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ABSTRACT

The errors in the first-guess (forecast field) of an analysis system vary from day to day, but, as in all current
operational data assimilation systems, forecast error covariances are assumed to be constant in time in the NCEP
operational three-dimensional variational analysis system (known as a spectral statistical interpolation or SSI).
This study focuses on the impact of modifying the error statistics by including effects of the ‘‘errors of the
day’’ on the analysis system. An estimate of forecast uncertainty, as defined from the bred growing vectors of
the NCEP operational global ensemble forecast, is applied in the NCEP operational SSI analysis system. The
growing vectors are used to estimate the spatially and temporally varying degree of uncertainty in the first-guess
forecasts used in the analysis. The measure of uncertainty is defined by a ratio of the local amplitude of the
growing vectors, relative to a background amplitude measure over a large area. This ratio is used in the SSI
system for adjusting the observational error term (giving more weight to observations in regions of larger forecast
errors). Preliminary experiments with the low-resolution global system show positive impact of this virtually
cost-free method on the quality of the analysis and medium-range weather forecasts, encouraging further tests
for operational use. The results of a 45-day parallel run, and a discussion of other methods to take advantage
of the knowledge of the day-to-day variation in forecast uncertainties provided by the NCEP ensemble forecast
system, are also presented in the paper.

1. Introduction

A three-dimensional variational data assimilation sys-
tem (3D VAR), known as the spectral statistical inter-
polation (SSI) analysis system was implemented oper-
ationally into the global forecasting system in 1991 at
the National Centers for Environmental Prediction
(NCEP, formerly the National Meteorological Center)
(Parrish and Derber 1992; Derber et al. 1991). This
advanced data assimilation scheme has played a vital
role in recent data assimilation and research at NCEP
and is still under development (Derber and Wu 1996;
Parrish et al. 1997; Derber et al. 1994). The analysis is
performed every 6 h and the 6-h forecast field is used
as a first guess or background in the system. As in all
general variational data assimilation systems, the ob-
jective function to minimize is defined as (Lorenc 1986)
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where x is the analysis variable, xb is the first guess, and
y is the observational vector. Here, B and O denote the
6-h forecast and observational error covariance matrices,
respectively; K is a ‘‘forward’’ operator that transforms
analysis variables (such as temperature or vorticity) into
simulated observations (such as velocities or radiances);
and Jc denotes a dynamical constraint penalty that enforces
a global balance of the analysis increments. This system
is used to find an analysis field that best fits both the first
guess and observations. It assumes that the forecast error
and observation error are not correlated. The error co-
variance matrices B and O are currently held constant in
time. However, the uncertainties in the first guess do
change from day to day. It is therefore necessary to modify
such covariance weights (Wahba et al. 1995). It is our
purpose to investigate the impact of modifying the error
statistics by introducing the effect of ‘‘errors of the day,’’
a problem identified as high priority in data assimilation
(Kalnay and Toth 1994; Pu et al. 1997).

Iyengar et al. (1996) presented evidence indicating
that the bred vectors used in the NCEP operational glob-
al ensemble forecast system (Toth and Kalnay 1993,
1995) represent reasonably well the magnitude and the
horizontal and vertical distribution of analysis uncer-
tainty in a statistical sense, averaged over longer time
periods. They also found that the bred ensemble can
capture well the flow-dependent errors of the day: the
magnitude of the first-guess error correlates well with
the spread in the ensemble. Zhu et al. (1996) generate
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and verify probabilistic forecasts from the ensemble,
and the scores are quite good at short lead time. Based
on their results, the large spread in the short-range en-
semble forecasts usually can be used to point out areas
of large uncertainty in the first guess. Kalnay and Toth
(1994) modified the first guess in such a way that the
distance between the the first guess and the observations
was minimized along the direction of the local bred
vectors. This elimination of the bred vectors’ projection
on the first-guess error resulted in improved analyses,
with a significant positive impact upon the forecasts,
indicating that the ensemble provides information about
growing errors in the first guess.

