors will decay again during the next
forward integration. The results of Pu et al. (1997a)
for integrations 24 h and longer, and those obtained
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FIG. 6. Descending processes (dotted lines) toward the mini-
mum of the cost function (solid contours) in the two-dimensional
space (X0, Y0) for various methods: (a) FR#CG, (b) LBFGS, and
(c) Inverse 3D-Var. The first guess is (X 0 , Y 0 , Z 0 ) "
(#3.86, #8.77, 17.0)T. Solid arrows describe the gradient of cost
function or Newton direction computed at each iteration (num-
bered sequentially), which requires a few function calls for the
FR#CG and LBFGS algorithms. For the inverse 3D-Var, only one
function call is required for each iteration.

here with the Burgers’ equation and observational
noise are quite encouraging in this respect. It should
be noted that the results obtained by Reynolds and
Palmer (1998) when studying this problem are in
full agreement with those of Pu et al. (1998) and of
the present paper. They found that analysis uncer-
tainties grew during the backward integration, but
that during the forward integration they decayed
again. As a result the forecast error reduction
achieved at the end of the interval using the quasi-
inverse was equivalent to that derived using the pseu-
do-inverse method with 60–90 singular vectors, but
it was obtained at a computational cost several orders
of magnitude smaller.

2) Physical processes are generally not parameterized
in a reversible form in atmospheric models. This is
also serious, but to some extent it can be overcome.

For example, moist convective processes can be sim-
plified and parameterized in a reversible manner
through the first hour of model integration (Jerry
Straka 1998, personal communication). We are test-
ing this idea with the ARPS model, where we plan
to use a reversible parameterization of convection to
‘‘phase correct’’ the background field when, for ex-
ample, the model predicts a squall line shifted in
space and time from the observations.

3) The basic hydrodynamics of a model may not be
written in a reversible fashion. If the numerical dis-
cretization of the hydrodynamics is excessively dis-
sipative, this may require some rewriting, as dis-
cussed in section 4. Slightly dissipative schemes,
when integrated backward will also fall within the
‘‘QIL’’ approach: they will dissipate both forward
and backward.
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4) The truly dissipative processes in the atmospheric
model are not reversible, or may be reversible only
for short intervals. If dissipation is a major factor
during an assimilation window, it will not be well
represented by inverse 3D-Var. On the other hand,
both our results and those of Reynolds and Palmer
(1998), suggest that in most cases, the quasi-inverse
approximation slightly improves the results.

5) Finally, it has to be demonstrated with more complex
systems that in nonlinear integrations this method
will provide an improvement upon what can be at-
tained with 3D-Var alone.
We are currently planning to test the inverse 3D-Var

approach on the ARPS model, by combining it with a
3D-Var analysis including Doppler radar observations
of radial velocities and reflectivities, using a linear tan-
gent model with simplified reversible physics. If suc-
cessful, we will also attempt to apply this method to
the NCEP global model, where it could be applied, for
example, in the second phase of the global Reanalysis
project (Kalnay et al. 1996), where ‘‘future’’ data is
available during the assimilation.
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