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Using forecast sensitivity patterns to improve future forecast skill

By ZHAO-XIA PU*, EUGENIA KALNAY, JOHN C. DERBER and JOSEPH G, SELA
National Centers for Environmental Prediction, USA

(Received 10 June 1996; revised 10 September 1996)

SUMMARY

A simple, relatively inexpensive technique has been developed for using past forecast errors to improve the
future forecast skill. The method uses the forecast model and its adjoint and can be considered as a simplified 4-
dimensional variational (4-D VAR) system. One- or two-day forecast errors are used to calculate a small perturbation
(sensitivity perturbation) to the analyses that minimizes the forecast error. The longer forecasts started from the
corrected initial conditions, although better than the original forecasts, are still significantly worse than the shorter
forecasts started from the latest analysis, even though they both had access to information covering the same period.

As a much less expensive alternative to 4-D VAR, the adjusted initial conditions from one or two days ago
are used as a starting point for a second iteration of the regular NCEP analysis and forecast cycle until the present
time (¢ == 0) analysis is reached. Forecast experiments indicate that the new analyses result in improvements to
medium-range forecast skill, and suggest that the technigue can be used in operations, since it increases the cost
of the regular analysis cycle by a maximum factor of about 4 to 8, depending on the length of the analysis cycle
that is repeated. Several possible operational configurations are also tested.

The model used in these experiments is the NCEP’s operational global spectral model with 62 waves triangular
truncation and 28 o -vertical levels. An adisbatic version of the adjoint was modified to make it more consistent
with the complete forecast model, including only a few simple physical parametrizations (horizontal diffusion and
vertical mixing). This adjoint model was used to compute the gradient of the forecast error with respect to initial
conditions.

Keyworps: Adjoint model Data assimilation Numerical weather prediction Forecast errots
Sensitivity  4-I3 VAR

. INTRODUCTION

The accurate specification of initial conditions is vital for numerical weather predic-
tion (NWP). Many poor forecasts can be traced to errors in the initial conditions. Recently,
considerable attention has been focused on the 3-dimensional (3-D) and 4-dimensional
(4-D} variational assimilation methods (Talagrand and Courtier 1987; Derber ef al. 1991;
Navon et al. 1992; Andersson et al. 1994, 1996) to improve the initial conditions. While
the 3-D techniques have become feasible (Derber et al. 1991; Andersson et al. 1996), the
4-D vanational techniques remain expensive, and still on the edge of feasibility for global
operational implementation. In this paper we describe a simple, less expensive, alternative
to the 4-D variational system that can result in improvements to the data assimilation and
forecast system. It attempts to identify and partially remove from the background field
some of the fast growing ‘errors of the day’, a problem identified as high priority in data
assimilation.”

* Corresponding author: National Centers for Environmental Prediction, W/NCEP2, Room 207, 5200 Auth Road,
Camp Springs, MD 20746, USA. At present on leave from Lanzhou University, Lanzhou, P. R. China.

¥ In the Panel Discussion of the 2nd WMO International Symposium on Assimilation of Observations in Meteor-
ology and Oceanography, Tokyo, March 1995, Philippe Courtier stated ‘Tt is essential for data assimilation in a
system which has instabilities to have “errors of the day” that know about current instabilities (where the error grew
and will grow). Rabier ez al. (1996) dermonstrated the practical importance of a careful treatment of the unstable
manifold. As shown in Courtier ef al. (1994) and Courtier (1995), it is possible to embed a variational algorithm (3-D
VAR or 4-D VAR) within a simplified Kalman filter. This allows one to implement flow dependent stractures which
account for the current instabilities. Very similar ideas are expressed in Cohn and Todling (1996). As in Kalnay and
Toth (1994) the background term is modified in a low-dimension space, but this dimension can go in practice up to
a hundred (or even a thousand).” Other paneclists agreed with this priority.
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Lacarra and Talagrand (1988) and Vukicevic (1991) investigated the short-range evo-
lution of small perturbations, and showed that the evolution of small errors in a nonlinear
model can be approximated with a linear-tangent model for about two days. At the US
National Centers for Environmental Prediction (NCEP), formerly the National Meteoro-
logical Center, there has been some experimentation to remove the short-term systematic
errors and mitial growing errors. Thiebaux and Morone (1990) investigated the spatial
and temporal statistical coherencies in the departures of short-range forecasts from ob-
served and analysed geopotential fields, and found that they can be used diagnostically as
the basis for adjustment of forecast products. Kalnay and Toth (1994) used the grow-
ing modes obtained in the NCEP ‘breeding cycle’ to partially remove the growing
errors in the analysis cycle through adjustment of the first guess, and their results in-
dicated that the procedure has the potential of improving the first guess and subsequent
forecasts. In this study, we attempt to use directly short-range-forecast errors to adjust the
initial condition through a 4-D minimization process using the adjoint method. The ex-
periments will show how we could use the adjusted initial condition to improve the future
forecast skill.