In this study, we will introduce the use of bred grow-
ing vectors of the NCEP operational global ensemble
forecast (Toth and Kalnay 1993, 1995) into the NCEP
SSI analysis system. It will be used to estimate the de-
gree of uncertainty in the first guess that is related to
dynamically conditioned, fast-growing errors. We will
assume that this part of the first-guess error field can
be well estimated by the ensemble spread.1 Since cur-
rently the background error covariance in the SSI is cast
in spectral and not in physical space, the spatial impact
of large forecast error is done in a simpler fashion by
modifying the observational error covariance, which is
defined in physical space.

2. Methodology

To adjust geographically the covariances (which de-
termine the weight of the observations in the variational
data assimilation) by the error of the day, we define a
scalar factor based on the NCEP ensemble forecasts
measuring the uncertainties in first guess (forecast field).

The initial perturbation amplitudes in the NCEP en-
semble forecast are forced to be spatially varying on a
very large horizontal scale: they are smaller in data-rich
continents, and larger over oceans, in order to make
them proportional to the average analysis error. In ad-
dition to these fixed, continental-scale variations in am-
plitude, there are smaller areas of large spread of the
ensemble forecasts, usually occupying a more local re-
gion, which vary from day to day. When we refer to a
large uncertainty in a local area, we imply that the spread
is larger in the local area than in the continental-scale
background area (reference area). In this study, we es-
timate the spatially and temporally varying degree of
uncertainty in the first-guess forecast by 24-h opera-
tional global ensemble forecasts. In order to eliminate
the continental-scale, forced-amplitude differences, we
define the spread as a ratio of the local amplitude of the
growing vectors, relative to a reference amplitude mea-
sured over a large area:

1 Note that the spatial distribution of the other nongrowing (ran-
dom) part of the first-guess error field is largely unrelated to the
atmospheric dynamics and will be ignored in this study.
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where s2 is the ratio and it is defined in grid space; T
denotes a smoothing convolution that is performed us-
ing spectral transforms (Purser et al. 1994); F represents
the 24-h forecast at the same verification time; subscripts
i and c denote the ensemble member and control forecast
(operational forecast) respectively2; and n is the total
number of ensemble members. Here, L and S denote the
large scale (reference) and small scale (local) used in
the smoothing operator. As indicated above, the ratio
between the small-scale and the continental-scale en-
semble spreads is introduced in (2) in order to capture
only the day-to-day variation in forecast uncertainty,
rather than the time-averaged distribution of analysis
errors. When the ratio is large, there is more uncertainty
in the first guess, and we assume that the guess field
(6-h forecast) is likely to have larger error in these areas.
Since it is difficult to introduce geographically localized
adjustments into the background error B because it is
defined spectrally, instead, we give more weight to ob-
servational data in areas of large uncertainty by directly
dividing the observation error variance by s2, whenever
this factor is greater than 1. Hence the analysis is driven
closer to the data in these areas than in other areas. If
the ratio is smaller than 1 (the forecast uncertainty is
small), the observation error is maintained without
change at its nominal value.

3. A numerical experiment

The method is tested in the current operational SSI
analysis and medium-range forecast system. The model
used in experiments is the same as the NCEP operational
global spectral model, but with lower horizontal reso-
lution, T62 with 28 sigma vertical levels (Pan et al.
1995). In the data assimilation cycle, an analysis is per-
formed every 6 h. The NCEP ensemble forecast system
is also performed in a T62 L28 version, and it generates
five pairs of ensemble forecast members (Toth and Kal-
nay 1995) at 0000 UTC and two pairs of ensemble
members at 1200 UTC.

As described in (2), the value of s2 is the ratio of
mean square averages over the members of ensemble
pairs and it will depend on the number of the ensemble
members that are used in the computational procedure.
In our experiment, because there are only two pairs
ensemble forecast available for 1200 UTC and there is
no ensemble forecast starting from 0600 and 1800 UTC,

2 The spread in (2) is defined with respect to the control forecast
and not the ensemble mean for computational convenience.
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FIG. 1. An example of distribution of 1/s2 at different sigma levels.
This contour illustrated 1/s2 at sigma level 7 (sigma 5 0.846), level
13 (sigma 5 0.501), and level 18 (sigma 5 0.210) for wind field at
0000 UTC 18 June 1996. The contour interval is 0.1.