In the last decade, adjoint models have been applied i 4-D data assimilation (Le
Dimet and Talagrand 1986; Derber 1987, 1989; Zupanski 1993; Zupanski and Mesinger
1995}, in optimal parameter estimation (Zou et al. 1992), in the determination of singular
vectors (Buizza 1994), as well as in forecast sensitivity studies (Errico and Vukicevic
1992; Courtier et al. 1993; Zupanski 1995; Rabier ef al. 1996, hereafter RKCH). One of
the main advantages of the adjoint method is that it combines the dynamics of the forecast
model and observed (or analysed) information in one system, so that the gradient of cost
function with respect to all initial parameters (initial field and model input parameters)
can be calculated with a single integration of the adjoint model. If the cost function is
defined as the distance between a forecast and verifying analysis, then the gradient with
respect to the initial conditions is denoted “forecast sensitivity’. If the initial conditions are
adjusted with a perturbation proportional to the forecast sensitivity, the difference between
the adjusted and the original solutions will give an estimate of the distribution of the initial
error explaining part of the forecast error. This idea was developed and applied by RKCH
using the European Centre for Medium-Range Weather Forecasts (ECMWF) model. They
calculated the perturbation to the two-day-old initial conditions that would minimize the
two-day forecast error over the northern hemisphere, and compared the resulting forecast
with the original two-day-old operational forecast. Their results showed a very substantial
improvement of several particularly poor forecasts, although in almost all cases the updated
forecasts from two days earlier were not better than those launched from the latest initial
conditions. Zupanski (1995) found that the forecast sensitivity improved when several
iterations were performed.

In this paper we present a simple extension of the RKCH technique, in which we use
the known error from past forecasts to improve future forecasts. The initial conditions of
forecasts 1 or 2 days old are altered based on their observed forecast error. The altered
fields are then used as a starting point for a second iteration of the regular NCEP analysis
cycle in order to improve future forecasts. The experiments are performed with the NCEP
model with a triangular truncation of 62 waves and 28 vertical levels. The mathematical
formulation is described in section 2. The adjoint model {(section 3) contains the complete
dyvnamics of the model, but only a few simple physical parametrizations (horizontal diffu-
sion and vertical mixing}, as in Buizza (1993). In section 4 we present forecast-sensitivity
experiments. The extension of the method to improve future forecasts by performing a
new assimilation cycle, and the corresponding results, are presented in section 5. Section
6 includes a summary and conclusions.
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2. MATHEMATICAL FORMULATION

At any forecast time ¢, for a forecast variable X, the perceived forecast error, §X, is
given by the difference between forecast (X,) and analysis (X*")

5X = X, — X 1)

where X, = M(X(fy)); M is a forecast model and X(7;) 1s the initial condition corresponding
to Xy. A measure of the error at forecast time ¢ s based on a total energy norm, given by

Fy = |6X]* = 18X"WéX

=l [ (VA v AT (2)
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where 6X = (£, D, T, IT) denotes differences between the forecast and analyses for vor-
ticity, divergence, temperature and natural logarithm of surface pressure, respectively, and
8XT denotes its transpose. T, , P, are the reference temperature and pressure, respectively,
R, is the gas constant for dry air, and C, is specific heat at constant pressure for dry air.
[" represents the integration domain. W is the matrix of weights defining the norm. The
weights are a function of T, P,, R,, and C,. 7 is the vertical coordinate. Thus, the cost
function $ over the forecast period is given by:

N
$=)F, 3)
i=1

where N is the number of the analysis times used for calculating 2.

We would like to find an initial perturbation §X(#;) that minimizes forecast error as
measured by the objective function. The preconditioned gradient of the objective function
with respect to the initial conditions is given by:

N
Vi =W LTWsX(r) (4)
) |

where L is the linearization of the forecast model around the current solution, LT denotes
the adjoint of the operator L.

In the first iteration of most minimization algorithms, the correction to the initial
conditions is equal to the gradient multiplied by a reasonable step size, p (1.e Dimet and
Talagrand 1986). From this we obfain the new initial conditions:

X(fi}) fnew: X(tﬂ) — QP vX(f{_})}' (5)

In much of the following we take advantage of the fact that this single iteration of the
minimization algorithm explains a substantial portion of the forecast error. The consider-
able cost of each iteration makes it impractical to perform the minimization with many
iterations as recommended by Zupanski (1995). Examples on the impact of the use of
several iterations will be shown in section 4.

The gradient in (4) is commonly called a forecast sensitivity pattern (Zupanski 1995;
RKCH). We call the second term 1n (5} the sensitivity initial perturbation since it is related
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to such sensitivity patterns. RKCH and Buizza ef al. (1995) showed that the sensitivity
pattern can be approximated by projecting onto the subspace of growing singular vectors
(which Buizza et al. (1995) denote unstable subspace), and that the projection is dominated
by the leading singular vectors.

3. MODIFICATIONS TO THE ADJIOINT OF THE NCEP GLOBAL SPECTRAL MODEL

To ensure that we obtain a reasonably accurate gradient, it is necessary for the adjoint
model to be as consistent as possible with the forecast model. However, the inclusion of
all the model physics into the linear-tangent model and its adjoint is both difficult and
computationally expensive, most applications so far have used simplified adjoint models
(Errico ef al. 1993; Buizza 1993, 1994; RKCH). At the NCEP an adiabatic version adjoint
for the global spectral model was developed by Navon et al. (1992), including a simple
surface-drag scheme and horizontal diffusion. It worked well for most of the atmosphere
within a short period, but unrealistically larger growth rates were observed at low levels
of the model (Szunyogh (1994), personal communication), a problem attributed to inad-
equacies in the model physics. Following Buizza (1993} and Thone and Mahrt (1986),
we introduced, in addition to the surface drag and the horizontal diffusion, a linear verti-
cal diffusion scheme. To assess the effect of the vertical diffusion parametrization on the
spurious growth, the nonlinear NCEP global spectral model was integrated for 24 hours
from 0000 urc 16 May 1985 initial conditions, but using different subsets of physical
parametrizations. The results were compared with those obtained from running the oper-
ational model with full physics. Figure 1 shows the kinetic energy norm of the different
24-hour forecasts at all model levels. In the run with no physics it is apparent that there is
an unrealistically large increase of kinetic energy at low levels when compared with the run
with full physics. The introduction of surface drag only improves the lowest model level,
but the kinetic energy in levels 2-7 remains too large. The introduction of the new vertical
diffusion and horizontal diffusion results in a solution much closer to the operational T62
model with full physics.

28 -

24 -

D§ ] e Bill physics T62
i ity with surface diag
16 - —E— o physics

soselffpune iy with reve verical diffusion

Vertical Levels

0.1 1.0 10.0 100.0
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Figure 1. Vertical cross-section of kinetic energy norms after 24-hours integration of the T62 global spectral
model with no physics, with surface drag, with surface drag and simple vertical diffusion, and with the full physics
{operational model).
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Figure 2. The evolution of a perturbation §X, after 24 hours at level 13 (sigma = 0.501); (a) linear and {b)
nonlinear evolution. Contours show the temperature perturbation at 1 K intervals. Dashed lines represent negative
values.

The new vertical diffusion scheme was included in the linear and adjoint models
used in this paper. To examine further the approximation of this simplified version to the
complete vertical diffusion parametrization, a small-amplitude initial perturbation field,
8Xo, was introduced into the nonlinear model integration with the full physics package,
and the difference between the two nonlinear integrations (starting from perturbed and
unperturbed initial condition at 0000 utc 16 May 1985) was compared with a linear model
integration which included the new linear vertical diffusion and the same perturbation
(6 X,) as 1nitial condition. Figure 2 shows the comparison between the linear and nonlinear
evolution for the temperature perturbation field at sigma level 13 (about 500 mb) after
24 hours of integration. The agreement between the perturbation fields obtained from
the linear and the nonlinear integration is generally good, containing small differences in
phase but reproducing all the main features. This suggests that, in agreement with previcus
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investigators, the dry adiabatic linear model with surface friction and vertical diffusion can
reproduce fairly well the nonlinear perturbations of the model with full physics for short-
range (12 day) forecasts.