we only calculate s2 at every 0000 UTC by using all
five pairs of 24-h forecast ensemble members. The ratio
at 0600, 1200, and 1800 UTC is then computed by linear
time interpolation between the two adjacent ratios at
0000 UTC that bracket the analysis time. The small and
large scales used in (2) were chosen as in experiment
1 (see below), with values that were assumed to be
representative scales of local spread and smooth vari-
ation of the analysis errors.

a. Characteristics of the uncertainty ratio and impact
on the analysis field and first guess

As indicated in section 2, we set an upper bound of
1 on 1/s2 before multiplying the observational errors
(i.e., in regions of small forecast errors, the observa-
tional errors remain at their nominal value). The dis-
tribution of s2 varies not only in time but also with the
component of the field (temperature, wind, moisture)
and vertical level. Figure 1 shows an example of dis-
tribution of 1/s2 at different sigma levels for the wind
field at 0000 UTC 18 June 1996. It shows that there are
distinct values of the forecast spread at different vertical
levels. The impact of changes in moisture is larger in
the Tropics (not shown).

We then introduced the effect of large uncertainties
into the NCEP SSI analysis system. The results are com-
pared with a control run that keeps the error covariances
constant in time. To verify the quality of the analysis,
the RMS fit of both temperature (in K) and vector wind
(in m s21) against rawinsonde and dropsonde data are
presented in Fig. 2 for the analysis field itself and in
Fig. 3 for the next first guess, which is the 6-h forecast
started from the analysis field. This particular case is
verified at the analysis time of 0000 UTC 18 June 1996.
The figure shows that the method drives the analysis
fields closer to the observations when compared to the
control analysis field (as could be expected from the
reduction of the observational errors in areas of large
forecast uncertainty). However, this improved fit is pre-
served in the next first-guess field, indicating that the
analysis has been improved by this procedure. We have
obtained similar results in most cases.

b. Impact of variable uncertainty on medium-range
weather forecasts

We first tested the method using the data period 0000
UTC 1 August 1995 to 0000 UTC 14 August 1995.
According to the scale of smoothing operators, two ex-
periments were performed: In experiment 1 the large-
scale smoothing is taken as LH 5 1500 km for horizontal
smoothing and LV 5 4 km for the vertical. For small-
scale smoothing, the horizontal scale is SH 5 300 km
and the vertical scale SV 5 1 km. In experiment 2, we
used the same scales except for the large-scale hori-
zontal smoothing, which is taken as LH 5 2000 km. We
use the obtained ratio to adjust the observation error

covariance in the SSI system, then 5-day forecasts from
every 0000 UTC analysis field were compared with the
corresponding control (operational at T62 resolution)
forecast. Table 1 shows the comparison of the 1–5-day
forecast average anomaly correlation scores for 500-mb
geopotential height. It shows a positive impact of the
experiments with respect to the control (which did not
account for the time-varying forecast uncertainty), es-
pecially the skill of medium-range weather forecasts has
been increased. Experiment 2 is slightly better than ex-
periment 1 in the Southern Hemisphere, and it was used
for the rest of the experiments presented in the next
section.
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FIG. 2. Root-mean-square fit of temperature and vector wind against the rawinsonde and
dropsonde data for the analysis field at 0000 UTC 18 June 1996. The vertical axis denotes the
pressure level (unit: hPa), and the horizontal axis denotes the rms error of temperature (unit:
K) or vector wind (unit: m s21). Dashed line for experiment and solid line for control analysis.

4. The results of parallel tests

The method has been tested in parallel within the
current NCEP global medium-range weather forecast
system starting from 0000 UTC 23 April 1996, com-
paring as a control with the lower-resolution version
(T62/28L) of the NCEP global operational forecast
model. The parallel test is designed following experi-
ment 2 in section 3b. As of 0000 UTC 25 June, there
were 45 cases available for comparison. Figure 4 shows
the 5-day forecast anomaly correlation score for 1000-
and 500-mb geopotential height verified against the con-
trol analysis. The results indicate that the method im-
proves the medium-range weather forecast for most
cases and that the improvement is larger in the SH. Table
2 shows the comparison of the 1–5-day forecast average
anomaly correlation scores for geopotential height, dem-
onstrating that the method improves the forecast anom-
aly correction in both hemispheres at all ranges, except
in days 1 and 2 in the Northern Hemisphere.