4.  SENSITIVITY OF SHORT-RANGE-FORECAST ERRORS TO PERTURBATIONS IN THE INITIAL
CONDITIONS "
(a) Experiments

In this section, sensitivity experiments similar to those performed at the ECMWF
(RKCH) are performed using the NCEP adjoint system. Again, 0000 utc 16 May 1985,
available from the NCEP/NCAR* Re-analysis Project, was arbitrarily chosen as the initial
condition. The current NCEP operational data-assimilation system (as of January 1995)
was used to create the analysis on a 6-hour cycle. This system uses a 3-D variational
analysis (3-D VAR) scheme developed by Parrish and Derber (1992) and Derber et al.
(1991), implemented in 1991, and which has since then undergone further improvements
(Derber et al. 1994; Parrish et al. 1996).

In order to test the sensitivity of the one- or two-day forecast errors to changes in the
initial conditions, three sensitivity experiments are performed and compared. In experi-
ment 1 we use a one-day forecast error, where the forecast error is defined as the difference
between the forecast and the analysis at 0000 utc 17 May 1985; in experiment 2 we use
a two-day forecast error, similarly defined at 0000 uTc 18 May 1985; and in experiment
3 we also use a two-day forecast, but the forecast error in the cost function is defined as
the sum of all the forecast differences with the analyses available every six hours within
the period 0000 utc 16 May 1985 through 0000 utc 18 May 1985. A conjugate gradient
method (Gill ef /. 1981) was employed in our system, with an optimal step size defined
as in Derber (1987).

Figure 3 illustrates the vertical distribution of the total energy norm of the forecast
error before and after a single iteration in experiments 1 and 2, showing that the error
decreases significantly at almost every sigma level. The effect of performing multiple
iterations is shown in Fig. 4 for experiment 3. As in Zupanski (1995) we find that although
the first iteration reduces substantially the cost function (by 18%), additional iterations
continue to decrease it, with a total reduction of about 45% after ten iterations (Fig. 4(a)).
Similarly, Fig. 4(b) shows that the forecast error throughout the two-day forecasts after one
iteration is reduced by about 20%, and after another nine iterations by an additional 25%.
Note that in the extended-period forecast error, we found that not only the 48 h forecast 1s
improved, but the 35 day forecasts are also significantly better. There is a clear advantage
of having more iterations, although one iteration is enough to improve the control forecast.
Zupanski (1995), using a regional model and its adjoint, found that the sensitivity fields
obtained after one and ten iterations were not very similar, with projections corresponding
to angles of up to 50° between them, But we should also notice that the descent of the cost
function in the first iteration is faster than for the other iterations.

Since the first iteration explains more forecast error than any of the following ones,
and because of the large expense of performing many iterations of the descent algorithm,
RKCH have chosen to perform a single iteration in their experiments, with a value of the
step size p = 1/100, 1/150 or 1/200 (depending on the season) multiplied by the gradient, to
generate the sensitivity perturbations. In this study, our main purpose is to use the improved
initial conditions as the starting point for a second iteration of the regular NCEP analysis
cycle (section 5). We are interested in the potential operational application of this method,

* National Center for Atmospheric Research.
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Figure 3. Vertical cross-section of the total energy norm of forecast error before (solid curve) and after (dashed
curve) one iteration: (a} for experiment 1 and (b) for experiment 2,
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iterations. (b) The total energy norms at every 24 hours in two days and extended forecast pertod. Solid curve

for the error norm of first guesses {control forecast), long-dashed line for an error norm after one iteration and
short-dashed line for after ten iterations.

which limits the available computer resources, so that we have also chosen to perform only
a single iteration assuming that such single iteration will result in a substantial reduction
of the forecast error while remaining computationally efficient. Since the fixed step size
may not be sufficiently accurate, we determine the step size using the technique described
by Derber (1987), with 1/100 or 1/200 as the guess step size, p,. The optimal step size p
is given by:

T AWK ~ XEDHITXE®)

S AWXe ()1 Xe (1)

where Xg (¢;) is the difference between the forecasts results from integrating the initial

condition X.(#) and X(#0) + 0 Vxun P To calculate the optimal step size for one iteration,
the forecast model needs to be integrated one time from the initial condition X(#) +

Pe Vxund.

(6)

2= Pg
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Figure 5. The root-mean-square forecast error of (a) the temperature, (b} the vorticity and {c) the divergence.

(b)Y Impact of the sensitivity perturbations on medium-range forecasts

In this subsection we compare the impacts on medium-range forecasts of the three
forecast sensitivity experiments discussed in the previous subsection, using a single itera-
tion, with the control forecast performed from the unperturbed analysis for 0000 urc 16
May 1985.

Figures 5(a), (b), and {¢) show the global root-mean-square (r.m.s.) forecast errors for
temperature, vorticity and divergence, respectively, for the control and the three sensitivity
experiments. The results indicate that the one-day sensitivity perturbation (experiment 1)
improves not only the first day, but also that the benefit extends to days 2 through 4. The
2-day sensitivity-experiment (experiment 2 and 3) improvement extends throughout the
whole forecast period (days 3 through 7). Comparing experiment 2 with experiment 3, in
which the forecast error was defined throughout the two-day forecast and not just at the end
of the two days, we observe that experiment 3 is clearly better during the first 4 days, but
that at days 5 and 7 experiments 2 and 3 give similar etrors. Note that experiment 3 results
in considerable larger changes in the initial conditions than the other two experiments.
Experiments indicated that the length of the period and the density of data insertion in the
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period affected the initial perturbation and subsequent forecasts. This effect will be further
tested with the several possible operational configurations in subsection 3(b).

The results of these experiments agree with the RKCH experience that the benefit of
the perturbed initial conditions extends beyond the period for which the forecast sensitivity
perturbation was initially calculated.

(¢) Evolution of the sensitivity perturbation

A second experiment on forecast sensitivity on short- and medium-range forecasts
was performed with initial conditions corresponding to 0000 urc 23 February 1995, The
sensitivity was calculated from 2-day forecast errors at 0000 utc 25 February 1995, as
in experiment 2. Figure 6 shows the 500 mb geopotential-height difference between the
sensitivity and the control forecast at ), 24, 48, 72, 96, and 120 hours. We can see that the
small mitial differences (plotted with a 3 m contour interval} lead to very large differences
after 120 hours (plotted with a 25 m contour interval). These large differences take place in
both the northern and the southern hemispheres. Table 1 presents the anomaly correlation
scores verified against operational analyses for the control and the sensitivity forecasts,
showing large improvements in both hemispheres. An inspection of the distribution of the
initial perturbation of geopotential height at 500 mb (corresponding to T+00 in Fig. 6)
indicates that there may be two dominant error sources in the northern hemisphere, over
Canada and the North Pacific areas. The 5-day forecast differences are also maximum
over North America in this case. A check of the corresponding 5-day forecast of the NCEP
operational model (at T126/28 level resolution) indicates that the anomaly correlation
scores on 0000 urtc 28 February 1995 were also unusually low over North America, and
within normal range for other areas of the northern hemisphere (P. Caplan (1995), personal
communication). This confirms that the large error growth of the sensitivity perturbation
is present even in the high-resolution model, and that the adjoint method is a useful tool
to trace back growing initial perturbations associated with the forecast error.

TABIE 1. THEANOMALY CORRELATION SCORESOF 1—9 BAY FORECASTS FROM
Q000 ©TC 23 FERRUARY 19935 ror 500 MB GEOPOTENTIAL HEIGHT

Hemisphere Type Davi Day2 Day3 Dayd Day5s

Northern Control 0.986 0563 0921 6852 0.729
Northern Sensitivity 0.989 0.978 0969 0.934  0.877
Southern Control 0933 0820 0762 8670 0592

Southern Sensitivity  0.943 0833 0.767 8725  0.666

5. USE OF PAST FORECAST ERRORS TO IMPROVE FUTURE FORECAST SKILL

(a) Comparison of the sensitivity forecasts with regular forecasts from latest initial
conditions

So far, our results confirm the experience of RKCH, showing that the use of the
short-range-forecast errors can improve substantially the original forecast, even beyond
the period for which the error was computed. But the crucial question for an operational
centre like the NCEP or the ECMWF is whether it can use this procedure to improve the
skill of future forecasts. In other words, if the observed 2-day-forecast error is used to
improve the initial conditions from two days ago, will the improved 5-day forecast from
two days ago be also better than the 3-day forecast from today? Unfortunately, as will be
seen, the answer to this question is that, in most cases, this is not the case. This lack of
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Figure 6. 3500 mb beight difference between the sensitivity and the control forecasts in steps from 0—120 hours
from Q000 vre 23 February 1995, Note the different contour intervals which are indicated in brackets above each
panel.

improvement with respect to the latest forecast was also observed by RKCH. Therefore,
taking advantage of our knowledge of the data available until the present time just to
correct older initial conditions is not enough to make forecasts better than the regular
forecasts made from the analysis cycle using all the data available until today. There may
be at least three reasons for this result: (a) the use of the linear-tangent model as a strong
constraint within the forecast sensitivity procedure; (b) the use of a single iteration to
obtain the improved initial conditions; and {c) the fact that the latest analysis uses all the
observations directly within a full data assimilation system, rather than just correcting a
few degrees of freedom in the growing errors.