5. Summary and discussion

This study shows that the use of the bred vectors of
the ensemble forecast in the NCEP SSI analysis system
has improved the quality of weather forecasts. The
method drives the analysis field closer to the observa-
tional data in the areas where the ensemble identifies
large forecast uncertainty. It also improves the quality
of analysis and next guess, as well as the medium-range
weather forecast. The method only requires calculating
the ratio of the ensemble spread in small and large (con-
tinental) scales, and the inverse of this ratio (bounded
by 1) is used to adjust the observational errors. The
computational cost of this method is negligible, since
the ensemble forecasts are already available. The pos-
itive impact of the experiments encourages further ex-
ploration of the use of the bred vectors in improving
the analysis system by taking into account the forecast
‘‘errors of the day’’ rather than assuming that the fore-
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FIG. 3. Same as Fig. 2 except the rms fit for the 6-h forecast.

TABLE 1. Comparison of 1–5-day forecast anomaly correlation av-
erage score verified against control analysis for 500-mb geopotential
heights (n 5 14 cases, 1–20 waves).

Day

Northern Hemisphere

Ctrl. Exp11 Exp12

Southern Hemisphere

Ctrl. Exp11 Exp12

1
2
3
4
5

0.978
0.937
0.872
0.800
0.709

0.978
0.938
0.873
0.803
0.713

0.978
0.938
0.873
0.803
0.710

0.977
0.929
0.862
0.787
0.712

0.977
0.929
0.863
0.790
0.715

0.978
0.930
0.865
0.794
0.722

cast error covariance is constant in time, as currently
done in all operational systems.

In this study we used the bred vector in NCEP three-
dimensional variational data assimilation by reducing
the observational errors in areas identified by the en-
semble as areas of large forecast uncertainty. The results
suggest that the NCEP bred vectors provide a good rep-
resentation of growing forecast errors even at the short-
est ranges. Other (more advanced) methods to take ad-
vantage of this knowledge of the day-to-day variability

in the forecast errors are also possible and will be ex-
plored in the future. Two such methods are an improve-
ment of the first guess by minimizing the distance be-
tween the first guess and the observations, but moving
only along the direction of the bred growing vectors
(Kalnay and Toth 1994; Purser et al. 1994), and the
inclusion of a flow-dependent forecast error covariance,
also based on the ensemble, into the SSI analysis
scheme, (J. Derber 1996, personal communication). In
the development of the latter method we will build upon
the results and the experiences reported in the present
paper.

Acknowledgments. We are most grateful to Drs. Mark
Iredell, Peter Caplan, and Hua-Lu Pan for their help in
creating the executable for the parallel tests. We also
would like to thank Thomas Hamill and two anonymous
reviewers for their comments on manuscript. The first
author is supported by the UCAR–NCEP Visiting Sci-
entist Program.



694 VOLUME 12W E A T H E R A N D F O R E C A S T I N G

FIG. 4. Scatter diagrams of the 5-day forecast anomaly correlation (AC) scores for geopotential height field in experiment and control
forecast: (a) Northern Hemisphere, 500 mb; (b) Southern Hemisphere, 500 mb; (c) Northern Hemisphere, 1000 mb; and (d) Southern
Hemisphere, 1000 mb.

TABLE 2. Comparison of 1–5-day forecast anomaly correlation av-
erage score verified against the control analysis for 500- and 1000-
mb geopotential heights (n 5 45 cases, 1–20 waves).

Day

Northern Hemisphere

1000 mb

Ctrl. Test

500 mb

Ctrl. Test

Southern Hemisphere

1000 mb

Ctrl. Test

500 mb

Ctrl. Test

1
2
3
4
5

0.964
0.911
0.853
0.764
0.636

0.962
0.910
0.854
0.769
0.644

0.983
0.950
0.898
0.822
0.711

0.983
0.950
0.899
0.824
0.717

0.961
0.899
0.809
0.709
0.604

0.961
0.900
0.816
0.727
0.624

0.976
0.928
0.850
0.751
0.639

0.977
0.931
0.861
0.765
0.652
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