However, it seems natural that if we can improve the initial conditions from two
days ago, it should be possible to perform a second iteration of the regular analysis cycle,
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Figure 7. The anomaly correlation scores for the 500 mb geopotential heights, the 5-day sensitivity forecast, the

corresponding 3-day control (operational) forecast, the 5-day control forecast, and the 3-day forecast from the new

cycle (iterated), for (a) the northern hemisphere and (b} the southern hemisphere. Dates (March of 1995) on the
| horizontal axis denote the starting dates of forecasts.

starting from the improved initial conditions from two days ago, and that this iterated
analysis could then lead to better forecasts from today.

We first tested this idea for seven consecutive cases from 16 to 22 March 1995, At 0000
UTC every day, we calculated the sensitivity perturbation from the 2-day forecast error, then
compared the sensitivity 5-day forecasts with the original 5-day control forecasts. Figure 7
shows the comparison of the 5-day forecast anomaly-correlation scores verified against
control analyses for 500 mb geopotential height. Not surprisingly, the 5-day sensitivity
forecasts (which take advantage of the information available for two additional days in
the computation of the 2-day forecast error) are in most cases substantially better than
the original 5-day forecasts, in both hemispheres. However, the 3-day forecasts from the
regular analysis cycle, also taking advantage of the data gathered over the last two days,
show an even larger improvement (Fig. 7). A similar conclusion was reached using 1-day
sensitivity forecasts: we found that the 5-day sensitivity forecasts were much better than
the 5-day control forecasts, but did not exceed the skill of the corresponding 4-day forecasts
(figure not shown). |

As indicated above, we tried to solve the lack of improvement upon future forecasts
by a simple extension of the sensitivity experiments, in which the sensitivity perturbation
of short-range forecasts is used as a starting point for a second iteration in the analysis and
forecast cycle for the last two days. We called this an iterated analysis—forecast cycle.

(b) An iterated analysis—forecast cycle using the sensitivity perturbation

The initial conditions for the operational medium-range global spectral model are pro-
vided by the NCEP spectral statistical interpolation (SSI) scheme, a 3-D variational analysis
(Derber ez al. 1991; Parrish and Derber 1992). In the NCEP 6-hour analysis/forecast cycle,
the 6-hour forecast from the global spectral model is used as a first guess for the SSI, which
finds the 3-D analysis fields that best fit both the first guess and all the observational data
gathered for the next 6-hour period.

In the sterated analysis cycle, we introduce the 2-day sensitivity perturbation into
the 2-day-old analysis. We then repeat the analysis cycle for the last two days using the
improved initial analysis until we reach the end of the sensitivity period. The verifications
are made against the control analysis. Figure 7 also shows the anomaly correlation of
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the 3-day forecast that starts from the new analysis, indicating that, for most cases, the
new 3-day forecast is better than the original forecast. Figure 8 shows the 5-day forecasts
from the regular and iterated analysis cycle using the 2-day sensitivity perturbation. It is
encouraging that, in five out of the seven cases, and in both hemispheres, the new 5-day
forecast is equal or better than the regular (operational) forecast.

The conclusion of this experiment is that the iterated cycle has the potential of im-
proving the forecast skill, because it improves the corresponding 3 to 5-day operational
forecasts that used the same available information. Similar results were obtained using a
1-day sensitivity perturbation, and using it as starting point for a repeated 1-day analysis
cycle (not shown).

(¢) Test of several possible operational configurations of the iterated analysis cycle

In this final test, we chose a period from 18 March to 1 April 1995. All tests were done
in a configuration that could be implemented operationally, and the same procedure was
applied every day. The iterated cycle was performed in a continuous fashion as follows:

(i) Starting from 0000 uTc, the forecast error, i.e. the difference between the 0000 utc
analysis field and valid one- or two-day forecast, is taken as an initial condition for adjoint
backwards integration to compute the sensitivity perturbation for the one or two-days
previous analysis (at 7 = —~24 hor ¢ = —48 h). |

(i) Att = —24 hort = —48 h, we modify the analysis field by the obtained sensitivity
perturbation. Then, starting from this point to repeat the SSI analysis cycle until 0000 utc
is reached. The new current analysis (initial conditions) is obtained.

(iii) Starting from the new current initial condition at 0000 UTC, the medium-range
forecasts are performed and compared with the forecasts from the original (not iterated)

analysis cycle.
(iv) This new analysis is then used to calculate the next perturbation and start the next
analysis cycle.
Four possible configurations were tested:
(1) A 24-hour forecast error was used in the one-day iterated assimilation period;
(2) A 48-hour forecast error was used in the two-day iterated assimilation period;
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Figare 9. Comparison of 5-day forecast anomaly correlation scores verified against control analyses for 500 mb
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Figare 10. Same as Fig. 9, except for test 3 and test 4.

(3) As in (2), but 24, 36, and 48-hour forecast errors were used to determine the
sensitivity perturbation; and

(4) As in (2), but 36 and 48-hour forecast errors were used to determine the sensitivity
perturbation.

The individual forecast results corresponding to tests 1 and 2 are presented in Fig. 9,
and those of tests 3 and 4 in Fig. 10. The average scores verified against the control analysis
over the 15 days of experimental forecasts are presented in Table 2.

The iteration of the analysis cycle results in a small overall improvement with respect
to the operational control, for both northern and southern hemispheres, even though it is
not successful in every case. Overall, the use of the two-day sensitivity results in more
improvements than the use of a one-day sensitivity. This is not surprising, since the errors
are better defined after two days for two reasons: (a) the 2-day forecast errors are larger
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TABLE 2. COMPARISON OF THE AVERAGE ANOMALY CORRELATION SCORES OF I-3 DAY FORECASTS FOR

GEOPOTENTIAL HEIGHT

Northers hemisphere 1000 mb Northern hemisphere 508 mb
Day Control Test1 Test?2 Test3 Test4 Control Testl Test2 Testd Test4d
i 972 0971 097 0973 0973 0989 0989 0990 09950 0.5%
2 $.937 04934 0942 0938 0.938 0.965 0963 0966 0966 0.966
3 0884 0878 0888 {886 (0.883 0924 0920 092 0926 0925
4 0788 0787 0,797 06796 0.793 0.852 0849 (859 0858 0859
5 0.685 0688 0689 04691 0691 0766 0763 0770 0767 06774

Southern hemisphere 1000mb Southern hemisphere 500 mb

Day Control Testl Test2 Test3 Testd Control Test1 Test2 Test3d Test4d

1 0.948 0946 0952 8948 0950 0.971 0.974 0914 0975 0975
2 0.885 0.882 0854 0883 0.B86 0919 0926 0927 0928 0.928
3 0.793  0.796 0806 0798 (.796 0.833 0849 0852 0850 0.851
4 0.680  0.685 0.69% 0690  0.690 0.721 0739  0.743 0744 0747
5 .551 0.579 G574 0564 (0.566 0599 0618 0621 0616  0.615

Starting dates of the forecasts ranged from 18 March 1995 to 1 April 1995,

and, therefore, the perceived “forecast errors’ are less affected by the unknown analysis
errors; and (b) the growing errors are better organized after two days than after one day.

We also found that, at least over the northern hemisphere, the use of the 36-hour
forecast errors in addition to the 48-hour errors within the cost function led to somewhat
better results, presumably because it also improved the signal-to-noise ratio. In the southern
hemisphere, where the analysis uncertainties are larger, the use of only 48-hour errors in
the cost function was slightly better.

With respect to the use of just the 48-hour forecast errors or adding the 24- and 36-
hour errors in determining the sensitivity patterns, the results seem to favour shightly the
use of only the 36- and 48-hour forecast errors in the northern hemisphere. This would be
in agreement with the two arguments presented above: by including the 36-hour forecast
errors (at a time in which the growing errors are already organized) we increase the signal-
to-noise ratios of the cost function. In the southern hemisphere, which is less well observed,
and where the uncertainties in the analysis are larger, the results suggest that it may be better
only to include the 48-hour forecast errors. However, given that the difference between
the one and the two-day iterated assimilation impact is not large, it may still be desirable
to perform this procedure operationally with a one-day sensitivity approach, which is half
as costly as the two-day approach.

Figure 11 shows the impact of the iterated cycle for a typical 500 mb geopotential
height 5-day forecast (0000 utc 29 March 1995) over the US area. The 5-day control
forecast misses a low-pressure cyclone over Utah, but the 5-day new forecast predicted
this system much better, even though it is still slightly too far to the south and east.

. SUMMARY AND DISCUSSION

There is a growing consensus among many leading experts in data assimilation that the
single most important problem that has to be addressed in realistic data assimilation is the
presence of fast growing (unstable) ‘errors of the day” in the initial conditions. In agreement
with this consensus, the purpose of this paper has been to identify and partially remove
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fast-growing errors from the first guess. We presented a simple, relatively inexpensive
technique for using past forecast errors to improve the future forecast skill. The method is
an extension of the forecast sensitivity studies of RKCH, and can be considered as a very
simplified approach to 4-dimensional variational data assimilation.

We first tested the NCEP adjoint system and found that it was necessary to introduce
a simplified vertical diffusion scheme into the linear and adjoint NCEP adiabatic models in
order to avoid spurious increases of energy in the lower layers of the model. The sensitivity
patterns are obtained with this system by minimizing a cost function defined by the one
or two-day forecast error norm. Since we are interested in a cost-effective approach, we
assume that the first iteration of the minimization algorithm will be enough to achieve
a substantial reduction of the forecast error, but not necessarily a true indication of the
analysis etrors.

Not surprisingly, the sensitivity results obtained with this system are similar to those of
REKCH: the 5-day forecasts from the 2-day-old analyses perturbed by the forecast sensitivity
pattern (obtained from the 2-day forecast errors) were substantially better than the original
5-day forecasts. However, this important result, which proves that the use of the adjoint
model is a powerful tool to estimate errors in the initial conditions, does not by itself lead
to improved operational forecasts. When we compared the improved 5-day forecasts from
2-day old initial conditions with the 3-day forecasts from the latest available analyses, the
latter were still considerably better.

In order to improve the future forecast skill, we developed an ‘iterated cycle’ tech-
nique, in which we use the perturbed one- and two-day-old analysis as an improved starting
point for a repetition of the regular analysis cycle until the current initial conditions are
reached. Forecasts from these iterated analyses are in general better than the original fore-
casts. Several possible operational configurations of this iterated cycle are also tested,
indicating that the technique improves the future forecast skill. The technique requires
only one iteration of the minimization algorithm per day, as well as an iteration of the
analysis cycle for one or two days. Depending on whether one or two-day errors are con-
sidered in this procedure, 1t increases the cost of the analysis cycle by a factor of about 4 to
8, (compared with a much larger increase with full 4-D variational systems) and therefore
becomes computationally feasible with present-day systems. It is possible that additional
reduction in the cost of this system (and the 4-D variational system) can be made by
including further approximations (e.g. lower resolution, etc.).

This study has proven that there is still scope for improvement in the forecast in
medium-range forecasts by identifying and partially removing growing errors from the
initial conditions. It is important to note that the sensitivity pattern projects very strongly
on just a few singular vectors (Buizza ef al. 1995; RKCH). They can be well approximated
by projecting oato the subspace of growing singular vectors. Therefore, the improvement
in the initial conditions only involves a few degrees of freedom. When the full 3-D VAR
is performed starting from the improved initial conditions, only a few degrees of freedom
(O(10)) have been modified, a number negligible compared with the total data available.
Therefore, although introducing the sensitivity perturbation to the first guess and to the
iterated 3-D VAR analysis introduces an influence of the observation errors, the sensitivity
correction does not affect significantly the assumption made in the 3-D VAR about lack
of correlation between model and observational errors. The modifications induced by the
sensitivity approach are known to be very strongly baroclinic, while the SSI (3-D VAR)
structure functions are essentially barotropic. The spherical harmonic energy spectra of
the SSI and of the sensitivity patterns are also quite different, with the former being
flatter. These arguments also indicate that the iterated cycle does not represent a significant

~ violation of the assumption of uncotrelated model and observational errors in the SSI



1050 7.-X. Pl etal

E £ £ E ¥ &

£

VN e

N L . . ' 1 ™ - b
10 i i ' : . : ) ; .
: :

thOW L3O s 0N 1 0% 10w oW B i dtw e

TAOW 119% 120W ™ Wo¥ Sow

Figure 11. 500 mb geopotential-height field over the US area at 6000 vrc 29 March 1995: (a) 5-day control
forecast, (b) 5-dav forecast irf iterated cycle, and (¢} analysis.

system, which is also reinforced by the fact that the procedure leads to the improvement
of the forecasts, and therefore to the analysis fields.”

- There is increasing interest in methodologies that reduce the computational cost and
thus bring the advanced 4-D VAR system in present operations (e.g. Zupanski and Zupan-
ski 1996). We have recently made additional enhancements of the simplified 4-D VAR
technique presented here (Pu 1996; Pu ef al. 1996a; Pu er al. 1996b), using the quasi-
inverse linear-tangent model, showing further promise for operational implementation at
the NCEP.

* While this paper was under revision, we became aware that a similar techuique was tested successfully by using
a HIRLAM model and its adjoint in a 6 h data assimilation window with an optinsum interpolation analysis scheme
{(Huang et al. 1996).
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